JPS5891096A - Growing device for single crystal - Google Patents

Growing device for single crystal

Info

Publication number
JPS5891096A
JPS5891096A JP56190245A JP19024581A JPS5891096A JP S5891096 A JPS5891096 A JP S5891096A JP 56190245 A JP56190245 A JP 56190245A JP 19024581 A JP19024581 A JP 19024581A JP S5891096 A JPS5891096 A JP S5891096A
Authority
JP
Japan
Prior art keywords
temperature
temp
controller
single crystal
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56190245A
Other languages
Japanese (ja)
Inventor
Hirokuni Nanba
宏邦 難波
Hajime Osaka
始 大坂
Kouichi Koukado
香門 浩一
Fumiaki Higuchi
文章 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56190245A priority Critical patent/JPS5891096A/en
Publication of JPS5891096A publication Critical patent/JPS5891096A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To produce a single crystal with less crystal defects and with good reproducibility by controlling a heating furnace dividely to many pieces and constituting the sloped temp. region in temp. distributions movably in an axial direction at a specified speed by electrical control. CONSTITUTION:A heating furnace 11 is divided to n pieces of heaters 121-12n in an axial direction, to which respectively independent controllers 131-13n are attached, so that the temps. of the respective heaters are controlled. The controllers 131-13n are connected to one unit of controller 14. The controller 14 controls the setting of the controllers 131-13n thereby controlling the temp. distributions over the entier part of the furnace 11 to prescribed programs. The curve of the temp. distributions to be set when a single crystal 3 grows to the position of a dotted line 15 is shown by the dotted line in the right figure. While the controller 14 maintaines the temp. TH in the specified temp. region and temp. below TI constant during this growth period, the controller shifts the sloped temp. region TM to an axial direction at a specified speed to T'M.

Description

【発明の詳細な説明】 本発明は化合物半導体単結晶を溶質合成拡散法(以下、
SSD法と称−i!−)IcJI育成する単結晶育成装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for preparing compound semiconductor single crystals using a solute synthesis diffusion method (hereinafter referred to as
It is called SSD method-i! -) This invention relates to a single crystal growth apparatus for IcJI growth.

従来、SSD法により化合物半導体の単結晶を製造する
には、第1図に例を示すような単結晶育成装置が使用さ
れていた。図において、ルツボ1の底面に化合物種結晶
2を置き、その上に化合物の第1成分である溶媒金属4
金入れ、さらにその上に化合物粉末5を入れである。こ
のルツボ1を石英容器6(成長カプセル)に収納し、又
石英容器6内に化合物の第2成分7を入れたルツボ8を
収納する。9は炉心管である。
Conventionally, in order to manufacture single crystals of compound semiconductors by the SSD method, a single crystal growth apparatus such as the example shown in FIG. 1 has been used. In the figure, a compound seed crystal 2 is placed on the bottom of a crucible 1, and a solvent metal 4, which is the first component of the compound, is placed on top of it.
A gold case is placed, and the compound powder 5 is placed on top of it. This crucible 1 is housed in a quartz container 6 (growth capsule), and a crucible 8 containing a second component 7 of the compound is housed in the quartz container 6. 9 is a furnace tube.

この石英容器6全体を加熱炉10内に収納し、右方に示
すような温度分布に加熱すると、第2成分7が蒸気の形
で第1成分の溶媒金属4に供給され、種結晶2から高品
質の化合物単結晶3が成長する。
When the entire quartz container 6 is housed in a heating furnace 10 and heated to a temperature distribution as shown on the right, the second component 7 is supplied in the form of vapor to the first component solvent metal 4, and from the seed crystal 2. A high quality compound single crystal 3 is grown.

さらに成長温度に対応して蒸気圧をコントロールするこ
とにより、化合物半導体の化学量論的組成(ストイギオ
メトリー)のコントロールが可能となり、より優れた単
結晶が得られることが仰られている。
Furthermore, it is said that by controlling the vapor pressure in accordance with the growth temperature, it is possible to control the stoichiometric composition (stoichiometry) of the compound semiconductor, resulting in better single crystals.

このため、石英容器6を結晶成長につれて移動させるか
、又は加熱炉IOヲ結晶成長につれて移動させる方法が
行なわれている。
For this reason, a method is used in which the quartz container 6 is moved as the crystal grows, or the heating furnace IO is moved as the crystal grows.

これらの方法は、炉あるいは石英容器の機械的移動のた
め外部より機械的しよう乱が入り易く、単結晶に双晶、
転位等の結晶欠陥が入り易く、再現性に問題があった。
These methods are susceptible to mechanical disturbances from the outside due to mechanical movement of the furnace or quartz container, and twins and
Crystal defects such as dislocations were likely to occur, and there were problems with reproducibility.

又機械的な駆動系を必要とし、装置が複雑になる欠点が
あった。
In addition, it requires a mechanical drive system, which has the disadvantage of complicating the device.

本発明は、上述の問題点を解決するため成されたもので
、加熱炉を多数個に分割して制御し、温度分布における
傾斜温度領域を一定速度で軸方向に電気的制御により移
動可能に構成することにより、部品の機械的移動による
ことなく、化合物半導体の化学量論的組成のコントロー
ルを可能にし、結晶欠陥の少ない高品質の単結晶を再現
性良く製造し得る単結晶育成装置を提供せんとするもの
である。
The present invention was made to solve the above-mentioned problems, and it is possible to control the heating furnace by dividing it into many parts, and to move the inclined temperature region of the temperature distribution in the axial direction at a constant speed by electrical control. By configuring this structure, it is possible to control the stoichiometric composition of a compound semiconductor without mechanical movement of parts, and to provide a single crystal growth device that can produce high-quality single crystals with few crystal defects with good reproducibility. This is what I am trying to do.

本発明は、溶質合成拡散法により単結晶全育成する装置
において、加熱炉は、軸方向に多数個に分割されたヒー
ターと、個々の前記分割ヒーターの温度を制御するそれ
ぞれ独立の温度調節器と、加熱炉全体の温度分布を制御
する前記各温度調節器の設定を制御する制御器を具備し
、前記制御器により設定された定温度領域と傾斜温度領
域を設けた温度分布における前記傾斜温度領域を傾斜一
定のitで一定速度で軸方向に移動可能に構成したこと
を′#徴とする単結晶育成装置である。
The present invention provides an apparatus for total growth of a single crystal by a solute synthesis diffusion method, in which a heating furnace includes a heater divided into a large number of parts in the axial direction, and an independent temperature controller for controlling the temperature of each of the divided heaters. , comprising a controller that controls the settings of each of the temperature controllers that control the temperature distribution of the entire heating furnace, and the gradient temperature region in the temperature distribution that has a constant temperature region and a gradient temperature region set by the controller. This single crystal growth apparatus is characterized by being configured to be movable in the axial direction at a constant speed with a constant inclination.

本発明装置により育成される単結晶は、周期律SのN−
V族、11−■族、IV −IV 族化合物半導体又は
それらの混晶より成るものでろる。
The single crystal grown by the apparatus of the present invention is N- of the periodic law S.
It may be made of a group V, group 11-2, group IV-IV compound semiconductor, or a mixed crystal thereof.

以下、本発明を図面を用いて実施例により説明する。Hereinafter, the present invention will be explained by examples using the drawings.

第2図は本発明装置の実施例を示す縦断面図およびその
温度分布を示す図である。図において第1図と同一の符
号はそれぞれ同一の部分を示す。図において、炉心管9
より内側の装置は第1図と同様である。
FIG. 2 is a longitudinal sectional view showing an embodiment of the device of the present invention and a diagram showing its temperature distribution. In the figure, the same reference numerals as in FIG. 1 indicate the same parts. In the figure, the furnace core tube 9
The inner device is similar to that in FIG.

加熱炉11は、軸方向に多数(n)個のヒーター12、
.12゜・・・・・・・・・12  に分割されている
。個々の分割ヒーター12.〜12.V−はそれぞれ独
立の温度調節器18..13゜、・・・・・・1B、が
1ift設され、個々のヒーターの温度が制御される。
The heating furnace 11 includes a large number (n) of heaters 12 in the axial direction,
.. It is divided into 12゜・・・・・・12. Individual split heaters 12. ~12. V- are independent temperature regulators 18. .. 13 degrees, .

又温度調節器181〜13゜は1台の制御器14に接続
されている。制御器14は各温度調節器13..132
・・・・・・・・・13.の設定を制御するもので、加
熱炉全体の温度分布を所定のプログラムに制御する。
Further, the temperature regulators 181 to 13° are connected to one controller 14. The controller 14 controls each temperature regulator 13. .. 132
・・・・・・・・・13. This controls the temperature distribution of the entire heating furnace according to a predetermined program.

右図の実線の温度分布曲線は、左図のように単結晶3が
成長した時に設定されている加熱炉全体の温度分布を示
す図である。TIは高温側温度T1.は低温側温度で、
TMは傾斜温度領域である。
The solid line temperature distribution curve in the right figure is a diagram showing the temperature distribution of the entire heating furnace that is set when the single crystal 3 is grown as shown in the left figure. TI is the high temperature side temperature T1. is the lower temperature,
TM is the temperature gradient region.

又T1は傾斜温度領域TMの最低温度、T2は高温側温
定温度領域とされる。
Further, T1 is the lowest temperature of the gradient temperature region TM, and T2 is the high temperature constant temperature region.

又単結晶3が点線15の位置まで成長した時に設定され
るべき温度分布曲線は右図の点線で示す曲線である。す
なわち、この成長期間中に、定温度領域ノ温度T1□お
よびT1以下の温度を一定に保ちつつ、傾斜温度領域T
M′ffニ一定速If(結晶成長速度)で軸方向に移動
してh′とすれば良い。温度TI。
The temperature distribution curve to be set when the single crystal 3 has grown to the position indicated by the dotted line 15 is the curve shown by the dotted line in the figure on the right. That is, during this growth period, while keeping the constant temperature region temperature T1□ and the temperature below T1 constant, the ramped temperature region T
M'ff may be moved in the axial direction at a constant speed If (crystal growth rate) to h'. Temperature TI.

5− 折点T2.温度T6も同様に軸方向に移動し、T、’。5- Breaking point T2. The temperature T6 similarly moves in the axial direction, T,'.

T2’ 、 T6’となる。T2' and T6'.

このような温度分布の操作は、制御器14のプログラミ
ングによって簡単に実施でき、谷温度調節器+3.,1
3□・・・・・・・・・13o による各ヒーター12
. 、122・・・・・・・・・12n  の設定温度
の制御によって行なわれる。
Such temperature distribution manipulation can be easily carried out by programming the controller 14, and the valley temperature controller +3. ,1
Each heater 12 by 3□・・・・・・13o
.. , 122...12n.

この場合、傾斜温度領域TMを除く定温度領域は変える
必要がないので、それぞれ−分割ヒーターでも充分対応
できる。
In this case, since there is no need to change the constant temperature range except for the gradient temperature range TM, a separate heater can be used.

なお、谷温度調節器131〜13.および制御器14の
どちらか一方又は両方の制御をマイクロコンピュータ−
を用いて行なえば制御が容易である。
Note that the valley temperature regulators 131 to 13. A microcomputer controls one or both of the controller 14 and the controller 14.
Control is easy if done using .

かように本発明は、温度分布の移動を静的な電気的操作
で行なうことにより、単結晶成長が常に適正な温度分布
下で行なわれるので、成長温度に対応して蒸気圧をコン
トロールすることができ、化合物半導体の化学量論的組
成のコントロールができるため、双晶、転位等の欠陥が
防止され、欠陥の少ない高品質の単結晶を再現性良く製
造し得る効果がある。
Thus, in the present invention, by moving the temperature distribution by static electrical operation, single crystal growth is always performed under an appropriate temperature distribution, so that the vapor pressure can be controlled in accordance with the growth temperature. Since the stoichiometric composition of the compound semiconductor can be controlled, defects such as twins and dislocations can be prevented, and high-quality single crystals with few defects can be manufactured with good reproducibility.

6− 実施子シリ 。6- Acting child Siri.

第2図に示すような単結晶育成装置および温度分布を用
いてInP単結晶を育成した。
An InP single crystal was grown using a single crystal growth apparatus and temperature distribution as shown in FIG.

内径10πm1深さ30mmのルツボ2の471面に直
径12mm、)享さ1請のInP種結晶を固足し、その
上に溶媒金属4としてInメタル、化合物粉末としてI
nP粉末を入れ、ルツボ8にはPを入れた。
An InP seed crystal with a diameter of 12 mm and a diameter of 1 cm was fixed on the 471 side of a crucible 2 with an inner diameter of 10 πm and a depth of 30 mm, and In metal was placed on top of it as a solvent metal 4 and I as a compound powder.
nP powder was put therein, and P was put in crucible 8.

温度T1□=900℃、T+ ” 800℃1T6=8
50℃。
Temperature T1□=900℃, T+” 800℃1T6=8
50℃.

T1、=400℃とし、傾斜温度領域TMの温度勾配を
20°C/Cmとし、傾斜温度領域TMを上方に2 m
yny日の速度で移動せしめることにより、重量52の
InP単結晶を得た。
T1, = 400°C, the temperature gradient of the gradient temperature region TM is 20°C/Cm, and the gradient temperature region TM is 2 m above.
By moving at a speed of yny days, an InP single crystal with a weight of 52 was obtained.

得られた単結晶は、化学量論的組成のずれがなく、双晶
がなく、かつ転位の極めて少ない高品質のInP単結晶
であった。
The obtained single crystal was a high quality InP single crystal with no deviation in stoichiometric composition, no twins, and extremely few dislocations.

以上述べたように、本発明の溶質合成拡散法に用いる単
結晶育成装置は、加熱炉が、軸方向に多数個に分割され
たヒーターと、個々の前記分割ヒーターの温度を制御す
るそれぞれ独立の温度調節器と、加熱炉全体の温度分布
を制御する前述のような制御器を具備し、前記制御器に
より設定され移動可能に構成1〜たから、単結晶の成長
に伴なう温度分布の移動を、部品の機械的移動によるこ
となく、静的な電気的操作によ−・て行なうことができ
るので、従来のような機械的しよう乱が入らず、双晶、
転位等の結晶欠陥が防止され、かつ化合物の化学量端的
組成のコントロールができるため、結晶欠陥の少ない高
品質の化合物半導体結晶を再現性良く製造し得る利点が
ある。
As described above, in the single crystal growth apparatus used in the solute synthesis diffusion method of the present invention, the heating furnace has a heater divided into many parts in the axial direction, and an independent heater that controls the temperature of each of the divided heaters. It is equipped with a temperature regulator and a controller as described above that controls the temperature distribution throughout the heating furnace, and is set and movable by the controller. This can be done by static electrical operation without mechanical movement of parts, so there is no mechanical disturbance like in the past, and twinning,
Since crystal defects such as dislocations are prevented and the stoichiometric composition of the compound can be controlled, there is an advantage that high-quality compound semiconductor crystals with few crystal defects can be manufactured with good reproducibility.

又本発明装置は、前述のように、温度分布の移動は、傾
斜温度領域を移動するだけで良いので、装置が簡単で、
移動操作が簡単である利点がある。
In addition, as mentioned above, in the device of the present invention, the temperature distribution only needs to be moved through the gradient temperature region, so the device is simple and
It has the advantage of being easy to move.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の単結晶育成装置の例を示す縦断面図およ
びその温度分布を示す図である。 第2図は本発明装置の実施例を示す縦断面図およびその
温度分布を示す図である。 1.8・・・ルツボ、2・・・種結晶、3・・・単結晶
、4・・・溶媒金属、5・・・化合物粉末、6・・・石
英容器、7・・・第2成分、9・・・炉心1!、10.
II・・・加熱炉、121+12□、・・・・・・12
.・・・ヒーター、13.、132.団・・13o・・
・温度調節器、14・・制御器、15・・・点線、T、
、T、’、・・傾斜温度領域、TL・・・低温側温度、
TM・・・傾斜温度領域。 −9= 71図
FIG. 1 is a longitudinal sectional view showing an example of a conventional single crystal growth apparatus and a diagram showing its temperature distribution. FIG. 2 is a longitudinal sectional view showing an embodiment of the device of the present invention and a diagram showing its temperature distribution. 1.8... Crucible, 2... Seed crystal, 3... Single crystal, 4... Solvent metal, 5... Compound powder, 6... Quartz container, 7... Second component , 9...Reactor core 1! , 10.
II...Heating furnace, 121+12□,...12
.. ...heater, 13. , 132. Group...13o...
・Temperature regulator, 14... Controller, 15... Dotted line, T,
,T,',...gradient temperature region, TL...lower temperature side,
TM...Gradient temperature region. -9= Figure 71

Claims (2)

【特許請求の範囲】[Claims] (1)  溶質合成拡散法により単結晶を育成する装置
において、加熱炉は、軸方向に多数個に分割されたヒー
ターと、個々の前記分割ヒーターの温度を制御するそれ
ぞれ独立の温度調節器と、加熱炉全体の温度分布を制御
する前記各温度調節器の設定を制御する制御器を具備し
、前記制御器により設定された定温度領域と傾斜温度領
域全般けた温度分布における前記傾斜温度領域を、1頃
斜−足のままで一定速度で軸方向に移動可能に構成した
ことを特徴とする単結晶育成装置。
(1) In an apparatus for growing a single crystal by a solute synthesis diffusion method, a heating furnace includes a heater divided into a large number of parts in the axial direction, and an independent temperature regulator that controls the temperature of each of the divided heaters; It is equipped with a controller that controls the settings of each of the temperature controllers that control the temperature distribution of the entire heating furnace, and the gradient temperature region in the constant temperature region and the gradient temperature region overall digit temperature distribution set by the controller, 1. A single crystal growth apparatus characterized in that it is configured to be able to move in an axial direction at a constant speed while maintaining a diagonal position.
(2)谷温度調節器および/又は制御器の制御が、マイ
クロコンピュータ−により行なわれる特許請求の範囲第
1項記載の単結晶育成装置。
(2) The single crystal growth apparatus according to claim 1, wherein the valley temperature regulator and/or the controller are controlled by a microcomputer.
JP56190245A 1981-11-26 1981-11-26 Growing device for single crystal Pending JPS5891096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56190245A JPS5891096A (en) 1981-11-26 1981-11-26 Growing device for single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56190245A JPS5891096A (en) 1981-11-26 1981-11-26 Growing device for single crystal

Publications (1)

Publication Number Publication Date
JPS5891096A true JPS5891096A (en) 1983-05-30

Family

ID=16254919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56190245A Pending JPS5891096A (en) 1981-11-26 1981-11-26 Growing device for single crystal

Country Status (1)

Country Link
JP (1) JPS5891096A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148389A (en) * 1985-12-23 1987-07-02 Nippon Mining Co Ltd Method for growing single crystal
JPH02221180A (en) * 1989-02-21 1990-09-04 Fuyuutec Fuaanesu:Kk Device for growing single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148389A (en) * 1985-12-23 1987-07-02 Nippon Mining Co Ltd Method for growing single crystal
JPH0341432B2 (en) * 1985-12-23 1991-06-24
JPH02221180A (en) * 1989-02-21 1990-09-04 Fuyuutec Fuaanesu:Kk Device for growing single crystal

Similar Documents

Publication Publication Date Title
US4591994A (en) Method and apparatus for controlling shape of single crystal
JPS5969492A (en) Controlling method of plural steps heater
JPS5891096A (en) Growing device for single crystal
US3360405A (en) Apparatus and method of producing semiconductor rods by pulling the same from a melt
JPS6046073B2 (en) Manufacturing method of semiconductor single crystal
JPS5930795A (en) Apparatus for pulling up single crystal
JP2681115B2 (en) Single crystal manufacturing method
CN114481329A (en) Omnidirectional multistage heating controlled tellurium-zinc-cadmium crystal growth furnace and crystal growth method
SU445462A1 (en) Crystal grower
JPS6027685A (en) Method for controlling multistage heater
JPH024126Y2 (en)
JPS6335492A (en) Growth of compound semiconductor crystal
JPH0312397A (en) Production of rutile single crystal
JPH04240182A (en) Semiconductor crystal growth device
JPS62197398A (en) Method for pulling up single crystal
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPS6136192A (en) Crucible for producing single crystal
JPS5954699A (en) Preparation of single crystal
JPH0512310B2 (en)
JPH0544440B2 (en)
JPS63215594A (en) Growth of crystal by double crucible
JPH04154690A (en) Production of single crystal
JPH02192486A (en) Production of single crystal
JPH02221182A (en) Device for growing crystal
JPH0465392A (en) Molecular beam epitaxial crystal growing device