JPS5891014A - Continuous manufacture of silicon nitride - Google Patents

Continuous manufacture of silicon nitride

Info

Publication number
JPS5891014A
JPS5891014A JP18897881A JP18897881A JPS5891014A JP S5891014 A JPS5891014 A JP S5891014A JP 18897881 A JP18897881 A JP 18897881A JP 18897881 A JP18897881 A JP 18897881A JP S5891014 A JPS5891014 A JP S5891014A
Authority
JP
Japan
Prior art keywords
silicon nitride
pellets
silica
reaction
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18897881A
Other languages
Japanese (ja)
Inventor
Kentaro Sawamura
沢村 建太郎
「よし」田 保夫
Yasuo Yoshida
Naganori Kayano
茅野 永伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP18897881A priority Critical patent/JPS5891014A/en
Publication of JPS5891014A publication Critical patent/JPS5891014A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation

Abstract

PURPOSE:To obtain silicon nitride continuously and easily by heating pellets contg. silica, fine carbon powder and chaff powder in a prescribed ratio in an atmosphere of gaseous N2 or NH3 to cause reduction and nitriding. CONSTITUTION:A mixture consisting of silica and fine carbon powder in <=4 molar ratio of C/SiO2 is prepared. To the mixture is added 5-50% as dry matter of chaff powder, and they are pelletized. The pellets are fed to a vertical electric furnace, and after introducing gaseous N2 or NH3, the pellets are heated to cause reduction and nitriding reactions. Thus, silicon nitride is obtd. continuously and easily.

Description

【発明の詳細な説明】 本発明は、シリカ、カーボン糸よ如連吹的に窒化珪素を
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing silicon nitride by sequentially blowing silica and carbon threads.

窒化珪素は、篩γ品強度、高耐熱性、耐熱衝撃性、耐腐
食性にすぐれ、サイアロン、炭化珪素と共に墓も有望視
される耐熱桐材の一つでるる。
Silicon nitride has excellent sieve strength, high heat resistance, thermal shock resistance, and corrosion resistance, and is one of the heat-resistant paulownia materials that is considered promising along with sialon and silicon carbide.

一般に、窒化珪素の製造法としては、■シリコンの窒化
、■四塙化坪索、三塩化珪索寺とアンモニア或いi、1
. N 2 +ii 2 等の気体との反応、■シリカ
、カーボン混合物の窒化、の方法が知られている。しか
し、■の方法では原料シリコンが極めて面側であり、ま
た、窒化反応が発熱反応で非當に暴定し易い等の欠点が
ある。■の方法は、原料が晶価で、まだ反応率が低く、
ぜらに副生物としてHCtが発生するので装置の耐腐食
性、作業壌境叫が問題となる。■の方法は、菌純度の原
料が比較的安価に入手可能であるが、未だ太h(に連続
製造する方法が<2立されていないため結果的に篩コヌ
トの製造法となる。
In general, the manufacturing methods for silicon nitride include: ■Nitriding silicon, ■Silicon trichloride, silicon trichloride, and ammonia.
.. Methods of reaction with a gas such as N 2 +ii 2 and (2) nitriding of a silica and carbon mixture are known. However, method (2) has drawbacks such as the raw material silicon being extremely planar, and the nitriding reaction being an exothermic reaction that tends to be extremely unstable. In method (2), the raw materials have a crystal value and the reaction rate is still low.
In addition, HCt is generated as a by-product, which poses problems in terms of corrosion resistance of the equipment and environmental pollution during operation. In the method (2), raw materials with bacterial purity are available at relatively low cost, but as there is no continuous method for continuous production of the bacteria, the result is a method for producing sieves.

本兆明者は上記の州情t/C酋み、工業的規模で窒化珪
素を連続的かつ安価に製造する方法を鋭意研究した精米
、本発明を光取するに至った。
Taking into consideration the state situation mentioned above, the present inventor has conducted extensive research into a method for producing silicon nitride continuously and inexpensively on an industrial scale, and has now developed the present invention.

以下本発明の方法を説明する、 本方法では、原料の畦石吟のシリカ、コークス等のカー
ボンは反応性をよくシ、かつ造粒を容易にするため粒度
の上限はそれぞれ、20μ以下(μFと0己す)、弘q
μFにして1史川することが望ましい。この@合枝度は
、反16性のみを考慮すれはrillい程よいか1./
μFになると造粒性か惨めて悪く、反比、以前VCペレ
ットが破損してガスの17f’、通を恋<シ、反紀、性
態化の原因となる。また、反応1住のみについて、シリ
カ、20μF1 コークス4tμμI−のものを原料と
した場合と、シリカ、コークスいずれも7μFのものを
原料とした場合とを比軟したが、両者の反応率の走幻3
係以下で大差なく、結局運転の安ポ性などから前省か有
利となる。従ってS i 02 /〜、20μ、Cノ〜
グ≠μが好ましい。
The method of the present invention will be described below. In this method, the raw materials, silica from Azeishigin and carbon such as coke, have good reactivity and are easy to granulate, so the upper limit of particle size is 20μ or less (μF). (0), Hiroq
It is desirable to set the value to μF. Is it better to consider only the anti-16 nature of this degree?1. /
When it becomes μF, the granulation properties are very poor, and on the other hand, the VC pellets are damaged and cause the gas to become 17f', oxidized, anti-oxidized, and sexualized. In addition, for reaction 1 only, we compared the case where silica, 20μF1 coke 4tμμI− were used as raw materials, and the case where both silica and coke were used as raw materials, but the reaction rate of both was compared. 3
There is not much difference in the lower divisions, and in the end, the former division has an advantage due to the cheapness of driving. Therefore, S i 02 /~, 20μ, C no~
It is preferable that g≠μ.

なた、シリカとカーボンの混合モル比は2.5≦C/ 
S i Q 2≦グの範囲がよく、C/5i02=2の
理論配合よシカ−ボンリッチにする方が好結釆でめった
。その理由は、反応過程で発生ずるSj Q 7.rカ
ーボンが捕集し、SiOの析出による原料詰まりが抑制
され、同時に反比・系でのIV素をCOとして糸外に放
出し、シリコンオギシナイトライト等の発生もおさえら
れるためである。また、カーボン量をC/ Si 02
 ) pとすると、未反応カーボンを加熱、冷却するた
め電力原単位の態化Vこつながる、 延らに、本発明における一命のも似は、シリカ、カーボ
ン混合物に籾殻をドライ決算で混合物電鍵の(外b11
9で)j−50%添加することである。籾0.1% 、
  N 二 0.7% 、  Ca :  tr X 
 M g:  tr。
The mixing molar ratio of silica and carbon is 2.5≦C/
The range of S i Q 2≦g was good, and the theoretical mixture of C/5i02 = 2, which was rich in cicabon, yielded a better result. The reason is that Sj Q 7. generated during the reaction process. This is because r carbon is collected and raw material clogging due to SiO precipitation is suppressed, and at the same time, the IV element in the inverse ratio system is released as CO to the outside of the yarn, and the generation of silicon ogishinirite and the like is also suppressed. In addition, the amount of carbon is C/Si 02
) If p is the heating and cooling of unreacted carbon, the electric power intensity will be V.Furthermore, the most important imitation of the present invention is to dry the mixture of silica and carbon with rice husks. (outside b11
9) j-50% addition. Paddy 0.1%,
N2 0.7%, Ca: trX
Mg: tr.

Mn:tr等であり、コーキングすると5iQ2:Ar
4、C:3!%となる。したがって、モル決算C/S 
i Q 2−.2.7となり還元窒化用の原料として映
用に供することが出来る。ただ、籾殻を単味で使用する
と充填嵩比重が小さすきるため、原料単位型にあたりの
エネルギー密度が高すぎ省エネルギーに反し、また、成
品切出しは、原料および成品の自重落下によるため、祠
比重が不遊いと僅かな障害物発生でも簡単に原料詰まシ
を起す。
Mn:tr etc., and when caulked, 5iQ2:Ar
4.C:3! %. Therefore, the mole settlement C/S
i Q 2-. 2.7, and can be used as a raw material for reduction nitriding. However, when rice husks are used alone, the bulk specific gravity of the filling is small, so the energy density per raw material unit mold is too high, which is contrary to energy conservation.In addition, when cutting out products, the raw materials and products fall under their own weight, so the specific gravity of the rice husk is low. If there is no loose material, even the slightest obstruction can easily cause raw material clogging.

籾殻は造粒性をよくシ、かつ均一に分散妊せて反応1午
をよくするため、71LtpFにすることが好ましい。
The rice husk is preferably 71LtpF in order to have good granulation properties, uniform dispersion, and a good reaction rate.

シリカ、カーボン混合物に対し籾殻を604以上謂加し
て前粒すると、造粒ベレットの充填高比厘が小となシベ
レット強度も弱くなpllだ、j係以下の添加菫だと籾
殻中の有機物が分解しfc際光発生る気孔が小となCM
料のN2がペレット内部まで拡散しにくくなる。このベ
レットの大きさは6〜20 rran nの範囲が適当
である。
If rice husk is added to the silica and carbon mixture and pre-granulated, the filling ratio of the granulated pellet will be small and the strength of the granulated pellet will be weak.If the added violet is less than J, the organic matter in the rice husk will be reduced. CM with small pores generated when fc is decomposed and light is generated.
This makes it difficult for the N2 material to diffuse into the inside of the pellet. The size of this pellet is suitably in the range of 6 to 20 rran.

籾殻をj−10%添加したベレットを竪型炉上部よりフ
ィードすると≠00〜g00℃の予熱領域でベレット中
の籾殻がコーキングされてポーラスなペレットとなる。
When pellets containing j-10% of rice husks are fed from the upper part of the vertical furnace, the rice husks in the pellets are caulked in the preheating region of ≠00 to g00°C to become porous pellets.

さらに、反応領域にペレットが達すると先ず、にコーキ
ングδれた籾殻のX4元、窒化反応が起シα型望化珪素
を生成する。次に1、シリカ、カーボン混合物の還元、
窒化反応が開始しα型窒化珪素を生成する。上記反応で
α型窒化珪素が生成される理由は明かでないが、籾殻よ
シ生成した窒素が周囲の環境をα型の生成し易い朱印に
するものと思料される。
Further, when the pellets reach the reaction region, first, a nitriding reaction occurs with the X4 elements of the rice husks subjected to coking δ, producing α-type desired silicon. Next, 1. Reduction of the silica and carbon mixture;
A nitriding reaction begins to produce α-type silicon nitride. The reason why α-type silicon nitride is produced in the above reaction is not clear, but it is thought that the nitrogen produced in the rice husks makes the surrounding environment more likely to produce α-type silicon nitride.

還元、窒化反応は/3jθ〜/ 330℃、好ましくは
/、310〜/1110℃でN2又はN H3hるいは
これらの混合ガスを流して行ない、その時間は7〜5時
間の範囲で行なうのが適当である。
The reduction and nitriding reactions are carried out at /3jθ~/330°C, preferably /310~/1110°C, by flowing N2 or NH3h, or a mixture thereof, for a period of 7 to 5 hours. Appropriate.

次に実施例を示し本発明の方法を読切する。Next, examples will be shown to explain the method of the present invention.

第1図は、本発明の方法を実施する竪型炉の一例を示す
ものである。
FIG. 1 shows an example of a vertical furnace for carrying out the method of the present invention.

〔実施例−)〕[Example-)]

珪石(Si02タタ、り%)をボールミルで粉砕し/j
μF1平均粒径をzμとした。また、同様に石炭コーク
スを19F1平均粒径を7θμとした。
Grind silica stone (Si02 Tata, Ri%) with a ball mill /j
μF1 average particle size was defined as zμ. Similarly, the 19F1 average particle size of the coal coke was set to 7θμ.

上記原料をモル比C/S 102=3の割合で配合し、
ざらにgeμFのt9殻を配合品に対し乾燥状態でダO
%碓加しVへyブレンダーで混合した。
The above raw materials are blended at a molar ratio C/S of 102=3,
Add t9 shell of geμF to the blended product in a dry state.
% was added and mixed with a blender.

この混合物をパンペレタイザーでポリビニールアルコー
ルをバインダーとしてノj喘φのベレットに造粒した。
This mixture was granulated using a pan pelletizer using polyvinyl alcohol as a binder to form pellets of size φ.

このペレットを100℃で乾燥後7喘Φのカーボン粒を
30係外装し、命閉可能な竪型炉1へ炉頂部の原料投入
口2よリフイードし、自重によυ師下δせながら/弘ノ
o Cで反応させた。上呂己ベレットの予熱領域、反応
領域での滞留時間は、それぞれグhrとした 室光ガス
(げ、ガス導入口3よシ傳人し、生成したαSi3N4
との熱交換によシJA温てれる。この昇温されたN2カ
スは、反応領域4で窒化反応に使用きれ、過剰のN 2
 G:ま、反応によって発生したCOと共に上昇し、原
料ペレットと熱交換して降温された故、ガス排出1」2
より排出式れる。生成した窒化珪素−1炉下jη11の
テーブルフィーダ5によって取出され、生j戊品ストッ
クタンク(シール性)6に貯留される。上り己生成屋化
珪素には、外装炭が共存しているが、これはふるい分け
によって開学に分離出来る。
After drying the pellets at 100°C, the pellets are covered with 30 carbon grains of 7 mm Φ, and then re-fed into the vertical furnace 1, which can be closed, through the raw material inlet 2 at the top of the furnace, while being lowered by its own weight. The reaction was carried out using Hirono C. The residence time in the preheating region and the reaction region of the Jerome pellet was set to 100 m, respectively.
It is heated by heat exchange with the air. This heated N2 residue is used for the nitriding reaction in the reaction region 4, and the excess N2
G: Well, it rose with the CO generated by the reaction, and the temperature was lowered by exchanging heat with the raw material pellets, so gas emissions 1" 2
More discharge type. The produced silicon nitride-1 is taken out by the table feeder 5 of the lower furnace jη11 and stored in the raw material stock tank (sealable) 6. External charcoal coexists with the upstream self-produced silicon, but this can be separated by sieving.

なお、図中7は原料タンク、8は断熱層、9は黒鉛反応
壁、10は保謀管人ヒータ、11はブスバーである。
In the figure, 7 is a raw material tank, 8 is a heat insulating layer, 9 is a graphite reaction wall, 10 is a storage keeper heater, and 11 is a bus bar.

生Knt力は、s、oSi aN4−Kg/Hrs生成
物は、灰黒色を呈し、100℃、≠l(r空気中処理に
よシ灰白色となった。また生成脱炭物鉱物相は、α型窒
化珪素りOチリ上でめった。
The raw Knt force is s, oSi aN4-Kg/Hrs The product exhibits a grayish-black color, and becomes grayish-white after being treated in air at 100°C. The mold was molded on silicon nitride with O dust.

〔実施例−2〕 N H3ガスを、ガスJWト出口2よC4人し、尋人(
]3よりUト出して、ベレットと並流にか+’−シ反応
器9下刃を冷却して製品および排ガスを降温して抜出し
た他は実施例1と同じ操作によって窒化珪素を生成した
。その結果≠Si 3 N 4 K g / 1−[r
の生産能力で実施例1と同程度のα型窒化珪素か得られ
た。
[Example-2] Four people poured N H3 gas into gas JW outlet 2, and
Silicon nitride was produced in the same manner as in Example 1, except that the lower blade of reactor 9 was cooled in parallel with the pellet, and the temperature of the product and exhaust gas was lowered and extracted. . The result is ≠Si 3 N 4 K g / 1-[r
α-type silicon nitride was obtained at a production capacity comparable to that of Example 1.

【図面の簡単な説明】[Brief explanation of drawings]

第7図は不発明の方法を実施する竪型炉の一例を示す縦
断面図である。 1・・・・・・竪型炉、2・・・・・・原料投入口(ガ
ス排出口)、3・・・・・・N24人口、4・・・・・
・反応領域、5・・・・・・テーブルフィーダ、6・・
・・・・生菌ストックタンク、7・・・・・・yA科タ
ンク、8・・・・・・断熱層、9・・・・・・黒鉛反応
壁(7辺500m)、10・・・・・・保11虜盲人ヒ
ータ(保護パ醒3Crnψ)、11・・・・・・ブスバ
ー。 出願人 昭オロ′畦工株式会社 、)1
FIG. 7 is a longitudinal sectional view showing an example of a vertical furnace for carrying out the method of the invention. 1... Vertical furnace, 2... Raw material inlet (gas outlet), 3... N24 population, 4...
・Reaction area, 5...Table feeder, 6...
... Live bacteria stock tank, 7 ... YA family tank, 8 ... Heat insulation layer, 9 ... Graphite reaction wall (7 sides 500 m), 10 ... ...Holder 11 Prisoner Blind Heater (Protection Pause 3Crnψ), 11...Busbar. Applicant: Akioro'Aneko Co., Ltd., )1

Claims (1)

【特許請求の範囲】[Claims] シリカ、カーボンの微粉末をモル比コ、j≦C/5iQ
2≦グの範囲で混合し、この混合物に対し籾殻粉不全ド
ライ決算で5−SO係誼加して造粒し、この造粒したペ
レットを竪型電1気炉の上部よシフイードし、N2、又
はNH3ガスを上記fの上部或いは下部よシ専入し、加
熱して還元、窒化きせるごとを%黴とする窒化珪素の連
続製造方法。
Molar ratio of silica and carbon fine powder, j≦C/5iQ
2≦g, and granulated this mixture by adding 5-SO in a rice husk powder dry calculation.The granulated pellets were passed through the upper part of a vertical electric furnace and heated with N2 , or a continuous method for producing silicon nitride, in which NH3 gas is exclusively introduced into the upper or lower part of the above f, heated and reduced, and the nitrided product is converted into mold.
JP18897881A 1981-11-25 1981-11-25 Continuous manufacture of silicon nitride Pending JPS5891014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18897881A JPS5891014A (en) 1981-11-25 1981-11-25 Continuous manufacture of silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18897881A JPS5891014A (en) 1981-11-25 1981-11-25 Continuous manufacture of silicon nitride

Publications (1)

Publication Number Publication Date
JPS5891014A true JPS5891014A (en) 1983-05-30

Family

ID=16233247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18897881A Pending JPS5891014A (en) 1981-11-25 1981-11-25 Continuous manufacture of silicon nitride

Country Status (1)

Country Link
JP (1) JPS5891014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543208A (en) * 1991-08-16 1993-02-23 Agency Of Ind Science & Technol Continuous production of fibrous silicon compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543208A (en) * 1991-08-16 1993-02-23 Agency Of Ind Science & Technol Continuous production of fibrous silicon compound

Similar Documents

Publication Publication Date Title
CA1084235A (en) PROCESS AND AN APPARATUS FOR PRODUCING SILICON CARBIDE CONSISTING MAINLY OF .beta.-TYPE CRYSTAL
EP0187431B1 (en) Process for producing silicon aluminum oxynitride
JPS6112844B2 (en)
JPS583964B2 (en) Komegaara Karachitsukakeiso Oseizo Surhouhou
JPS6353124B2 (en)
JPS62241811A (en) Powder for manufacturing ceramics of metal carbide and nitride by hot carbon reduction and manufacture
KR880005286A (en) Continuous manufacturing process of high purity ultra fine aluminum nitride by carbon-nitridation of alumina
JPH0638911B2 (en) Method for producing non-oxide powder
JPS60155507A (en) Continuous preparation of boron nitride
JPS5891014A (en) Continuous manufacture of silicon nitride
EP0188038A1 (en) Process for producing silicon aluminum oxynitride
JPS6111886B2 (en)
JPS62241812A (en) Manufacture of silicon nitride
JPS60112610A (en) Preparation of silicon tetrachloride
JPH0216270B2 (en)
CN1042830C (en) Preparing graphite silicon carbide coating and carbon silicon compound by using rice husk
EP0628514B1 (en) Preparation of high alpha-type silicon nitride powder
WO2005070822A1 (en) Continuous pusher-type furnacing system for the production of high-quality uniform boron nitride
JPH0118005B2 (en)
JPH01249620A (en) Production of silicon tetrachloride
JPS59190208A (en) Preparation of ultrafine silicon carbide powder
JPH01249617A (en) Burned chaff ash composition and its production
JPS616109A (en) Manufacture of sic
JPH03271108A (en) Production of aluminum nitride powder
JPH0315486B2 (en)