JPS59190208A - Preparation of ultrafine silicon carbide powder - Google Patents

Preparation of ultrafine silicon carbide powder

Info

Publication number
JPS59190208A
JPS59190208A JP58061007A JP6100783A JPS59190208A JP S59190208 A JPS59190208 A JP S59190208A JP 58061007 A JP58061007 A JP 58061007A JP 6100783 A JP6100783 A JP 6100783A JP S59190208 A JPS59190208 A JP S59190208A
Authority
JP
Japan
Prior art keywords
powder
carbon
carbon powder
reaction
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58061007A
Other languages
Japanese (ja)
Other versions
JPH0138042B2 (en
Inventor
Akira Enomoto
亮 榎本
Toshikazu Amino
俊和 網野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP58061007A priority Critical patent/JPS59190208A/en
Priority to US06/524,391 priority patent/US4529575A/en
Publication of JPS59190208A publication Critical patent/JPS59190208A/en
Publication of JPH0138042B2 publication Critical patent/JPH0138042B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the disintegration of granulated raw material during the reaction in the preparation of SiC powder using silica and granulated fine carbon powder as raw materials, and to obtain ultrafine SiC powder, by using carbon powder having high wettability with water as the above raw material. CONSTITUTION:A granulated raw material obtained by compounding silica powder with C powder having a specific surface area of 1-1,000m<2>/g and a C-based binder, is charged in the reactor 6 through the inlet port 1, and spontaneously lowered through the preheating zone 2 to the heating zone 3. The above C powder used as a raw material is the one prepared by using C powder having improved wettability with water, and mixing the powder with water up to the latest prior to the granulation. The raw material in the heating zone 3 is heated horizontally, and the SiC-formation reaction is carried out controlling the reaction temperature at 1,500-2,000 deg.C. The reaction product is lowered to the cooling zone 4, cooled in an non-oxidative atmosphere, and discharged from the bottom of the cooling zone 4.

Description

【発明の詳細な説明】 本発明は、主として炭化珪素焼結体製造用原料として優
れた超微細炭化珪素粉末の製造方法に関し、特に本発明
は、平均粒径が/翔を大きく下まわる超微細炭化珪素粉
末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to a method for producing ultrafine silicon carbide powder which is excellent as a raw material for producing sintered silicon carbide. The present invention relates to a method for producing silicon carbide powder.

本発明者らは、先に特開昭!itx −33gqq号お
よび特公昭s5−弘0327号により主としてβ型結晶
よりなる炭化珪素の製造方法に係る発明を提案し世界に
おいて初めて工業的なβ型結晶よりなる炭化珪素の連続
的な製造方法を確立し−た。
The inventors first published the patent application in Japanese Patent Application Publication No. 2003-110003. Itx-33gqq and Japanese Patent Publication No. S5-Hiro 0327, proposed an invention relating to a method for producing silicon carbide mainly composed of β-type crystals, and developed the world's first industrial continuous production method of silicon carbide composed of β-type crystals. Established.

ところで、β型結晶よりなる炭化珪素は最近無加圧焼結
体製造用原料としての用途において極めて優れた特性を
有していることが認められ、かがる用途によれば微細な
ものほど焼結性および均一収縮性に優れるため、特に微
細なものが要求されており、例えば特開昭jθ−/AO
20θ号公報によればハロケン化珪素および炭化水素よ
りプラズマジェット反応によるサブミクロン粒度のβ型
炭化珪素粉末およびその製造方法が、また特開昭界−6
7599号公報によれば有機珪素高分子化合物を熱分解
して得られる/μm以Fの高純度β型炭化珪素粉末の製
造方法が開示されている。しかしながら、前記諸公報記
載の方法において使用される出発原料はいずれも極めて
高価でちゃ、7かかる要求1if1足するようなβ型結
晶よりなる超微細炭化珪素粉末を安価に供給することの
できる工業的な製造方法は未だ知られていない。
By the way, silicon carbide consisting of β-type crystals has recently been recognized to have extremely excellent properties when used as a raw material for producing pressureless sintered bodies, and according to the application, the finer the silicon carbide, the easier it is to sinter. Particularly fine particles are required because they have excellent cohesiveness and uniform shrinkage; for example,
According to Japanese Patent Publication No. 20θ, a β-type silicon carbide powder with a submicron particle size and a method for producing the same by plasma jet reaction from silicon halides and hydrocarbons, and a method for producing the same, are also disclosed in Japanese Patent Application Laid-Open No.
Publication No. 7599 discloses a method for producing high purity β-type silicon carbide powder of less than 1 μm F obtained by thermally decomposing an organosilicon polymer compound. However, all of the starting materials used in the methods described in the above-mentioned publications are extremely expensive. A manufacturing method is not yet known.

ところで、シリカと炭素とを出発原料として微細な炭化
珪素粉末を製造する方法と(−では、例えばlFh公昭
りj−/θり73号公報に「ピグメンlシリコンカーバ
イドの製法」にかかる発明が開示されており、前記発明
によれば、微細な炭化珪素粉末を製造するために1はな
るべく微細な炭素粉末を使用することが重要であること
が記載されている。
By the way, there is a method for producing fine silicon carbide powder using silica and carbon as starting materials (-), for example, IFh Kosho Rij-/θ Ri No. 73 discloses an invention related to "Process for producing pigment silicon carbide". According to the invention, it is stated that in order to produce fine silicon carbide powder, it is important to use carbon powder as fine as possible.

本発明者らは先に本発明者らが提案した方法において微
細な炭化珪素粉末を製造することを目的として極めて微
細な炭素粉末を!史用することを試みた。しかしながら
、先に本発明者らが提案した方法において、特に比表面
積がi 、12/ y以上の極めて微細な炭素粉末を使
用すると反応域における粒状原料の圧潰強度が著しく劣
化して崩壊し、反応域におけるガス抜けが悪化するため
安定して連続操業を行なうことができないことを知見し
た。
The present inventors used extremely fine carbon powder for the purpose of producing fine silicon carbide powder using the method previously proposed by the present inventors! I tried to use it for historical purposes. However, in the method previously proposed by the present inventors, if extremely fine carbon powder with a specific surface area of i, 12/y or more is used, the crushing strength of the granular raw material in the reaction zone will significantly deteriorate and collapse, resulting in the reaction. It was discovered that stable continuous operation could not be performed due to deterioration of gas leakage in the area.

すなわち、前記方法はシリカと炭素よりなる粒状原料を
竪型の反応容器の上部より装入[〜で連続的にSiC化
反応を行なわしめる方法であり、前記粒状原料は取扱い
時および反応時において崩壊せず尚初(つ形状を保ち得
る強度を有するものであることが必要である。また、微
細な炭化珪素粉末を製造するためにはなるべく低い反応
温度で反応せしめることが好ましいが、先に本発明者ら
が提案している如き連続的K SiC化反応を行なわし
める方法は、前述の如き理由で微細な炭素粉末を使用す
ることが困難で比較的粗い粒径の反応性に劣る炭素粉床
を使用せざるを得なかったため、操業時の生産効率およ
び作業性を考慮すると比紋的高い反応温度で操業を行な
わなければならない欠点を有していた。
That is, the above method is a method in which a granular raw material made of silica and carbon is charged from the upper part of a vertical reaction vessel and the SiC conversion reaction is continuously carried out.The granular raw material disintegrates during handling and reaction. It is necessary that the material has the strength to be able to maintain its shape without breaking.Also, in order to produce fine silicon carbide powder, it is preferable to carry out the reaction at as low a reaction temperature as possible. The method of carrying out the continuous K SiC conversion reaction proposed by the inventors is difficult to use for the reasons mentioned above, and it is difficult to use a carbon powder bed with relatively coarse particle size and poor reactivity. This has the disadvantage that the reaction must be operated at a relatively high reaction temperature considering production efficiency and workability during operation.

このような観点に基づき、本発明者らは極めて微細な炭
素粉末を使用した粒状原料の反応域における圧潰強度を
向上させるべくt!!々研究し先に特願昭57−7!;
、32’1号により極めて微細な炭素粉末を出発原料と
して使用し原料を造粒するに際し1粒状原料の結合剤と
して有機溶剤可溶性成分を含有する炭素系の結合剤を使
用し、かつ前記出発原料の混合時あるいは造粒時に有機
溶剤を使用することによって反応域においても圧潰強度
が強く、当初の形状を保ち得る粒状原料となすことがで
き、極めて微細なβ型結晶よりなる炭化珪素粉末を安価
にかつ容易に連続製造することができる発明、特願昭5
7−/ダクqoi号により極めて微細な炭素粉末を出発
原料として使用し原料を造粒するに際し、前記炭素粉末
と炭素系の結合剤を溶解している分散媒液との濡れ性を
著しく改善することのできる界面活性剤を使用すること
によって反応域においても圧潰強度が強く5当初の形状
金保ち得る粒状原料を容易に製造することができ、極め
て微細なβ型結晶よυなる炭化珪素粉末を安価にかつ容
易に連続製造することができる発明および特願昭8− 
/、2g99号により極めて微細な炭素粉末を出発原料
として使用し原料を造粒するに除し、前記炭素粉末と炭
素系の結合剤とを分散媒液を使用して混合するかあるい
(は前記炭素粉末と炭素系の結合剤とを分散媒液および
界面活性剤を使用して混合し、ついでシリカと炭素系の
結合剤と全添加混合することによって反応域においても
圧潰強度が強く、当初の形状を保ちイクする粒状原料を
容易に製造することができ、極めて微細なβ型結晶より
なる炭化珪素粉末を安価にかつ容易に連続製造すること
ができる発明を提案している。
Based on this viewpoint, the present inventors developed t! to improve the crushing strength in the reaction zone of granular raw materials using extremely fine carbon powder. ! After much research, I decided to apply for a special patent application in 1987-7! ;
, No. 32'1, when the raw material is granulated using extremely fine carbon powder as a starting material, a carbon-based binder containing an organic solvent-soluble component is used as a binder for one granular raw material, and the starting material is By using an organic solvent during mixing or granulation, it is possible to create a granular raw material that has strong crushing strength even in the reaction zone and can maintain its original shape, making it possible to produce silicon carbide powder consisting of extremely fine β-type crystals at low cost. An invention that can be easily and continuously manufactured, patent application filed in 1973
When granulating raw materials using extremely fine carbon powder as a starting material, the wettability between the carbon powder and a dispersion medium in which a carbon-based binder is dissolved is significantly improved. By using a surfactant that can be used as a granular material, it is possible to easily produce a granular raw material that has strong crushing strength even in the reaction zone and can maintain its original shape. Invention and patent application that allows continuous production at low cost and easily
According to No. 2g99, very fine carbon powder is used as a starting material and the raw material is granulated, and the carbon powder and a carbon-based binder are mixed using a dispersion medium or ( By mixing the carbon powder and the carbon-based binder using a dispersion medium and a surfactant, and then completely adding and mixing the silica and the carbon-based binder, the crushing strength is strong even in the reaction zone, and the initial The present invention proposes an invention that can easily produce a granular raw material that maintains its shape, and can inexpensively and easily continuously produce silicon carbide powder consisting of extremely fine β-type crystals.

ところで、本発明者らが提案した11J述の方法によれ
ば、反応域においでも十分な圧潰強度を有する粒状原料
を製造するには炭素粉末中に炭素系の結合剤を混合し炭
素粉末を相互に結合することが必要であシ、前記炭素系
の結合剤が比較的多量に配合されるため結合剤が炭化す
る際に生成する炭素によって炭素粉末が相互に結合され
て一体化した粗大粒子が形成される場合があり、生成物
中に前記粗大粒子に起因する比較的粗い炭化珪素粉末を
含有し易い欠点を有していた。
By the way, according to the method described in 11J proposed by the present inventors, in order to produce a granular raw material that has sufficient crushing strength even in the reaction zone, a carbon-based binder is mixed in carbon powder and the carbon powder is mixed with each other. Since the carbon-based binder is blended in a relatively large amount, the carbon produced when the binder carbonizes binds the carbon powder to each other and forms coarse particles. This has the disadvantage that the product tends to contain relatively coarse silicon carbide powder due to the coarse particles.

本発明者らは、本発明者らが先に提案した方法をさらに
改良し、微細な炭素粉末を使用して粒状原料を製造する
際における炭素系の結合剤の使用量をさらに減少させ、
かつ粒状原料の反応域における圧潰強度を向上させるべ
く棟々研究した結果、極めて微細な炭素粉末を出発原料
として使用し原料全造粒するに際し、前記炭素粉末とし
て水に対する濡れ性を改善せしめたものを使用すること
によって、反応域においても圧潰強度が強く当初の形状
を保ち得る粒状原料となすことができる全く予知するこ
とのできなかった驚くべき効果を有することを新規に知
見し、前記粒状原料を使用することによって極めて微細
なβ型結晶よりなる炭化珪素粉末を安価にかつ容易に連
続製造することができることに想到し本発明を完成する
に至った。
The present inventors have further improved the method previously proposed by the present inventors to further reduce the amount of carbon-based binder used when producing granular raw materials using fine carbon powder,
Moreover, as a result of intensive research to improve the crushing strength in the reaction zone of granular raw materials, we have improved the wettability of the carbon powder to water when granulating the entire raw material using extremely fine carbon powder as a starting raw material. It was newly discovered that by using the above-mentioned granular raw material, a granular raw material with strong crushing strength and able to maintain its original shape even in the reaction zone has a surprising effect that could not be predicted at all. The present inventors have come up with the idea that silicon carbide powder consisting of extremely fine β-type crystals can be produced continuously at low cost and easily by using the method, and have completed the present invention.

すなわち、本発明によれば、シリカと比表面積が/〜1
0θo @2 / yの範囲内の炭素粉末と炭素系の結
合剤とを配合し粒状に成形せしめた原料を、予熱帯と加
熱帯と冷却帯を有する反応容器の上方よυ装入し前記装
入された原料を前記予熱帯内を自重降下させつつ加熱帯
に至らせ、前記加熱帯内で水平方向に加熱して反応温度
を1500〜2000℃の範囲内に制御してSiO化反
応を行なわせ、次いで反応生成物を冷却帯に降下させ非
酸化性雰囲気下で冷却した後、前記反応容器の冷却帯下
部より反応生成物を排出する超微細炭化珪素粉末の製造
方法において、前記炭素粉末として水に対する儒れ性の
良好なものを遅くとも造粒されるまでに水と混合せしめ
て使用することにより、反応中における粒状原料の崩壊
を防止することができ超微細炭化珪素粉末を製造するこ
とができる。
That is, according to the present invention, the specific surface area of silica is /~1
A raw material prepared by blending carbon powder within the range of 0θo @2 / y and a carbon-based binder and forming it into granules is charged into the upper part of a reaction vessel having a preheating zone, a heating zone, and a cooling zone. The introduced raw material is brought to the heating zone while falling under its own weight in the pre-heating zone, and is heated horizontally within the heating zone to control the reaction temperature within the range of 1500 to 2000 ° C. to perform the SiO conversion reaction. In the method for producing ultrafine silicon carbide powder, the reaction product is lowered into a cooling zone and cooled in a non-oxidizing atmosphere, and then the reaction product is discharged from the lower part of the cooling zone of the reaction vessel, wherein the carbon powder is By mixing a material with good water-meltability with water at the latest before granulation, it is possible to prevent the granular raw material from collapsing during the reaction and to produce ultrafine silicon carbide powder. can.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

シリカと炭素とを出発原料とする炭化珪素生成反応は一
般に下記式(1)によって示されている。
A silicon carbide production reaction using silica and carbon as starting materials is generally represented by the following formula (1).

SiO2+3C−+SiC+ユcO・・・・・・・・・
 (1)しかしながら、実際に主体となる生成機構は下
記式(,2)によってSiOガスが生成し、前記SiO
ガスと炭素が下記式(3)にしたがって反応して炭化珪
素が生成することが知られている。
SiO2+3C-+SiC+YcO・・・・・・・・・
(1) However, in reality, the main generation mechanism is that SiO gas is generated according to the following formula (, 2), and the SiO
It is known that gas and carbon react according to the following formula (3) to produce silicon carbide.

5102 + O→SiO+CQ・・・・・・四・・ 
(2)SiO+ 2 C,−+ SiO+ Co ・・
・出・・・ (3)ところで、本発明によれば、前記式
(,2)によって生成したSiOガスは前記式(3)に
したがって速やかにSIC化反応せしめ、反応容器内の
SiOガス分圧をそれ程上昇させないことが望丑しい。
5102 + O→SiO+CQ...4...
(2) SiO+ 2 C, -+ SiO+ Co...
- Output... (3) By the way, according to the present invention, the SiO gas generated by the above equation (, 2) is quickly subjected to the SIC reaction according to the above equation (3), and the partial pressure of the SiO gas in the reaction vessel is reduced. It is desirable not to increase the amount by that much.

なぜならば、本発明において反応容器内のSiOガス分
圧が上昇するとSiOガス分圧の上昇に伴って前記式(
、?)にしたがう反応速度が相対的に速くなるが、この
場合の前記式(3)にしたがう反応はSiC結晶が成長
しN11犬化する反応が主体となるので、 SiOガス
分圧の高い条件下では、微細な810粒子を得ることが
困難になり、さらに著しい場合にはS i Oガスの一
部が予熱帯へ上昇して下記式(4’)、(齢、(A)に
示す如き反応を生起し、予熱帯においてEIiO2,S
i 。
This is because, in the present invention, when the SiO gas partial pressure in the reaction vessel increases, the above formula (
,? ) is relatively faster, but in this case, the reaction according to equation (3) is mainly a reaction in which SiC crystals grow and N11 becomes a dog, so under conditions of high SiO gas partial pressure, , it becomes difficult to obtain fine 810 particles, and in even more severe cases, a part of the SiO gas rises to the preheating zone and causes the reaction shown in the following equation (4'), (age, (A)). EIiO2,S occurs in the preheating zone.
i.

SiO,O等が混合した状態で析出する。前記析出物は
粘着性を有するため原料が互いに凝結し、炭化珪素を連
続的に製造する上で最も重要な原料の円滑な移動降下が
著しく阻害され、長期間にわたる安定した連続操業が困
難になる。
SiO, O, etc. are precipitated in a mixed state. Because the precipitates are sticky, the raw materials coagulate with each other, which significantly impedes the smooth movement and descent of the raw materials, which is the most important factor in the continuous production of silicon carbide, and makes stable continuous operation over a long period of time difficult. .

2 SiO→5102+Si・・・・・・・・・・・ 
(/I)S10+CO−+SiO2+C・・・・・・ 
(5)3 SiO+ Co→25in2+ 5iC−1
・19.(乙)本発明によれば、@記SiOガス分圧の
上昇を抑制し、極めて微細な炭化珪素粉末を得る上で比
表面積が/〜10oo @2 /グの範囲内の炭素粉末
を1吏用することが必要である。その理由は、前記比表
面積が/ @2 / fより小さいと前記式(3)にし
たがう反応の生起する箇所が少なく、結晶の成長による
S1Cの生成反応が主体となるため、本発明の目的とす
る微細な炭化珪素粉末を製造することが困難であるし、
一方10θOm2/ ?より大きい比表面積を有する炭
素粉末は反応性の面から考慮すると極めて好適であると
考えられるが、そのような炭素粉末は入手が困難である
ばかりでなく、嵩比重が極めて低いため、粒状物の気孔
率が高くなり圧潰強度が著しく低くなる欠点を有するか
らでちり、なかでも10− soo @2 / yの範
囲内の炭素粉末が入手も比較的容易であり、しかも好適
な結果を得ることができる。
2 SiO→5102+Si・・・・・・・・・・・・
(/I)S10+CO-+SiO2+C...
(5) 3 SiO+ Co→25in2+ 5iC-1
・19. (B) According to the present invention, in order to suppress the increase in the SiO gas partial pressure and obtain extremely fine silicon carbide powder, carbon powder having a specific surface area of /~10oo@2/g is used. It is necessary to use The reason for this is that when the specific surface area is smaller than /@2/f, there are fewer places where the reaction according to the above formula (3) occurs, and the reaction that produces S1C due to crystal growth is the main reaction, which is not suitable for the purpose of the present invention. It is difficult to produce fine silicon carbide powder,
On the other hand, 10θOm2/? Carbon powder with a larger specific surface area is considered to be extremely suitable from the viewpoint of reactivity, but such carbon powder is not only difficult to obtain, but also has an extremely low bulk specific gravity, so it cannot be used in granular materials. Carbon powder has the disadvantage of high porosity and extremely low crushing strength, but carbon powder in the range of 10-soo@2/y is relatively easy to obtain, and it is possible to obtain favorable results. can.

前記炭素粉末は主としてコンタクトブラック。The carbon powder is mainly contact black.

ファーネスブラック、サーマルブラック、ランフ。Furnace Black, Thermal Black, Rumph.

ブランクより選ばれるいずれか少なくとも7種のカーボ
ンブラックであることが好ましいが、なかでもサーマル
ブラックはカーボンブラック粒子の連鎖構造あるいは鎖
状構造すなわちストラフチャーが低く圧潰強度の強い粒
状原料となすことができ最も好適である。
It is preferable to use at least seven types of carbon black selected from blanks, but among them, thermal black is the most preferable since it can be made into a granular raw material with a low chain structure or chain structure of carbon black particles, that is, a structure with a high crushing strength. suitable.

本発明によれば、前記シリカは平均粒径が、20〜70
μmの範囲内のものを使用することが有利である。その
理由は、平均粒径が20μmより小宴いと前記式(3)
に従う反応が極めて速く、SiOガス分圧を低く維持す
ることが困難であるし、一方70/Lmより太きいと反
応後の粒状物はシリカの存在していた部分が空孔となる
ため圧潰強度が著しく低くなる欠点を有するからであり
、なかでも30〜AOμmの範囲内でより好適な結果を
得ることができる。
According to the present invention, the silica has an average particle size of 20 to 70
It is advantageous to use those in the μm range. The reason is that the average particle size is smaller than 20 μm and the formula (3)
The reaction is extremely fast and it is difficult to maintain the SiO gas partial pressure low. On the other hand, if the thickness is larger than 70/Lm, the part where the silica was present becomes pores in the granules after the reaction, resulting in a decrease in crushing strength. This is because it has the disadvantage that the value becomes extremely low, and more suitable results can be obtained within the range of 30 to AO μm.

本発明によれば、シリカ、炭素の末とも従来の原料に比
較(7て微細で反応性に優れたものを使用するためシリ
カと炭素粉末とを造粒し原料の通気性を向上させて反応
時に生成するCOガスのガス抜けを良好として反応を進
み易くするとともに反応容器内のSiOガス分圧を均一
にすることが有効であり、前記粒状物は気孔率が35〜
見φ9粒状物嵩密度がo、qo〜0゜9θ7/−の範囲
内となすことが有利である。
According to the present invention, compared to conventional raw materials, both silica and carbon powder (7) are used, which are fine and highly reactive, so silica and carbon powder are granulated to improve the permeability of the raw materials and react. It is effective to improve the outgassing of the CO gas that is sometimes produced to facilitate the reaction and to make the partial pressure of the SiO gas in the reaction vessel uniform.
It is advantageous that the bulk density of the φ9 particles is within the range of o, qo to 0°9θ7/-.

前記粒状物の気孔率を3s −、S−5tI)とするこ
とが有利な理由は、前記気孔率が、彷・ルより低いと粒
状物中における通気性が悪く、反応生成ガスが放出され
難く、粒状物内で局部的にSiOガス分圧が高くなり、
結晶粒が粗大化し易いからであり、一方前記気孔率は反
応生成ガスの放出性の点を考慮すればなるべく高い方が
好iしいが、灯係より高いと粒状物の強度が極めて低く
1反応容器中で粒状物が潰れ通気性が著しく悪化するか
らである。
The reason why it is advantageous to set the porosity of the granules to 3s -, S-5tI) is that if the porosity is lower than the porosity, the permeability in the granules is poor and the reaction product gas is difficult to release. , the SiO gas partial pressure increases locally within the granules,
This is because the crystal grains tend to become coarse.On the other hand, it is preferable that the porosity is as high as possible in consideration of the release of the gas produced by the reaction, but if it is higher than the lampshade, the strength of the granules will be extremely low and one reaction will be difficult. This is because the granules are crushed in the container, resulting in a significant deterioration in air permeability.

前記粒状物嵩密度を0.110−0.90 ? /cm
3 O範囲内とすることが有利な理由は、嵩密度は低い
方が通気性その他の点で好丑しいが、o、 1Io7/
儂3より低い粒状物となすためには前記粒状物の気孔率
を著しく高めるか、あるいは粒状物の粒径を狭い範囲に
揃えなければならず、前記気孔率は余り高くすると前述
の如く粒状物の強度が著しく低下するし、貰だ粒状物の
粒径を狭い範囲に揃えることは原料コストの増大につな
がるからであシ、一方o、 qo ?/ari”  よ
り高いと反応生成ガスの通気性が悪く予熱帯における高
温ガスの流れが不均一にな9、原料と高副ガスとの熱交
換が不充分になるばかりでなく前記SiOガスよりの析
出物の影響を敏感に受は易くなり原料の円滑な自重降下
が阻害され長期間の安定した操業を維持することが困難
になるからである。前記粒状物嵩密度はθ、SO〜θ、
g0y/crtiの範囲内において最も良い結果が得ら
れる。
The bulk density of the granules is 0.110-0.90? /cm
The reason why it is advantageous to set it within the range of 3 O is that a lower bulk density is preferable in terms of air permeability and other aspects;
In order to make the granules lower than 3, it is necessary to significantly increase the porosity of the granules, or to adjust the particle size of the granules to a narrow range.If the porosity is too high, as mentioned above, the porosity of the granules On the other hand, o, qo ? /ari", the permeability of the reaction product gas is poor and the flow of high-temperature gas in the preheating zone becomes uneven9, and not only is the heat exchange between the raw material and the high secondary gas insufficient, but also the This is because the particles are more susceptible to the influence of precipitates, inhibiting the smooth fall of their own weight and making it difficult to maintain long-term stable operation.The bulk density of the granules is θ, SO~θ,
The best results are obtained within the range of g0y/crti.

また ?i前記粒状物の平均粒径は3〜/g 1mの範
囲内とすることが有利である。その理由は、前記粒状物
の平均粒径が3龍より小さいと粒状物とした効果が殆ど
なく、一方7gm7Wより太きいと粒状物内における反
応速度が遅くなり、経済的でないからである。
Also ? i Advantageously, the average particle size of the granules is in the range from 3 to 1 m/g. The reason for this is that if the average particle diameter of the granules is smaller than 3 dragons, there is almost no effect as a granule, while if it is thicker than 7 gm 7 W, the reaction rate within the granules becomes slow, making it uneconomical.

本発明によれば、前記粒状物は反応域の高温にさらされ
ても当初の形状を維持することが極めて重要であり、前
記炭素粉末は遅くとも造粒されるまでには水に対する濡
れ性を改善せしめたものであることが必要である。その
理由は、本発明で使用される如き極めて比表面積の大き
な炭素粉末は通常微細な粒子が多数凝集した粒子群すな
わち一次粒子の形態で存在しているが、これらの2次粒
子中における炭素粉末相互間の結合性はそれ程強くなく
、シリカと炭素系の結合剤と単に混合I−で造粒するだ
けでは反応域においても崩壊することなく当初の形状を
維持することのできる圧潰強度を有する造粒原料となす
ことが極めて困難であった。しかしながら、前述の如き
水に対する藺れ性の改善された炭素粉末は反応域におい
ても崩壊することのない圧潰強度を維持する造粒原料を
容易に製造することができる驚くべき効果を発揮するか
らである。
According to the present invention, it is extremely important that the granules maintain their original shape even when exposed to high temperatures in the reaction zone, and the carbon powder has improved wettability to water at the latest by the time it is granulated. It is necessary that it be something that is enforced. The reason for this is that the carbon powder used in the present invention, which has an extremely large specific surface area, usually exists in the form of a particle group in which many fine particles are aggregated, that is, in the form of primary particles, but the carbon powder in these secondary particles is The bond between them is not so strong, and simply granulating with a mixture of silica and a carbon-based binder produces a granule with crushing strength that can maintain its original shape without collapsing even in the reaction zone. It was extremely difficult to make it into grain raw material. However, the above-mentioned carbon powder with improved resistance to water exhibits the surprising effect of making it possible to easily produce a granulated raw material that maintains crushing strength without collapsing even in the reaction zone. be.

なお、前述の如き水に対する濡れ性を改善せしめた炭素
粉末を使用することによって反応域においても崩壊する
ことのない圧潰強度が得られる機購は未ださだかではな
いが、前述の如き水に対する諮れ性が改善せしめられた
炭素粉末は湿潤された後の乾燥工程において炭素粉末が
水の表面張力によって相互に引き寄せられ相対的に嵩密
度が高くなることが反応域における圧潰強度の向上に何
らかの作用効果を与えているものと推察される。
It should be noted that, although it is not yet possible to obtain crushing strength that does not collapse even in the reaction zone by using carbon powder with improved wettability against water as described above, In the drying process after wetting, the carbon powder with improved properties is attracted to each other by the surface tension of water, and its bulk density becomes relatively high. This has some effect on improving the crushing strength in the reaction zone. It is presumed that it is giving the following.

本発明によれば、前述の如き炭素粉末の水に対する儒れ
性は炭素粉末に界面活性剤を均一混合せしめるか、ある
いは炭素粉末を酸化性雰囲気中で加熱して粉末粒子表面
を酸化せしめることにより改善することが好ましい。
According to the present invention, the softness of the carbon powder in water can be improved by uniformly mixing a surfactant with the carbon powder or by heating the carbon powder in an oxidizing atmosphere to oxidize the powder particle surface. It is preferable to improve.

本発明によれば、前記界面活性剤としてアミン。According to the invention, the surfactant is an amine.

カルボキシル基を有する有機化合物、スルホ基を有する
有機化合物、エステル、アンモニウム化合物、エーテル
結合を有する有機化合物9アルコールよシ選ばれるいず
れか少なくとも7種を使用することが好ましく、例えば
脂肪酸塩、アルキルベンゼンスルホン酸塩、直鎖アルキ
ルベンゼンスルホン酸塩、α−オレフィンスルホン酸塩
、ナフタレン−ホルマリン縮金物のスルホン酸塩、ポリ
オキシエチレンアルキルフェニルエーテル、ia。
It is preferable to use at least 7 types selected from organic compounds having a carboxyl group, organic compounds having a sulfo group, esters, ammonium compounds, organic compounds having an ether bond, 9 alcohols, such as fatty acid salts, alkylbenzenesulfonic acids, etc. salt, linear alkylbenzene sulfonate, α-olefin sulfonate, naphthalene-formalin condensate sulfonate, polyoxyethylene alkylphenyl ether, ia.

その他各種アルコールがあり、これらを単独あるいは混
合して使用することができる。
There are various other alcohols, and these can be used alone or in combination.

本発明によれば、前記界面活性剤の添加量は炭素粉末1
00重量部に対して少なくともO,OS 重量部である
ことが好ましい。前記界面活性剤の添加量がO,OS 
 重量部より少ないと炭素粉末の水に対する濡れ性の改
善が不充分で粒状原料の反応域における圧潰強度が弱く
反応域において粒状原料が崩壊するからであり、また余
り多量に添加することは経済的でなく左重量部以下とす
ることが有利であシ、なかでも0.7〜3重量部の範囲
内が最も好適である。
According to the present invention, the amount of the surfactant added is 1/1 of the carbon powder.
Preferably, the amount is at least 0.00 parts by weight to 0.00 parts by weight. The amount of the surfactant added is O, OS
If the amount is less than 1 part by weight, the wettability of the carbon powder with water will be insufficiently improved and the crushing strength of the granular raw material in the reaction zone will be weak and the granular raw material will collapse in the reaction zone, and it is not economical to add too much. However, it is advantageous to keep the content to less than 0.7 parts by weight, and most preferably from 0.7 to 3 parts by weight.

本発明によれば、炭素粉末に界面活性剤を均一混合する
方法としては、シリカと炭素粉末と炭素系の結合剤との
配合物を混合する際に界面活性剤を水溶液状で添加して
混合する方法、シリカと炭素粉末と炭素系の結合剤と水
と界面活性剤を同時に配合して混合する方法あるいはシ
リカと炭素系の結合剤を配合する前の炭素粉末に界面活
性剤と水を添加して混合する方法のいずれによっても好
ス1(に炭素粉末に界面活性剤を均一混合することがで
きる。
According to the present invention, a method for uniformly mixing a surfactant into carbon powder is to add a surfactant in the form of an aqueous solution when mixing a mixture of silica, carbon powder, and a carbon-based binder. A method of simultaneously blending silica, carbon powder, a carbon-based binder, water, and a surfactant, or a method of adding a surfactant and water to the carbon powder before blending the silica and carbon-based binder. The surfactant can be uniformly mixed with the carbon powder by any of the mixing methods.

本発明によれば、炭素粉末を酸化性雰囲気中で加熱して
粉末粒子表面を酸化せしめる際の加熱温度は低くとも2
00℃であることが好ましく、加熱時間は0.5時間以
上であることが有利である。その理由は、加熱温度が、
2OO℃より低いと炭素粉末の粒子表面を酸化せしめる
ことが困難で、また加熱時間がO,S時間より短いと収
化が不充分とな9易く、水に対する濡れ性を改善するこ
とが殆どできないからである。加熱温度は余シ高すぎる
と炭素粉末の酸化消耗が著しくなるため100℃以下と
するか、あるいは雰囲気中の酸素量を制御することが有
利である。
According to the present invention, the heating temperature when heating carbon powder in an oxidizing atmosphere to oxidize the powder particle surface is at least 2.
00° C. and advantageously a heating time of 0.5 hours or more. The reason is that the heating temperature is
If the heating time is lower than 200°C, it is difficult to oxidize the particle surface of the carbon powder, and if the heating time is shorter than the O, S time, the yield is likely to be insufficient, and the wettability to water can hardly be improved. It is from. If the heating temperature is too high, the oxidative consumption of the carbon powder will be significant, so it is advantageous to keep the heating temperature below 100°C or to control the amount of oxygen in the atmosphere.

本発明によれば、前記酸化性雰囲気中に水蒸気を含有さ
せることが有利である。その理由は、前記−雰囲気中に
水蒸気を含有させることによって炭素粉末の粒子表面の
酸化を促進することができ、比較的低温でも効率的に炭
素粉末の水に対する濡れ性を改善することができるから
である。
According to the invention, it is advantageous to include water vapor in the oxidizing atmosphere. The reason for this is that - by including water vapor in the atmosphere, oxidation of the surface of carbon powder particles can be promoted, and the wettability of carbon powder to water can be efficiently improved even at relatively low temperatures. It is.

本発明によれば、前記炭素粉末の酸素含有率は少なくと
も00.2重量%であることが好ましい。その理由は、
前記炭素粉末の酸素含有率がO9,2重量%より少ない
と炭素粉末の水に対する濡れ性がそれ程良好でなく反応
域においても崩壊することのない圧潰強度を維持する粒
状原料となすことが困難であるからであり、甘だ酸素含
有率が余り高い炭素粉末は製造することが極めて困難で
あるばかりでなく炭素源としての歩留り性に劣p経済的
でなくS重量係以下であることが有利である。
According to the invention, the oxygen content of the carbon powder is preferably at least 00.2% by weight. The reason is,
If the oxygen content of the carbon powder is less than O9.2% by weight, the carbon powder's wettability with water is not so good and it is difficult to form a granular raw material that maintains crushing strength without collapsing even in the reaction zone. This is because carbon powder with an excessively high oxygen content is not only extremely difficult to produce, but also has poor yield as a carbon source. be.

本発明によれば、前記炭素系の結合剤の配合量はシリカ
と炭素粉末の合計700重量部に対し固定炭素量に換算
して3〜3重量部の範囲内であることが好ましい。その
理由は、前記配合量が3重量部より少ないと粒状原料の
反応域における圧潰強度が低く反応容器内で生成物が崩
壊し易くなり、一方JM量部より多いと結合剤に要する
費用が増加するし、結合剤の熱分解によって生成する炭
素量が増加して粗大な炭化珪素粒子が生成し易くなるか
らであり、なかでも!; −,20重量部の範囲内にお
いて最も良い結果が得られる。
According to the present invention, the blending amount of the carbon-based binder is preferably within the range of 3 to 3 parts by weight in terms of fixed carbon amount based on a total of 700 parts by weight of silica and carbon powder. The reason for this is that if the amount is less than 3 parts by weight, the crushing strength of the granular raw material in the reaction zone will be low and the product will easily collapse in the reaction vessel, while if it is more than 3 parts by weight, the cost required for the binder will increase. This is because the amount of carbon produced by thermal decomposition of the binder increases, making it easier to produce coarse silicon carbide particles. The best results are obtained within the range of -20 parts by weight.

本発明によれば、前記炭素系の結合剤は石油ピッチ、コ
ールクールピッチ、木タールピッチ、アスファルト、フ
ェノール’M 脂、石油タール、コールクール、木ター
ル、糖類、リグニンスルホン酸塩、アルギン酸塩より選
ばれるいずれか少なくとも/釉であることが好ましく、
なかでも石油ピッチ、コールタールピッチ、木タールピ
ッチ、アスファルト、フェノールm 脂、石油タール、
コールタール、木タール等の難水溶性の炭素系の結合剤
は炭素粉末の2次粒子中へそれ程分散しないため歩留り
が良好で少量の使用量で好適な結果を得ることができ、
一方フエノール樹脂、糖類、リグニンスルホン酸塩、ア
ルギン敲塩等の易水溶性の炭素系の結合剤は造粒時に水
溶液状で冷加することができ有利である。
According to the present invention, the carbon-based binder is selected from petroleum pitch, coal cour pitch, wood tar pitch, asphalt, phenol M fat, petroleum tar, coal coeur, wood tar, sugar, lignin sulfonate, and alginate. Preferably, at least one of the following is selected:
Among them, petroleum pitch, coal tar pitch, wood tar pitch, asphalt, phenol m fat, petroleum tar,
Poorly water-soluble carbon-based binders such as coal tar and wood tar do not disperse much into the secondary particles of carbon powder, so the yield is good and suitable results can be obtained with a small amount of use.
On the other hand, easily water-soluble carbon-based binders such as phenolic resins, sugars, lignin sulfonates, and alginic salts are advantageous because they can be cooled in the form of aqueous solutions during granulation.

本発明によれば、微細な炭化珪素粉末を製造する上で、
原料中の炭素量を増加させて前記式(3)の反応が生起
する箇所を増加させ、前記SiOガス分圧の上昇を抑制
することが有効であり、Mi前記配合原料におけるシリ
カと炭素のC/5102  モル比を3゜、2− y、
 0の範囲内とすることが有利である。
According to the present invention, in producing fine silicon carbide powder,
It is effective to increase the amount of carbon in the raw material to increase the number of locations where the reaction of formula (3) occurs, and to suppress the increase in the SiO gas partial pressure. /5102 molar ratio 3°, 2-y,
Advantageously, it is in the range 0.

本発明によれば、シリカと炭素粉末と炭素系の結合剤よ
りなる配合物は充分に均一混合された後、例えばパン型
造粒機、ドラム型造粒機、水平振動型造粒機、ブリケッ
トマシン、流動混合造粒機なとの造粒機によって造粒さ
れる。
According to the present invention, the blend of silica, carbon powder, and carbon-based binder is mixed thoroughly and homogeneously, and then, for example, a pan-type granulator, a drum-type granulator, a horizontal vibration-type granulator, a briquette, etc. It is granulated by a granulator such as a machine or a fluidized mixing granulator.

本発明によれば前記配合物を造粒する前あるいは造粒す
る際に前記配合物700市牡部に対し水を7〜8重量部
添加するととが好適である。前記水の添加量が7M量部
より少ないと粒状原料中における水の含有量が不均一に
なり、反応域における反潰強度を維持することが困難で
あり、一方3重量部より多量に添加すると配合物を均一
に造粒することか困難であるばかりでなく粒状原料が取
扱い甲に変形したり、相互に粘着し塊状になるからであ
り、なかでも70〜J重量部の範囲内でより好適な結果
が得られる。
According to the present invention, it is preferable to add 7 to 8 parts by weight of water to 700 parts of the blend before or during granulation of the blend. If the amount of water added is less than 7 M parts, the water content in the granular raw material becomes uneven, making it difficult to maintain the crushing strength in the reaction zone, whereas if it is added in an amount greater than 3 parts by weight, This is because it is not only difficult to uniformly granulate the compound, but also the granular raw materials may deform during handling or stick to each other and become lumpy, so it is particularly preferable to use a powder in the range of 70 to J parts by weight. results.

不発明(/′Cよれば、前記粒状原料を予熱帯と加熱帯
と冷却帯を有する反応容器の上方よ、り装入し前記装入
された原料を前記予熱帯内を連続的あるいは間歇的に自
重降下させつつ加熱帯に至らせ、前記加熱帯内で水平方
向に加熱してS I C化反応を行なわせ、次いで反応
生成物を冷却帯に降下させ非酸化性雰囲気下で冷却後前
記反応容器の冷却帯下部より連続的あるいは間歇的に反
応生成物を排出させることによって炭化珪素が製造され
る。
According to the invention (/'C), the granular raw material is charged from the top of a reaction vessel having a pre-heating zone, a heating zone, and a cooling zone, and the charged raw material is passed through the pre-heating zone continuously or intermittently. The reaction product is allowed to fall under its own weight until it reaches a heating zone, and is heated horizontally within the heating zone to carry out the SIC reaction.Then, the reaction product is lowered to a cooling zone, and after being cooled under a non-oxidizing atmosphere, Silicon carbide is produced by continuously or intermittently discharging the reaction product from the lower part of the cooling zone of the reaction vessel.

本発明によれば、極めて微細な炭化珪素粉末を製造する
上で、加熱帯における反応温度を7500〜2000℃
の範囲内に制御卸することが必要である。
According to the present invention, in producing extremely fine silicon carbide powder, the reaction temperature in the heating zone is set at 7500 to 2000°C.
It is necessary to control the amount within the range.

その1118由は、AfJ記反応温度が7500°Cよ
り低いと前記式(,2)で示される反応速度が極めて遅
く効率的に炭化珪、i4粉末を製造することが困難にな
るからであり、一方2000′c  より高いと−・旦
生成した炭化珪素が結晶成長し易いため、本発明の目的
とする極めて微細なβ型炭化珪素を姿造することが困難
であるからである。
The reason for this is that if the AfJ reaction temperature is lower than 7500°C, the reaction rate shown by the above formula (2) is extremely slow and it becomes difficult to efficiently produce silicon carbide, i4 powder. On the other hand, if it is higher than 2000'c, silicon carbide once formed is likely to undergo crystal growth, making it difficult to form extremely fine β-type silicon carbide, which is the object of the present invention.

な訃、前記反応温度は、従来本発明者らが発明し提案し
た炭化珪素の連続製造方法において必要とされた反応温
度に比較し−C低く、操業に要するエネルギー量も少な
くてすみ、かつ生産設備の耐久性が著しく向上する等の
利点をも有する。
However, the above reaction temperature is -C lower than the reaction temperature required in the conventional continuous production method of silicon carbide invented and proposed by the present inventors, and requires less energy for operation. It also has the advantage of significantly improving the durability of equipment.

次に本発明の方法の実施に直接使用する型造装置の7例
を図面を参照しながら説明する。
Next, seven examples of mold-making devices directly used for carrying out the method of the present invention will be explained with reference to the drawings.

本発明の方法の実施に直接使用する装置は図に示す如く
原料装入口/と予熱帯コと加熱帯3と冷却帯グと密閉自
在の生成物排出口Sとを有し、それらが縦方向にそれぞ
れ連接されてなる反応容器乙であって、前記加熱帯を形
成する筒りは黒鉛製であり、加熱帯の装入物を間接′眠
気加熱する手段g、9を具備し、少なくとも前記加熱帯
の外側に炭素あるいは黒鉛質よりなる断熱層/θ分有す
るものである。
As shown in the figure, the apparatus directly used for carrying out the method of the present invention has a raw material charging inlet, a preheating zone, a heating zone 3, a cooling zone, and a sealable product outlet S, which are arranged vertically. A reaction vessel B is connected to a reactor vessel B, in which the barrel forming the heating zone is made of graphite, and is equipped with means g and 9 for indirectly heating the charge in the heating zone, and at least the heating zone is It has a heat insulating layer made of carbon or graphite on the outside of the tropics.

前記反応容器乙は装置の中心部に設置され、間接加熱手
段g、9は黒鉛製発熱体ざと前記発熱体の外側に近接し
て設けられた黒鉛製反射筒に囲まれた仝IBj内には非
酸化性ガス装入口//より例えばAr、 He、 N2
. CO,N2.その他の非酸化性ガスが封入され、9
気の侵入による黒鉛製発熱体の酸化消耗が防止される。
The reaction vessel B is installed in the center of the apparatus, and the indirect heating means g and 9 are surrounded by a graphite heating element and a graphite reflector tube provided close to the outside of the heating element. Non-oxidizing gas inlet//for example Ar, He, N2
.. CO, N2. Other non-oxidizing gases are enclosed, 9
Oxidative wear and tear of the graphite heating element due to air intrusion is prevented.

以丁、本発明を実施例について説明する。The present invention will now be described with reference to embodiments.

実施例1 比表面積が23m2/2のツーーマルブラック粉末(F
、 C,−寵、5重量係)100重量部に対してポリオ
ギゾエチレンアルキルフェニルエーテル/、57[置部
と水/θθ重?部を添加し、フレットミルを使用して充
分混合した後、湿粉状態となるまで/、:bo℃で乾燥
した。前記サーマルブラック粉末に平均粒径力sott
mto シリカm末(5io2−qq、 g 重量% 
) /AJ’R、ii、ttfj見高ビア チl、)末
(F、O,== jO,’l 重量% 、 &/%μm
F−100% ) !;、3重量部を配合し、さらに充
分混合した。次いで前記混合物をパン型造粒機に投入し
CMG 095%水溶液をスプレーしながら造粒した後
、バンド型通気乾燥器に入れて/so℃の熱風で90分
間乾燥した。前記乾燥前の粒状原料に含有される水分量
は約72重量%であり、乾燥して得られた粒状原料は平
均粒径が//、 Omm +粒状物の気孔率がグ5係9
粒状物嵩密度が0.7 乙f /d、 O/ 8402
モル比がy、、 oであった。
Example 1 Tumul black powder (F) with a specific surface area of 23 m2/2
, C, - weight, 5 weight part) polyogyzoethylene alkylphenyl ether/, 57 [Okipart and water/θθ weight? After thoroughly mixing using a fret mill, the mixture was dried at 0.degree. C. until it became a wet powder. The thermal black powder has an average particle size of
mto Silica m powder (5io2-qq, g weight%
)/AJ'R, ii, ttfj Mitakavia Chil,) End (F, O, == jO,'l Weight%, &/%μm
F-100%)! ; and 3 parts by weight were added and mixed thoroughly. Next, the mixture was put into a pan-type granulator and granulated while spraying a 095% CMG aqueous solution, and then put into a band-type ventilation dryer and dried with hot air at /so° C. for 90 minutes. The water content contained in the granular raw material before drying is about 72% by weight, and the granular raw material obtained by drying has an average particle size of //, Omm + a porosity of the granular material of
Particulate bulk density is 0.7 f/d, O/8402
The molar ratio was y,,o.

次いで、この粒状原料を図に示した如き竪型の間接加熱
炉の上部より装入し、前記加熱炉内を連続的に自重降下
させて、反応温度が/qoo℃ に制御された加熱帯に
至らせ、加熱帯における装入物を0. l−Oyl /
hrの降下速度で自重降下させつつ水平方向に間接加熱
してSiO化反応を行なわせた後、冷却帯に自重降下さ
せ、排出口より反応生成物を連続的に排出させた。
Next, this granular raw material is charged from the upper part of a vertical indirect heating furnace as shown in the figure, and the inside of the heating furnace is continuously lowered by its own weight to a heating zone where the reaction temperature is controlled to /qoo°C. The charge in the heating zone was reduced to 0. l-Oyl/
After the SiO conversion reaction was carried out by indirect heating in the horizontal direction while lowering the reactor by its own weight at a descending rate of hr, the reactor was lowered by its own weight into a cooling zone, and the reaction product was continuously discharged from the outlet.

使用した間接加熱炉の主な使用は第1表に示した。The main uses of the indirect heating furnace used are shown in Table 1.

第1表 得られた反応生成物から遊離炭素を除去した後、内径が
2!1cTLφの鉄製ボールミルを使用して回転数11
g rpmで5時間湿式解砕し、次いでフッ化水素酸1
0%水溶液に3時間浸漬して遊離シリカを除去精製した
。=1記精製して得られた炭化珪素中のβ型結晶よりな
る炭化珪素の含有率はX線回折法によって測定したとこ
ろ9LlI係 であシ、その比表面積は、3Q、 g 
7712/ 9であった。また、その粒子形状を走査屋
電子顕微鏡で観察したところ、極めて丸い形状で、粒径
が比較的そろっていることが認められた。
Table 1 After removing free carbon from the obtained reaction product, it was milled using an iron ball mill with an inner diameter of 2!1 cTLφ at a rotational speed of 11.
wet disintegration for 5 hours at 1 g rpm, then hydrofluoric acid 1
Free silica was removed and purified by immersion in a 0% aqueous solution for 3 hours. = The content of silicon carbide consisting of β-type crystals in the silicon carbide obtained by the purification was measured by X-ray diffraction method and had a coefficient of 9LlI, and its specific surface area was 3Q, g.
It was 7712/9. Furthermore, when the particle shape was observed using a scanning electron microscope, it was found that the particle shape was extremely round and the particle size was relatively uniform.

実施例2.比較例1 実施例1と同様であるが、第2表に示した如く、界面活
性剤および水の添加量を変えて粒状原料を調製した。
Example 2. Comparative Example 1 Granular raw materials were prepared in the same manner as in Example 1, but with different amounts of surfactant and water added as shown in Table 2.

前記粒状原料を適宜採取し、アルゴンガス雰囲気のタン
マン炉中に装入し7700°Cで7時間維持し反応生成
物を得た。
The granular raw material was appropriately sampled, placed in a Tamman furnace in an argon gas atmosphere, and maintained at 7700°C for 7 hours to obtain a reaction product.

得られた反応生成物の物性は芙h1n例1と同様の方法
で測定し第2衣に示した。
The physical properties of the obtained reaction product were measured in the same manner as in Example 1 and are shown in Figure 2.

呆施例2の反応生成物はいずれも当初の形状を維持する
のに充分な圧潰強度を有していた。これに対し、比較例
1−1の反応生成物は圧潰強度が低く連続操業には不適
当であり、比較例1−2の水分量を低く設定した場合お
よび比較例1−3の水分量が多い場合はいずれも造粒す
ることができなかつブヒ。また、竜粒時の転勤時間を長
くして気孔率を小さくした比較例1−4−は圧潰強度は
良好であったが、反応性に劣るばかりでなく、生成した
炭化珪素のね径が粗大化していることが認められた。
All of the reaction products of Example 2 had sufficient crush strength to maintain their original shapes. On the other hand, the reaction product of Comparative Example 1-1 has a low crushing strength and is unsuitable for continuous operation. If there is too much, it will not be possible to granulate any of them. In addition, Comparative Example 1-4-, in which the porosity was reduced by increasing the transfer time during graining, had good crushing strength, but not only was the reactivity inferior, but also the diameter of the formed silicon carbide was coarse. It was recognized that the

なお、前記生成物の圧潰強度は生成物の上に静荷重をか
けて測定した値である。
The crushing strength of the product is a value measured by applying a static load to the product.

実施例3 実施例1と同様であるが、ポリオキシエチレンアルキル
フェニルエーテルに換えて脂訪散塩、アルキルベンゼン
スルホン酸塩、直鎖アルキルベンゼンスルホン酸塩、α
−オレフィンスルホン酸塩。
Example 3 Same as Example 1, but in place of polyoxyethylene alkyl phenyl ether, abata salt, alkylbenzene sulfonate, linear alkylbenzene sulfonate, α
-Olefin sulfonate.

ナフタレン−ホルマリン縮合物のスルボン酸塩。Sulfonic acid salt of naphthalene-formalin condensate.

ポリオキシエチレンアルキルエーテル、ポリオキシエチ
レンノニルフェノールエーテルをそれぞn使用して粒状
原料を調製し、実施例2と同様の方法で反応生成物を得
た。
Granular raw materials were prepared using each of polyoxyethylene alkyl ether and polyoxyethylene nonylphenol ether, and a reaction product was obtained in the same manner as in Example 2.

前記反応生成物idいずれも当初の形状を維持するのに
充分な圧潰強度を有しており、また前記反応生成物を精
製して得た炭化珪素粉末はいずれも極めて微細であった
All of the reaction products id had sufficient crushing strength to maintain their original shapes, and all of the silicon carbide powders obtained by purifying the reaction products were extremely fine.

実施例4 実施例1と同様であるが、炭素粉末としてチャンネルブ
ラック粉末(比表面41< = /、!g m2/ ?
 +F、 C,−9g、 /重量係)を使用し′CC状
状原料調製し、反応生成物を得た。
Example 4 Same as Example 1, but channel black powder (specific surface 41<=/, !g m2/?) was used as the carbon powder.
+F, C, -9g, /weight ratio) was used to prepare a 'CC-shaped raw material, and a reaction product was obtained.

得られた反応生成物の物性は実施例1と同様の方法で測
定したところ、β型結晶よりなる炭化珪素の含有率は?
A、 /チで、その比表面積は、1.+、、2 / f
であることが認めらXl、ンそ。ずた操−君は極めてへ
頁調でちった。
The physical properties of the obtained reaction product were measured in the same manner as in Example 1. What was the content of silicon carbide consisting of β-type crystals?
A, /H, and its specific surface area is 1. +,,2/f
It is recognized that this is the case. Zuta Misao-kun, you spoke in a very sloppy manner.

実施例5 実施例1と同様であるが、夷嬬例1よりも高い反応温度
/q00℃に制御し、かつ装入物の降F速度を0. g
Om/ hrに速めて反応生成物を得た。
Example 5 Same as Example 1, but the reaction temperature/q00°C was controlled higher than in Example 1, and the F rate of the charge was reduced to 0. g
The reaction product was obtained at a rate of Om/hr.

得られた反応生成物の物性は実施例1と同様の方法で測
定した。結果は第2表に示した如くであり、炭化珪素粉
末の比表面積が2q、 3@2/yと若干小きくなった
が、装入物の自重降下も順調で長期間安定して連続操業
することができ、単位設備あたりの生産能力が高かった
The physical properties of the obtained reaction product were measured in the same manner as in Example 1. The results are shown in Table 2, and although the specific surface area of the silicon carbide powder was slightly smaller at 2q, 3@2/y, the dead weight of the charge was falling smoothly and stable continuous operation was possible for a long period of time. The production capacity per unit of equipment was high.

実施例6 実施例ユと同様であるが、ポリオキシエチレンアルキル
フェニルエーテルに換えてグラニュー糖ユ、51Jli
ニーfii:部を配合し、結合剤として高ピツチ粉末に
換えてノボラック型フェノール樹脂(F、 C,−5/
、6重′l?i′係)を使用して粒状原料を調製し、実
施例1と同様にして反応生成物を得た。
Example 6 Same as Example 1, but using granulated sugar, 51Jli instead of polyoxyethylene alkyl phenyl ether.
Novolac type phenolic resin (F, C, -5/
, 6-fold'l? A granular raw material was prepared using Example 1), and a reaction product was obtained in the same manner as in Example 1.

前記反応生成物の圧潰強度は/、 7 kgであり実施
しj]ユで得られた反応生成物に比較して若干高く。
The crushing strength of the reaction product was 7 kg, which was slightly higher than that of the reaction product obtained in Example 1.

−また精製して得られた炭化珪素粉末は極めて彼細で本
発明の目的を充分満足きせるものであり、また操業も長
時間安定して行なうことができた。
- Furthermore, the silicon carbide powder obtained by purification was extremely fine and fully satisfied the purpose of the present invention, and the operation could be carried out stably for a long time.

なお、前記粒状原料中のC/51o2モル比はダ、Oと
なるよう調製した。
In addition, the C/51o2 molar ratio in the granular raw material was adjusted to be 0.0 and 0.0.

実施例7 実施例1で使用したと同様のサーーンルブラック粉末1
0θ重量部と実施例ユで使用したと同様のシリカ粉末/
63重漬部と実施例1で使用し/こと同様の高ピツチ粉
末53重量部とエチレングリコ−111重量部と水15
0重量部とをフレットミルて充分混合した後実施例1と
同様にして造粒原料を調製した。
Example 7 Cernle Black powder 1 similar to that used in Example 1
0θ weight part and silica powder similar to that used in Example U/
63 parts by weight, 53 parts by weight of the same high pitch powder used in Example 1, 111 parts by weight of ethylene glycol, and 15 parts by weight of water.
0 parts by weight were sufficiently mixed using a fret mill, and then a granulated raw material was prepared in the same manner as in Example 1.

前記粒状原料を使用し、実施例1と同様にして反応生成
物を得た。
A reaction product was obtained in the same manner as in Example 1 using the granular raw material.

得られた反応生成物の物性は実施例1と同様の方法で測
定己た。結果は第2表に示した。
The physical properties of the obtained reaction product were measured in the same manner as in Example 1. The results are shown in Table 2.

本実施例7の操業状況は極めて安定しており、長期間連
続操業することができた。
The operating conditions of Example 7 were extremely stable, and continuous operation was possible for a long period of time.

実施例8 実施例1で使用したと同様のサーマルブラック粉末を.
230℃に維持された炉中に装入し空気雰囲気中でス時
間加熱処理した。前記加熱処理後のサーマルブラック粉
末は比表面積がx7712/y,酸素含有fjtが約0
.37  重量係であり、水に対する濡れ性は良好であ
った。
Example 8 The same thermal black powder as used in Example 1 was used.
The sample was placed in a furnace maintained at 230°C and heat-treated in an air atmosphere for several hours. The thermal black powder after the heat treatment has a specific surface area x7712/y and an oxygen content fjt of about 0.
.. 37 in terms of weight, and the wettability to water was good.

前記サーマルブラック粉末700重量部と実施例1で使
用したシリカ粉末/63重量部と実施例1で使用した高
ピツチ粉末53重量部をナウターミキサ−を使用して充
分混合した後実施例1と同様の方法で造粒原料を調製し
た。
700 parts by weight of the thermal black powder, 63 parts by weight of the silica powder used in Example 1, and 53 parts by weight of the high pitch powder used in Example 1 were thoroughly mixed using a Nauta mixer, and then mixed in the same manner as in Example 1. The granulated raw material was prepared by the method.

i’3iJ記粒状原記音状原料、実施例1と同様の方法
で反応生成物を得た。
A reaction product was obtained in the same manner as in Example 1 using the granular raw material.

得られ/こ反応生成物V物性は実施例ユと同様の方法で
測定したところ、β型結晶よりなる炭化珪素の含有率は
9A、!;%で、その比表面積は35.2m2/2であ
ることがaeめられた。
The physical properties of the obtained reaction product V were measured in the same manner as in Example Y, and the content of silicon carbide consisting of β-type crystals was 9A! ;%, and its specific surface area was found to be 35.2 m2/2.

実施例9.比較例2および3 実施例日と同様であるが、第3表に示した如く加熱処理
条件を変えて加熱処理したサーマルブラック粉末を使用
して実施例8と同様の方法で粒状原料を調製し、実施例
2と同様の方法で反応生成物を得た。
Example 9. Comparative Examples 2 and 3 Granular raw materials were prepared in the same manner as in Example 8 using the same method as in Example 8, but using thermal black powder that had been heat treated by changing the heat treatment conditions as shown in Table 3. A reaction product was obtained in the same manner as in Example 2.

実施例9のサーマルブラック粉末はいずれも水に対する
濡れ性が良好であり、反応生成物は当初の形状を維持す
るのに充分な圧潰強度を有していた。これに対し、比較
例2の加熱処理を施していないサーマルブラック粉末は
殆ど水に濡れず、反応生成物はEiiO化反応中に崩壊
してしまった。捷だ、比較例3−1と比較例3−2は加
熱処理が不充分で水に対する濡れ性もそれ程改善されて
おらず、反応生成vlJはいずれも比較例2と同様に崩
壊してし凍った。なお、比較例3−3は加熱処理中に着
火してし1つだ。
All of the thermal black powders of Example 9 had good wettability with water, and the reaction products had sufficient crushing strength to maintain their original shapes. On the other hand, the thermal black powder of Comparative Example 2 which was not subjected to heat treatment hardly got wet with water, and the reaction product collapsed during the EiiO reaction. Unfortunately, in Comparative Examples 3-1 and 3-2, the heat treatment was insufficient and the water wettability was not improved that much, and the reaction product vlJ collapsed and froze in the same way as in Comparative Example 2. Ta. In addition, in Comparative Example 3-3, there was only one ignition during the heat treatment.

以上、本発明によれば、炭化珪素無加圧焼結体を製造す
るに適した平均粒径が7μmを太きくT1わる比表面積
の極めて大きな超微細炭化珪素粉末を高収率にかつ容易
に製造することがでさるものであって産秦上に寄与する
効果は極めて太きい。
As described above, according to the present invention, ultrafine silicon carbide powder with an average particle size larger than 7 μm and an extremely large specific surface area (T1) suitable for producing a pressureless sintered body of silicon carbide can be easily produced in high yield. It is easy to manufacture, and its contribution to production is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例において使用した竪型連続製造装置
の縦断面図である。 l・・・原料装入口、ユ・・・予熱帯、3・・・加熱帯
、ダ・・・冷却帯、S−・・生成物排出口、6・・・反
応容器、7・・・加熱帯を形成する筒、g・・・黒鉛製
発熱体、デ・・・黒鉛製反射筒、10・・・断熱層、/
ハ・・非酸化性ガス装入口、/2・・・案内電極、/3
・・・可とう導体、//I・・・ブスバー、/3・・・
測温用パイプ、/6・・・外殻、/7・・・耐火煉瓦、
1g・・・排気ダク)、/q・・・原料ホツノく−。 特許出願人 イビデン株式会社 代理人弁理士  村  [1政  治
The figure is a longitudinal sectional view of a vertical continuous manufacturing apparatus used in an example of the present invention. l... Raw material charging port, U... Preheating zone, 3... Heating zone, D... Cooling zone, S-... Product discharge port, 6... Reaction vessel, 7... Processing Cylinder forming the tropics, g... graphite heating element, D... graphite reflective tube, 10... heat insulating layer, /
c. Non-oxidizing gas charging port, /2... Guide electrode, /3
...Flexible conductor, //I...Bus bar, /3...
Temperature measurement pipe, /6... Outer shell, /7... Firebrick,
1g...exhaust duct), /q...raw material hot. Patent applicant: Ibiden Co., Ltd. Representative Patent Attorney Mura [1 Politics]

Claims (1)

【特許請求の範囲】 11  ノリ力粉末と比表面積が/〜1000rrL2
/fの範囲内の炭素粉末と炭素系の結合剤とを配合し粒
状に成形せしめた原料を、予熱帯と加熱帯と冷却帯を有
する反応容器の上方より装入し前記装入された原料を前
記予熱帯内を自重降下させつつ加熱帯に至らせ、前記加
熱帯内で水平方向に加熱して反応温度を7500〜2θ
θO゛Cの範囲内に開側1してSiC化反応を行なわせ
、次いで反応生成物を冷却帯に降下でせ非酸化性雰囲気
ドで冷却した後、MiJ記反応容器の冷却帯下部より反
応生成物を排出する超微細炭化珪素粉末の製造方法にお
いて、 M記炭素粉困として水に対する濡れ性の良好なものを遅
くとも造粒されるまでに水と混合せしめて使用すること
により、反応中における粒状原料の崩壊を防止すること
を特徴とする超微細炭化珪素粉末の製造方法1.2、 
 %J記炭素粉末は主としてコンタクトブラック、ファ
ーネスブラック、サーマルブラック。 ランプブラックより選ばれるいずれか少なくとも7種で
ある特許請求の範囲第1項記載の製造方法。 3、 前記炭素粉末は界面活性剤と均一混合せしめるこ
とにより水に対する濡れ性を改善せしめたものである特
許請求の範囲第]あるいは2項記載の製造方法。 4 @記界面活性剤はアミン、カルボキシル基を有する
有機化合物、スルホ基を有する有機化合物、エステル、
アンモニウム化合物、エーテル結合を有する有機化合物
、アルコールより選ばれるいずれか少なくとも7種であ
る特許請求の範囲第3項記載の製造方法。 5、 前記界面活性剤の添加計は炭素粉末100重量部
に対し少なくともθ、θS 重量部である特許請求の範
囲第3あるいは4項記載の製造方法。 6 前記炭素粉末と界面活性剤と水を均一混合した後シ
リカと炭素系の結合剤とを配合し混合する特許請求の範
囲第3〜5項のいずれかに記載の製造方法。 7、 前記炭素粉末は酸化性雰囲気中で加熱して粉末粒
子表面を酸化せしめることにより水に対する濡れ性を改
善せしめたものである特許請求の範囲第1あるいは2項
記載の製造方法。 a @記酸化性雰囲気中における加熱温度は低くとも2
00℃である特許請求の範囲第7項記載の製造方法。 9 @記炭素粉末の酸素含有率は少なくともa2重量係
である特許請求の範囲第7あるいは8項記載の製造方法
。 10 前記炭素系の結合剤の配合量はシリカと炭素粉末
の合計100重量部に対し固定炭素量に換算して3〜訪
重量部の範囲内である特許請求の範囲第1〜9項のいず
れかに記載の製造方法。 11、  前記炭素系の結合剤は石油ピッチ、コールタ
ールピッチ、木タールピッチ、アスファルト、フェノー
ル樹脂、フラン樹脂9召油タール、コールタール、木タ
ール、ill、1ゲニンスルホン酸塩、アルギン酸塩よ
り選ばれるいずれか少なくとも7種である特許請求の範
囲第1〜第10項のいずれかに記載の製造方法。
[Claims] 11 Noriyoku powder and specific surface area of /~1000rrL2
A raw material prepared by blending carbon powder and a carbon-based binder within the range of is brought to the heating zone while falling under its own weight in the pre-heating zone, and heated horizontally in the heating zone to bring the reaction temperature to 7500~2θ.
The SiC conversion reaction is carried out by opening the side 1 within the range of θO゛C, and then the reaction product is lowered into a cooling zone and cooled in a non-oxidizing atmosphere. In the method for producing ultrafine silicon carbide powder in which the product is discharged, M carbon powder having good wettability with water is used by mixing it with water at the latest before granulation. A method for producing ultrafine silicon carbide powder characterized by preventing disintegration of granular raw materials 1.2,
%J carbon powder is mainly contact black, furnace black, and thermal black. The manufacturing method according to claim 1, wherein at least seven types are selected from lamp blacks. 3. The manufacturing method according to claim 1 or 2, wherein the carbon powder has improved wettability with water by uniformly mixing it with a surfactant. 4. The surfactant mentioned above is an amine, an organic compound having a carboxyl group, an organic compound having a sulfo group, an ester,
The manufacturing method according to claim 3, wherein at least seven types are selected from ammonium compounds, organic compounds having an ether bond, and alcohols. 5. The manufacturing method according to claim 3 or 4, wherein the amount of the surfactant added is at least θ, θS parts by weight per 100 parts by weight of carbon powder. 6. The manufacturing method according to any one of claims 3 to 5, wherein after uniformly mixing the carbon powder, surfactant, and water, silica and a carbon-based binder are blended and mixed. 7. The manufacturing method according to claim 1 or 2, wherein the carbon powder is heated in an oxidizing atmosphere to oxidize the powder particle surface to improve its wettability with water. a The heating temperature in the oxidizing atmosphere is at least 2
The manufacturing method according to claim 7, wherein the temperature is 00°C. 9. The manufacturing method according to claim 7 or 8, wherein the oxygen content of the carbon powder is at least a2 weight ratio. 10. Any one of claims 1 to 9, wherein the blending amount of the carbon-based binder is within the range of 3 to 100 parts by weight in terms of fixed carbon amount, based on a total of 100 parts by weight of silica and carbon powder. The manufacturing method described in Crab. 11. The carbon-based binder is selected from petroleum pitch, coal tar pitch, wood tar pitch, asphalt, phenol resin, furan resin, oil tar, coal tar, wood tar, ill, genine sulfonate, and alginate. The manufacturing method according to any one of claims 1 to 10, wherein at least 7 types of
JP58061007A 1982-08-27 1983-04-08 Preparation of ultrafine silicon carbide powder Granted JPS59190208A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58061007A JPS59190208A (en) 1983-04-08 1983-04-08 Preparation of ultrafine silicon carbide powder
US06/524,391 US4529575A (en) 1982-08-27 1983-08-18 Process for producing ultrafine silicon carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58061007A JPS59190208A (en) 1983-04-08 1983-04-08 Preparation of ultrafine silicon carbide powder

Publications (2)

Publication Number Publication Date
JPS59190208A true JPS59190208A (en) 1984-10-29
JPH0138042B2 JPH0138042B2 (en) 1989-08-10

Family

ID=13158849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58061007A Granted JPS59190208A (en) 1982-08-27 1983-04-08 Preparation of ultrafine silicon carbide powder

Country Status (1)

Country Link
JP (1) JPS59190208A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180710A (en) * 1988-11-10 1990-07-13 Pechiney Electrometall Preparation of finely powdered alpha- or beta- silicon carbide
US5070049A (en) * 1987-12-16 1991-12-03 Ibiden, Co. Ltd. Starting composition for the production of silicon carbide and method of producing the same
US5401464A (en) * 1988-03-11 1995-03-28 Deere & Company Solid state reaction of silicon or manganese oxides to carbides and their alloying with ferrous melts
JP2006256941A (en) * 2005-03-18 2006-09-28 Toda Kogyo Corp Method for manufacturing silicon carbide powder
WO2010064415A1 (en) 2008-12-02 2010-06-10 パナソニック株式会社 Ultrasonic probe
US8292818B2 (en) 2003-09-29 2012-10-23 Kabushiki Kaisha Toshiba Acoustic lens composition, ultrasonic probe, and ultrasonic diagnostic apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070049A (en) * 1987-12-16 1991-12-03 Ibiden, Co. Ltd. Starting composition for the production of silicon carbide and method of producing the same
US5401464A (en) * 1988-03-11 1995-03-28 Deere & Company Solid state reaction of silicon or manganese oxides to carbides and their alloying with ferrous melts
JPH02180710A (en) * 1988-11-10 1990-07-13 Pechiney Electrometall Preparation of finely powdered alpha- or beta- silicon carbide
US8292818B2 (en) 2003-09-29 2012-10-23 Kabushiki Kaisha Toshiba Acoustic lens composition, ultrasonic probe, and ultrasonic diagnostic apparatus
JP2006256941A (en) * 2005-03-18 2006-09-28 Toda Kogyo Corp Method for manufacturing silicon carbide powder
WO2010064415A1 (en) 2008-12-02 2010-06-10 パナソニック株式会社 Ultrasonic probe

Also Published As

Publication number Publication date
JPH0138042B2 (en) 1989-08-10

Similar Documents

Publication Publication Date Title
US4529575A (en) Process for producing ultrafine silicon carbide powder
US4292276A (en) Apparatus for producing silicon carbide
US5070049A (en) Starting composition for the production of silicon carbide and method of producing the same
JPS59190208A (en) Preparation of ultrafine silicon carbide powder
JPS61117111A (en) Manufacture of metal silicon for light-generating-electric industry
US20080308970A1 (en) Process for melting silicon powders
US4390504A (en) Apparatus for producing silicon carbide consisting mainly of β-type crystal
JPH0118005B2 (en)
JP2841862B2 (en) Method for producing silicon carbide
WO2022148452A1 (en) Petroleum coke treatment apparatus, process, and treatment system
EP0272773B1 (en) Process for production silicon carbide whiskers
JPH0135773B2 (en)
WO1996020128A1 (en) Process for producing synthetic quartz powder
JPS59141411A (en) Production of ultrafine powder of silicon carbide
JPH0416502A (en) Production of boron nitride
JPH08253364A (en) Preparation of sialon
JP2634451B2 (en) Method and apparatus for producing fine β-type silicon carbide powder
US20230047215A1 (en) Thermal treatment of mineral raw materials using a mechanical fluidised bed reactor
JPH03503158A (en) Method and apparatus for producing boron carbide crystals
RU2747988C1 (en) Method for production of silicon carbide
JPS5836915A (en) Continuous manufacture of sic type substance
JPH01172205A (en) Raw material composition for producing metal carbide
JPH0483706A (en) Production of boron nitride
JPS63297205A (en) Production of nitride
JPS6327286B2 (en)