JPS5890757A - Complementary type semiconductor integrated circuit device - Google Patents

Complementary type semiconductor integrated circuit device

Info

Publication number
JPS5890757A
JPS5890757A JP56188845A JP18884581A JPS5890757A JP S5890757 A JPS5890757 A JP S5890757A JP 56188845 A JP56188845 A JP 56188845A JP 18884581 A JP18884581 A JP 18884581A JP S5890757 A JPS5890757 A JP S5890757A
Authority
JP
Japan
Prior art keywords
region
transistor
substrate
drain
trn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56188845A
Other languages
Japanese (ja)
Inventor
Masami Masuda
正美 増田
Kiyobumi Ochii
落井 清文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56188845A priority Critical patent/JPS5890757A/en
Publication of JPS5890757A publication Critical patent/JPS5890757A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0927Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising a P-well only in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the P-N boundary region for realizing high integration density by providing the structure where the one electrode of treansistor to be formed on the substrate is included in the diffusion region of the opposite conductivity type to a semiconductor substrate. CONSTITUTION:A P well region 12 is provided on the N type semiconductor substrate 11 and the N channel MOS transistor TrN is formed on the region 12. Moreover, the N<+> type impurity diffusion region 16 is formed on the substrate 11, and an insulating layer 17 and gate electrode 18 are sequentially formed on the substrate 11 defined between this region 16 and region 12. The drain of TrP and the source 13a of TrN are connected, the gate electrode 18 of TrP and the drain 13b of TrN are connected, and a power source voltage Vss is supplied to the gate electrode 15 of TrN. According to such constitution, since the region 12 is used as the drain of TrP, operation of C-MOSTr can be realized with less area. Therefore, an element density for total area can be improved.

Description

【発明の詳細な説明】 この発明は、菓子の微細化ができる相補形半導体集積回
路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a complementary semiconductor integrated circuit device that can miniaturize confectionery.

近年、相補形M08(以下、C−MOSと略称する)回
路は、低消費電力であるため種々の回路に適用されてい
る。この回路は、例えば第1図に示すように、N形の半
導体基板11資面の一部11CP −W@11領域12
を設け、N形の基板表面およびP−w@l1表面にそれ
ぞれ互いに逆極性のトランジスタTr、 + Tr、 
t”P −N境界領域ΔXを介して形成したものである
In recent years, complementary M08 (hereinafter abbreviated as C-MOS) circuits have been applied to various circuits because of their low power consumption. This circuit, for example, as shown in FIG.
, and transistors Tr, + Tr, with opposite polarity to each other are provided on the N-type substrate surface and the P-w@l1 surface, respectively.
t''P-N boundary region ΔX.

第2図は、上述したC −MO8回路で負性抵抗を有す
る負荷回路を構成したもので、ディブレ、シ四ン形のN
チャネルトランジスタTrNとPチャネルトランジスタ
Tr、とが直列接続されており、トランジスタTrヨの
ダートはトランジスタTrPのドレインに、トランジス
タT r pのr−トはトランジスタTrNのドレイン
にそれぞれ接続される。
Figure 2 shows a load circuit with negative resistance constructed using the C-MO8 circuit described above.
A channel transistor TrN and a P-channel transistor Tr are connected in series, and the terminal of the transistor Tr is connected to the drain of the transistor TrP, and the terminal of the transistor Tr is connected to the drain of the transistor TrN.

今、上記のような回路において、トランジスタTr H
のドレイン側のツートムの電位1vA、トランジスタT
r、のドレイン側のノードBの電位をV、とじた時に、
”AI =vA −vl≧0」の電位関係では、この回
路は第3図に示すような負性抵抗の特性を示す。第3図
KかけるvInの値はPチャネル形トランジスタTr、
とNチャネル形MO8)ランジスタT r wとの各し
きい値電圧に依存しておシ、r O< V、、<v、s
 Jの範囲で任意に設定することが可能である。この回
路は電位vAllがvrnを超えた状態では回路がオー
プン状態となシ、ノードAからノードBへの電流”AI
は流れない。また、電位vAlがvrnxDも小さい状
態では負性抵抗素子の動作をし、電位vAmの値によっ
て定まった電流IAIが流れる。上述した回路を二電源
v9.vll□(vDD>v、ll)ニヨって駆動され
る相補形半導体装置に適用する時には、ノードB@に1
1源電位V□を供給し、トランジスタTr、のパックダ
ートに電源電位vDDを供給している。この場合の回路
を第4図に示す。
Now, in the circuit as described above, the transistor Tr H
The potential of the two-tom on the drain side of 1vA, the transistor T
When the potential of node B on the drain side of r is set to V,
In the potential relationship of "AI=vA-vl≧0", this circuit exhibits negative resistance characteristics as shown in FIG. Figure 3: The value of K multiplied by vIn is the P-channel transistor Tr,
and N-channel type MO8) depending on each threshold voltage of transistor T r w, r O < V, , < v, s
It is possible to set it arbitrarily within the range of J. In this circuit, when the potential vAll exceeds vrn, the circuit is in an open state, and the current "AI" from node A to node B
does not flow. Further, when the potential vAl and vrnxD are also small, it operates as a negative resistance element, and a current IAI determined by the value of the potential vAm flows. The circuit described above can be converted to a dual power source v9. When applied to a complementary semiconductor device driven by vll□(vDD>v,ll), 1 is applied to node B@.
1 source potential V□ is supplied, and a power supply potential vDD is supplied to the pack dirt of the transistor Tr. A circuit in this case is shown in FIG.

第5図は、上記第4図の回路の断面構成例を示すもので
、電位vDDが印加されるN形の半導体基板11上に、
電位■IIが印加されるP−w@ll領域12を設ける
0次に、上記P −W@ll領域12上にはトランジス
タのソース、ドレインとなるN+の不純物拡散領域13
m、13bを形成し、この穎域間上に絶縁層14、ダー
ト電極15を順次配設してNチャネル形のMOS)ラン
ジスタTr  を形成する。また、N形基板11上には
トランジスタのドレイン、ソースとなるP+の不純物拡
散領域16m、16bを形成し、この領域間上に絶縁層
11.1’−)電極18を順次配設してPチャネル形M
O8)ランジスタTr。
FIG. 5 shows an example of the cross-sectional configuration of the circuit shown in FIG. 4. On the N-type semiconductor substrate 11 to which the potential vDD is applied,
A P-w@ll region 12 to which the potential II is applied is provided Next, on the P-W@ll region 12, an N+ impurity diffusion region 13 is provided which becomes the source and drain of the transistor.
m and 13b are formed, and an insulating layer 14 and a dart electrode 15 are sequentially disposed between the glume regions to form an N-channel type MOS transistor Tr. Further, on the N-type substrate 11, P+ impurity diffusion regions 16m and 16b, which will become the drain and source of the transistor, are formed, and an insulating layer 11.1'-) electrode 18 is sequentially disposed between these regions. Channel type M
O8) Transistor Tr.

を形成する。そして、上記トランジスタTr  のドレ
イン16aとトランジスタTr  のゲート室間 極15とに電源電位v、、を供給し、トランジスタTr
Nのドレイン13bとトランジスタTr、のゲート電極
18を接続し、それぞれのトランジスタのソースxs*
pxt;bt−接続して構成する。
form. Then, the power supply potential v is supplied to the drain 16a of the transistor Tr and the gate electrode 15 of the transistor Tr, and
The drain 13b of N and the gate electrode 18 of the transistor Tr are connected, and the source xs* of each transistor is connected.
pxt;bt - connect and configure.

しかし、上記のような従来のC−MO8構成では、低消
費電力であるが、Pチャネル形とNチャネル形の対とな
るトランジスタが必要であるため、単一チャネルの回路
と比較して素子数が増加するのみならず、Pチャネル形
トランジスタおよびNチャネル形トランジスタを形成す
る領域を分離絶縁する必要があるため、P−N境界領域
4Xが必要であル、チップ面積が大きくなる。また、製
造工程も複雑化してしまう等の欠点がある。
However, although the conventional C-MO8 configuration described above has low power consumption, it requires a pair of P-channel and N-channel transistors, so the number of elements is lower than that of a single-channel circuit. Not only does this increase, but also it is necessary to separate and insulate the regions in which the P-channel transistor and the N-channel transistor are formed, so a P-N boundary region 4X is required, which increases the chip area. Further, there are drawbacks such as the manufacturing process becoming complicated.

特に回路の高集積化が進むにつれて、Pチャネルおよび
NチャネルMO8)ランソスタの各領域内は、リソグラ
フィー技術の向上によシ微細化され、集積度が高くなっ
ているが、P−N境界領域ΔXの距離を決定する要因は
P 拡散領域16bとP−W@11領域12との間の耐
圧、!拡散領域13&とN形基板11間の耐圧、P−W
・■領域12の製造精度醇で決定されるため微細化が峻
しい。このため、上記P−N境界領域ΔXのパターン全
体に占める面積の割合が大きくなって問題となっている
In particular, as the integration of circuits progresses, each region of the P-channel and N-channel MO8) run source has become finer due to improvements in lithography technology, and the degree of integration has increased, but the P-N boundary region ΔX The factor that determines the distance is the withstand voltage between the P diffusion region 16b and the P-W@11 region 12,! Breakdown voltage between diffusion region 13& and N type substrate 11, P-W
・Since it is determined by the manufacturing precision of region 12, miniaturization is difficult. For this reason, the ratio of the area of the PN boundary region ΔX to the entire pattern becomes large, which poses a problem.

この発明は上記のような事情を鑑みてなされたもので、
その目的とするところは、半導体基板と逆導電形の拡散
領域上に、基板上に形成するトランジスタの一方の電極
が含まれるように構成することにより、P−N境界領域
を減少でき、高集積化が可能な相補形半導体集積回路装
置を提供することである。
This invention was made in view of the above circumstances,
The purpose of this is to reduce the P-N boundary area by configuring one electrode of the transistor formed on the substrate to be included on the diffusion region of the opposite conductivity type to the semiconductor substrate, and to achieve high integration. An object of the present invention is to provide a complementary semiconductor integrated circuit device that can be

以下、この発明の一実施例について図面を参照して説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

第6図は、その構成を示すもので、電源電圧vDDが印
加されるN形の半導体基板11上に、電源電圧V□が印
加されるP−v@ll領域12を設け、上記P−W@1
1領域12上にN+の不純物拡散領域I Ja e J
 jbを形成し、この領域間上に絶縁層14、ダート電
極15を順次配設してNチャネル形のMOS )ランジ
スタTr  を形成す肩 る、また、N形基板ll上には計の不純物拡散領域16
を形成し、この拡散領域16とP−well領域12と
の間の基板11上に、絶縁層17、r−計電極18を順
次配設してPチャネル形MO8)ランジスタTr  を
形成する。そして、上? 記トランジスタTrPのドレイン16とトランジスタT
r  のソースISaを接続し、トランジスりTr  
のダート電極1#とトランジスタTr  のP    
                         
                   NドレインI
Jjbを接続し、トランジスタTr  のダート電極1
5に電源電位v1.を供給するようにして成る。
FIG. 6 shows its configuration, in which a P-v@ll region 12 to which a power supply voltage V□ is applied is provided on an N-type semiconductor substrate 11 to which a power supply voltage vDD is applied, and the P-W @1
N+ impurity diffusion region I Ja e J on the 1 region 12
An insulating layer 14 and a dart electrode 15 are sequentially disposed between these regions to form an N-channel type MOS transistor Tr. In addition, a total of impurities are diffused on the N-type substrate 11. area 16
An insulating layer 17 and an r-meter electrode 18 are sequentially disposed on the substrate 11 between the diffusion region 16 and the P-well region 12 to form a P-channel type MO transistor Tr. And the top? The drain 16 of the transistor TrP and the transistor T
Connect the source ISa of r and connect the transistor Tr.
Dart electrode 1# of and P of transistor Tr

N drain I
Jjb is connected to the dirt electrode 1 of the transistor Tr.
5, the power supply potential v1. It is designed to supply

このような構成によれば、P −well領域12をP
チャネル形トランジスタTr  のドレインとして使用
しているため、第5図の構成と同様な動作を少ない面積
で実現できる。したがって、総面積に対する素子密度を
向上できる。
According to such a configuration, the P-well region 12 is
Since it is used as the drain of the channel type transistor Tr, the same operation as the structure shown in FIG. 5 can be realized with a small area. Therefore, the element density relative to the total area can be improved.

第7図は、この発明の他の実施例を示すもので、トラン
ジスタTr  のドレイン16bを基板11とP−W@
11領域との境界上に設けたものである。このような構
成によれば、P−v・11領域の製造積度の調整や動作
時におけるドレイン拡散の空乏層の広が)、トランジス
タの特性の調整等が容易にできる。
FIG. 7 shows another embodiment of the present invention, in which the drain 16b of the transistor Tr is connected to the substrate 11 and P-W@
It is provided on the boundary with area No. 11. According to such a configuration, it is possible to easily adjust the manufacturing density of the P-v.11 region, expand the depletion layer of the drain diffusion during operation, and adjust the characteristics of the transistor.

なお、上記各実施例では負性抵抗素子として働く回路に
ついて説明したが、この回路に限定されるものではなく
、種々変形して実施できるのはもちろんである。
In each of the above embodiments, a circuit working as a negative resistance element has been described, but the circuit is not limited to this circuit, and of course can be implemented with various modifications.

以上説明したようにこの発明゛によれば、半導体基板と
辿導電形の拡散領域と、基板上に形成するトランジスタ
の一方の電極とが一体の領域となるように構成したので
、P−N境界領域を減少でき、筒集積化が可能な相補形
半導体集積回路装置が倚られる。
As explained above, according to the present invention, since the semiconductor substrate, the trace conductivity type diffusion region, and one electrode of the transistor formed on the substrate are configured as an integrated region, the P-N boundary A complementary semiconductor integrated circuit device that can reduce the area and can be integrated into a tube is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はC−MOS )ランジスタの断面構成図、第2
図はC−MO8構成による負性抵抗回路を示す図、第3
図は上記第2図の回路における電流−電圧特性図、第4
図、第5図はそれぞれ上記第2図の回路を実際に構成す
る場合の回路図およびその断面構成図、第6図はこの発
明の一実施例に係る相補形半導体集積回路装置を示す断
面構成図、第7図はこの発明の他の実施例を示す断面構
成図である。 11・・・半導体基板、I J −w@ll領域(不純
物拡散領域)、I Ja 、 I Jb・・・N+の拡
散領域、16 m + 16 b * 16 ・・・P
  の拡散領域。 出願人代理人  弁理士 鈴 江 武 彦第4図 VSS 第5図 第6図 第7図
Figure 1 is a cross-sectional diagram of a C-MOS transistor;
The figure shows a negative resistance circuit with a C-MO8 configuration.
The figure shows the current-voltage characteristic diagram for the circuit in Figure 2 above.
5 and 5 are a circuit diagram and a sectional configuration diagram thereof, respectively, when the circuit shown in FIG. 2 is actually constructed, and FIG. 6 is a sectional configuration diagram showing a complementary semiconductor integrated circuit device according to an embodiment of the present invention 7 are cross-sectional configuration diagrams showing other embodiments of the present invention. 11...Semiconductor substrate, IJ-w@ll region (impurity diffusion region), IJa, IJb...N+ diffusion region, 16m+16b*16...P
diffusion area. Applicant's representative Patent attorney Takehiko Suzue Figure 4 VSS Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上およびこの基板上に設けられる逆導電形の
拡散領域上に相補形にMOS )ランジスタが形成され
る半導体集積回路装置において、基板上に拡散形成され
るトランジスタの一方の電極を基板と逆導電形の拡散領
域と一体の領域として形成したことを特徴とする相補形
半導体集積回路装置。
In a semiconductor integrated circuit device in which a complementary MOS (MOS) transistor is formed on a semiconductor substrate and a diffusion region of opposite conductivity type provided on this substrate, one electrode of the transistor diffused on the substrate is arranged opposite to the substrate. A complementary semiconductor integrated circuit device characterized in that it is formed as a region integrated with a conductive type diffusion region.
JP56188845A 1981-11-25 1981-11-25 Complementary type semiconductor integrated circuit device Pending JPS5890757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56188845A JPS5890757A (en) 1981-11-25 1981-11-25 Complementary type semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56188845A JPS5890757A (en) 1981-11-25 1981-11-25 Complementary type semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS5890757A true JPS5890757A (en) 1983-05-30

Family

ID=16230841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56188845A Pending JPS5890757A (en) 1981-11-25 1981-11-25 Complementary type semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5890757A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194769A (en) * 1985-02-25 1986-08-29 Hitachi Ltd Semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194769A (en) * 1985-02-25 1986-08-29 Hitachi Ltd Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US4672584A (en) CMOS integrated circuit
JPH051621B2 (en)
US4799101A (en) Substrate bias through polysilicon line
JPS62115765A (en) Semiconductor device
JPH06132538A (en) Semiconductor electronic device provided with dynamic insulation circuit
JPH1065146A (en) Semiconductor integrated circuit device
JPS5890757A (en) Complementary type semiconductor integrated circuit device
US4942312A (en) Integrated-circuit having two NMOS depletion mode transistors for producing stable DC voltage
US5467048A (en) Semiconductor device with two series-connected complementary misfets of same conduction type
JPH03276757A (en) Semiconductor device
JPH09266281A (en) Step-up circuit
JPH03248554A (en) Cmos semiconductor integrated circuit device
JPS5943828B2 (en) Manufacturing method of MOS type integrated circuit
JP2671304B2 (en) Logic circuit
JPS62160750A (en) Substrate-voltage generating circuit
JPS63169113A (en) Resistor circuit network for semiconductor integrated circuit
JPS626347B2 (en)
JP2901542B2 (en) Semiconductor integrated circuit
JPH02226760A (en) Semiconductor logic circuit
JPS63142845A (en) Detector for supply voltage
JPS63205946A (en) Semiconductor device
JPH028917A (en) Constant-voltage circuit
JPH07307443A (en) Semiconductor device
JPH0258369A (en) Semiconductor integrated circuit device
JPH04219019A (en) Semiconductor integrated circuit