JPS63142845A - Detector for supply voltage - Google Patents

Detector for supply voltage

Info

Publication number
JPS63142845A
JPS63142845A JP29086286A JP29086286A JPS63142845A JP S63142845 A JPS63142845 A JP S63142845A JP 29086286 A JP29086286 A JP 29086286A JP 29086286 A JP29086286 A JP 29086286A JP S63142845 A JPS63142845 A JP S63142845A
Authority
JP
Japan
Prior art keywords
contact
supply voltage
voltage
inverter
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29086286A
Other languages
Japanese (ja)
Inventor
Ryuichi Hashishita
橋下 隆一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29086286A priority Critical patent/JPS63142845A/en
Publication of JPS63142845A publication Critical patent/JPS63142845A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

PURPOSE:To limit the dispersion of detecting voltage to a small value by constituting a supply voltage detector of a reference-voltage generating circuit, in which a resistance element and a junction diode are connected in series between a first power terminal and a second power terminal, and a sense amplifier using an intermediate contact for the reference-voltage generating circuit as an input. CONSTITUTION:A reference-voltage generating circuit is constituted of a resistor R connected between a supply voltage terminal VDD as a first power terminal and a contact 1 and a P-N junction diode D, the contact 1 side of which is connected to an anode consisting of a P-type diffusion layer and the ground terminal side of which to a cathode composed of an N-well, between the contact 1 and a ground terminal as a second power terminal, and an inverter (a sense amplifier) using the input terminals of a PMOS transistor and NMOS transistor M1 and M2 as the contact 1 and output terminals thereof as a contact 2 is organized. When the supply voltage VDD of the inverter receiving an output from the contact 1 and being constructed of M1 and M2 lowers and logic threshold voltage reaches V1, an output from the inverter is inverted. VDD at that time is not affected by the circuit parameter of the reference-voltage generating circuit, and is affected only by the variation of the logic threshold of the inverter.

Description

【発明の詳細な説明】 し産業上の利用分野〕 本発明は電源電圧検出回路に関し、特に半導体集積回路
の電源電圧検出回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a power supply voltage detection circuit, and particularly to a power supply voltage detection circuit for a semiconductor integrated circuit.

〔従来の技術〕[Conventional technology]

半導体集積回路の低消費電力化の為、チップが休止状態
の時電源電圧を下げるという方法がとられることがある
。ただし、この時チップ内部では通常の処理ができなく
なる為、チップが休止状態に入ったという信号を出さな
ければならない。
In order to reduce the power consumption of semiconductor integrated circuits, a method is sometimes taken in which the power supply voltage is lowered when the chip is in a dormant state. However, at this time, normal processing cannot be performed inside the chip, so a signal must be issued to indicate that the chip has entered a hibernation state.

そこで電源電圧がある電圧V、以下に下がると“H” 
(又は“L”)が、■1以上に上がると“L” (又は
“H”)が出力される電源電圧検出回路が必要となる。
Therefore, when the power supply voltage drops below a certain voltage V, it becomes “H”
A power supply voltage detection circuit is required that outputs "L" (or "H") when (or "L") rises above 1.

従来の電源電圧検出回路は第8図に示す様に直列に接続
された抵抗R1およびnMO3)ランジスタM3より成
る基準電圧発生回路、およびpMOSトランジスタM4
およびnMOSトランジスタM5より成るインバータか
ら構成されていた。
As shown in FIG. 8, a conventional power supply voltage detection circuit includes a reference voltage generation circuit consisting of a resistor R1 and an nMOS transistor M3 connected in series, and a pMOS transistor M4.
and an inverter consisting of an nMOS transistor M5.

以下に従来技術による電源電圧検出回路の動作を説明す
るが、まず第9図にI−V特性図を参照して基準電圧発
生回路について説明する。トランジスタM3のI−V特
性はI=fts(V)で示した曲線、抵抗R1のI−V
特性は電源電圧をVDDとしてI = (Voo−V)
 /R1で示した直線になり、両者の交点が動作点であ
る。すなわちこの点の電位が接点6の電位■6を表わす
。電源電圧がM3のしきい電圧VTNより低い時、つま
りVl−ID≦VTNの場合はM3は遮断しており基準
電圧発生回路には電流は流れず、従ってV 6−V D
Dである。
The operation of the power supply voltage detection circuit according to the prior art will be explained below, but first the reference voltage generation circuit will be explained with reference to the IV characteristic diagram shown in FIG. The IV characteristic of transistor M3 is the curve shown by I=fts (V), and the IV characteristic of resistor R1 is
The characteristics are I = (Voo-V) when the power supply voltage is VDD
/R1, and the intersection of the two is the operating point. That is, the potential at this point represents the potential 6 of the contact point 6. When the power supply voltage is lower than the threshold voltage VTN of M3, that is, when Vl-ID≦VTN, M3 is cut off and no current flows through the reference voltage generation circuit, so V 6-V D
It is D.

VDD>VTNとなるとM3は導通し始め、R1による
電圧降下の為■6はVDDより低くなり始める。
When VDD>VTN, M3 begins to conduct, and 6 begins to become lower than VDD due to the voltage drop due to R1.

V oo> > V TNでは動作点付近のf+++5
(V)の変化率が大きい為、V6はVDDを増加させて
もほとんど増加しない。この様子を第10図に示す。
V oo>>V In TN, f+++5 near the operating point
Since the rate of change of (V) is large, V6 hardly increases even if VDD increases. This situation is shown in FIG.

次に、次段のインバータの出カフの挙動を説明する。V
DDが十分高い時は■6の電位はM4およびM5で構成
されるインバータの論理しきい値より十分低い為接点7
は“H”すなわちVDDの電位が出力されている。vD
Dが下がっていき、V6−V on > V TP (
V tpはpMO3)ランジスタM4のしきい電圧)の
条件を満たす様になるとM4は遮断され、接点7の電位
■7はnMO3f〜MOSトランジスタM5電位におと
される。再び電源電圧が上昇し、V6−Voo<Vア、
となるとM4は導通し始め、M4の電流駆動能力がM5
のそれを上まわると出カフは反転し“H”が出力される
。以上の様子を横軸に時間をとって表わしたのが第11
図である。
Next, the behavior of the output cuff of the next stage inverter will be explained. V
When DD is sufficiently high, the potential of ■6 is sufficiently lower than the logic threshold of the inverter composed of M4 and M5, so contact 7
is output at "H", that is, the potential of VDD. vD
D goes down and V6-V on > V TP (
When V tp satisfies the condition of pMO3) (threshold voltage of transistor M4), M4 is cut off and the potential 7 of contact 7 is set to the potential of nMO3f to MOS transistor M5. The power supply voltage rises again, and V6-Voo<Va,
Then, M4 starts to conduct, and the current driving ability of M4 becomes M5.
When it exceeds that, the output cuff is reversed and "H" is output. The above situation is expressed by time on the horizontal axis in the 11th
It is a diagram.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の電源電圧検出回路は、基準電圧発生回路
にMOSトランジスタを用いている為製造上のしきい電
圧のずれにより検出電圧が左右されるという欠点がある
The above-described conventional power supply voltage detection circuit uses a MOS transistor in the reference voltage generation circuit, and therefore has the disadvantage that the detection voltage is affected by the deviation of the threshold voltage during manufacturing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電源電圧検出回路は、第1の電源端子と第2の
電源端子の間に抵抗素子と接合ダイオードを直列接続し
た基準電圧発生回路及び前記基準電圧発生回路の中間接
点を入力とするセンス増幅器から構成される。
The power supply voltage detection circuit of the present invention includes a reference voltage generation circuit in which a resistive element and a junction diode are connected in series between a first power supply terminal and a second power supply terminal, and a sense circuit whose input is an intermediate junction of the reference voltage generation circuit. Consists of an amplifier.

r実施例〕 次に、本発明の実施例について図面を参照して説明する
Embodiment] Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例を示す回路図である。FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

Rは第1の電源端子である電源電圧端子VpDと接点1
の間に接続した抵抗、Dは接点1と第2の電源端子であ
る接地端子の間に、接点1側をn型拡散層からなる陽極
に、接地端子側をnウェルからなる陰極に接続したp−
n接合ダイオードでRとDで基準電圧発生回路を構成し
、MlはpMOSトランジスタ、M2はnMOsMOS
トランジスタとM2は入力端子を接点1.出力端子を接
点2とするインバータ(センス増幅器)を構成する。第
2図はRとDのI−V特性図を示す。I=fo(V)で
示す曲線がDの特性、  I = (VDD−V ) 
、/ Rで示す直線がRの特性であり、交点が動作点を
示す。このときp−n接合ダイオードDの順方向降伏電
圧が製造上の条件に左右されずシリコンを材料とする場
合的0,6Vで一定であり、かつ電流の立ち上がりが急
(dro  (V)/clvが大)であるので接点1の
電位V1はほぼ一定に保たれる。接点1の出力を受ける
MlとM2がら構成されるインバータは、電源電圧VD
Dが下がり、論理しきい電圧が■1に達すると出力を反
転させる。この時のVDDを第3図に示す様にVthと
定義すると■。は基準電圧発生回路の回路パラメータに
は左右されず、インバータの論理しきい値の変動のみに
左右される。
R is the power supply voltage terminal VpD which is the first power supply terminal and contact 1
A resistor, D, is connected between contact 1 and the ground terminal, which is the second power supply terminal, with the contact 1 side connected to the anode made of the n-type diffusion layer, and the ground terminal side connected to the cathode made of the n-well. p-
R and D constitute a reference voltage generation circuit using an n-junction diode, Ml is a pMOS transistor, and M2 is an nMOSMOS.
The transistor and M2 have their input terminals connected to contacts 1. An inverter (sense amplifier) is configured with the output terminal as contact 2. FIG. 2 shows an IV characteristic diagram of R and D. The curve shown by I=fo(V) is the characteristic of D, I=(VDD-V)
, /R is the characteristic of R, and the intersection point indicates the operating point. At this time, the forward breakdown voltage of the p-n junction diode D is not affected by manufacturing conditions and is constant at 0.6 V when silicon is used as the material, and the current rises rapidly (dro (V)/clv is large), so the potential V1 of contact 1 is kept almost constant. The inverter composed of M1 and M2 receiving the output of contact 1 receives the power supply voltage VD.
When D decreases and the logic threshold voltage reaches ■1, the output is inverted. If VDD at this time is defined as Vth as shown in FIG. 3, then ■. does not depend on the circuit parameters of the reference voltage generation circuit, but only on the variation of the logic threshold of the inverter.

この回路をシリコンからなるp型半導体基板上に実現す
る場きのLSIマスクのパターン配置図の例を第4図に
示す。101がn型拡散層パターン、102がn型拡散
層パターン、103がnウェル領域パターン、104が
多結晶シリコン層パターン、105がアルミニウム配線
層パターン、106がコンタクト領域パターンである。
FIG. 4 shows an example of a pattern layout diagram of an LSI mask when this circuit is realized on a p-type semiconductor substrate made of silicon. 101 is an n-type diffusion layer pattern, 102 is an n-type diffusion layer pattern, 103 is an n-well region pattern, 104 is a polycrystalline silicon layer pattern, 105 is an aluminum wiring layer pattern, and 106 is a contact region pattern.

第5図は第1図の回路を半導体基板に集積化した場合の
半導体チップの断面図であり、第4図のA−A′線に対
応するウェーハ部の断面図を表わしている。10はシリ
コンからなるp型半導体基板、11はnウェル領域、1
2はn型拡散層、13はn型拡散層、14はシリコン酸
化膜、15はポリシリコン、16は層間絶縁膜、17は
アルミニウム配線層、18はパッシベーション膜である
FIG. 5 is a cross-sectional view of a semiconductor chip in which the circuit of FIG. 1 is integrated on a semiconductor substrate, and shows a cross-sectional view of a wafer portion corresponding to the line AA' in FIG. 10 is a p-type semiconductor substrate made of silicon, 11 is an n-well region, 1
2 is an n-type diffusion layer, 13 is an n-type diffusion layer, 14 is a silicon oxide film, 15 is polysilicon, 16 is an interlayer insulating film, 17 is an aluminum wiring layer, and 18 is a passivation film.

n型拡散層12−1で抵抗Rを構成し、n型拡散層13
とnウェル領域11間のp−n接合でp−〇接合ダイオ
ードDを構成した例であり、I)MOSトランジスタは
この断面図に示していないnウェル領域に形成されてい
る。これらのnウェル領域は同一の工程で形成され、n
型拡散層12゜12−1も同一の工程で形成され、n型
拡散層13はpMO9)ランジスタのソース領域、ドレ
イン領域と同一の工程で形成される。
The n-type diffusion layer 12-1 constitutes a resistor R, and the n-type diffusion layer 13
This is an example in which a p--junction diode D is formed by a p-n junction between the p-n junction and the n-well region 11, and I) a MOS transistor is formed in the n-well region not shown in this cross-sectional view. These n-well regions are formed in the same process, and
The type diffusion layer 12.degree. 12-1 is also formed in the same process, and the n-type diffusion layer 13 is formed in the same process as the source region and drain region of the pMO9) transistor.

第6図は本発明の第2の実施例を示す回路図である。FIG. 6 is a circuit diagram showing a second embodiment of the present invention.

R2は電源VDDと接点3の間に接続した抵抗、DIお
よびD2は接点3と接地端子の間に直列に接続し、接点
3から接点5、接点5がら接地端子の各々の方向を順方
向としたp−n接合ダイオード、M6は9MO3)ラン
ジスタ、MlはnM。
R2 is a resistor connected between the power supply VDD and contact 3, DI and D2 are connected in series between contact 3 and the ground terminal, and the directions from contact 3 to contact 5 and from contact 5 to the ground terminal are the forward direction. p-n junction diode, M6 is 9MO3) transistor, Ml is nM.

SトランジスタでM6とMlは入力端子を接点3、出力
端子を接点4とするインバータからなるセンス増幅器を
構成する。
The S transistors M6 and M1 constitute a sense amplifier consisting of an inverter whose input terminal is a contact 3 and whose output terminal is a contact 4.

第7図に電源電圧■DDを変化させた時の各接点の電位
のふるまいを示す。接点3の電位V3はDl、D2の2
つのダイオードによってクランプされているのでダイオ
ード2段分の電位的1.2 Vとなり、Vthはダイオ
ード1段の場合より高く設定できる。つまり、ダイオー
ドの段数を加減することにより、低電圧検出電圧を調整
できる。その他は第1の実施例と同様であるので改めて
詳細説明はしない。なお、第1.第2の実施例とも抵抗
をデプレション型トランジスタで代用することができる
FIG. 7 shows the behavior of the potential of each contact when the power supply voltage DD is changed. The potential V3 of contact 3 is 2 of Dl and D2.
Since it is clamped by two diodes, the potential is 1.2 V for two stages of diodes, and Vth can be set higher than when using one stage of diodes. That is, by adjusting the number of stages of diodes, the low voltage detection voltage can be adjusted. The rest is the same as the first embodiment, so detailed explanation will not be given again. In addition, 1. In the second embodiment as well, the resistor can be replaced with a depletion type transistor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、基準電圧発生回路の電位
クランプに接合ダイオードの順方向特性を用いることに
より検出電圧のばらつきを小さくおさえることができる
効果がある。
As described above, the present invention has the effect of suppressing variations in detected voltage by using the forward characteristics of a junction diode for potential clamping of a reference voltage generating circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の回路図、第2図は第1
図の抵抗RとダイオードDのI−V特性図、第3図は第
1図の回路の電源電圧■。Dを変化させたときの各接点
の電圧の振舞いを示す特性図、第4図は第1図の回路を
半導体基板上に実現する場合のLSIマスクのパターン
配置図、第5図は第1図の回路を半導体基板に集積化し
た場合の半導体チ・ツブの断面図、第6図は本発明の第
2の実施例の回路図、第7図は第6図の回路の電源電圧
VOOを変化させたときの各接点の電圧の振舞いを示す
特性図、第8図は従来例の回路図、第9図は第8図の抵
抗R1とM3のI−V特性図、第10図は接点6の電圧
■6のVol)依存性を示す特性図、第11図は第8図
の回路の電源電圧VDDを変化させたときの各接点の電
圧の振舞いを示す特性図である。 1〜7・・・接点、10・・・p型半導体基板、11・
・・nウェル領域、12.12−1・・・n型拡散層、
13・・・n型拡散層、14・・・シリコン酸化膜、1
5・・・多結晶シリコン膜、16・・・層間絶縁膜、1
7・・・アルミニウム配線層、18・・・パッシベーシ
ョン膜、101・・・n型拡散層パターン、102・・
・n型拡散層パターン、103・・・nウェル領域パタ
ーン、104・・・多結晶シリコン層パターン、105
・・・アルミニウム配線層パターン、106・・・コン
タクト領域パターン、D、Di、D2・・・接合ダイオ
ード、Ml・・・nMOSトランジスタ、M2.M3・
・・nMO8)ランジスタ、M4・・・9MO3)ラン
ジスタ、M5・・・nMOSトランジスタ、M6・・・
PMOSトランジスタ、Ml・・・nMOSトランジス
タ、R,R1,R2・・・抵抗。 \−一 躬Z区 第7図 鴻10図
FIG. 1 is a circuit diagram of a first embodiment of the present invention, and FIG. 2 is a circuit diagram of a first embodiment of the present invention.
The IV characteristic diagram of the resistor R and diode D shown in the figure, and Figure 3 is the power supply voltage ■ of the circuit of Figure 1. A characteristic diagram showing the behavior of the voltage at each contact when D is changed, Figure 4 is a pattern layout diagram of an LSI mask when the circuit in Figure 1 is realized on a semiconductor substrate, and Figure 5 is a diagram of the pattern in Figure 1. FIG. 6 is a circuit diagram of the second embodiment of the present invention, and FIG. 7 is a cross-sectional view of a semiconductor chip when the circuit of FIG. 6 is integrated on a semiconductor substrate. FIG. Figure 8 is a circuit diagram of the conventional example, Figure 9 is an IV characteristic diagram of resistors R1 and M3 in Figure 8, and Figure 10 is a characteristic diagram showing the behavior of voltage at each contact when FIG. 11 is a characteristic diagram showing the behavior of the voltage at each contact when the power supply voltage VDD of the circuit of FIG. 8 is changed. 1-7... Contact, 10... P-type semiconductor substrate, 11.
...n-well region, 12.12-1...n-type diffusion layer,
13...n-type diffusion layer, 14...silicon oxide film, 1
5... Polycrystalline silicon film, 16... Interlayer insulating film, 1
7... Aluminum wiring layer, 18... Passivation film, 101... N-type diffusion layer pattern, 102...
・N-type diffusion layer pattern, 103... N well region pattern, 104... Polycrystalline silicon layer pattern, 105
... Aluminum wiring layer pattern, 106 ... Contact region pattern, D, Di, D2 ... Junction diode, Ml ... nMOS transistor, M2. M3・
...nMO8) transistor, M4...9MO3) transistor, M5...nMOS transistor, M6...
PMOS transistor, Ml...nMOS transistor, R, R1, R2...resistance. \-Ichiman Z Ward No. 7 Kou No. 10

Claims (1)

【特許請求の範囲】[Claims] 第1の電源端子と第2の電源端子の間に抵抗素子と接合
ダイオードを直列接続した基準電圧発生回路及び前記基
準電圧発生回路の抵抗素子と接合ダイオードの接点を入
力とするセンス増幅器からなることを特徴とする電源電
圧検出回路。
Consisting of a reference voltage generation circuit in which a resistance element and a junction diode are connected in series between a first power supply terminal and a second power supply terminal, and a sense amplifier whose input is a contact point between the resistance element and the junction diode of the reference voltage generation circuit. A power supply voltage detection circuit featuring:
JP29086286A 1986-12-05 1986-12-05 Detector for supply voltage Pending JPS63142845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29086286A JPS63142845A (en) 1986-12-05 1986-12-05 Detector for supply voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29086286A JPS63142845A (en) 1986-12-05 1986-12-05 Detector for supply voltage

Publications (1)

Publication Number Publication Date
JPS63142845A true JPS63142845A (en) 1988-06-15

Family

ID=17761454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29086286A Pending JPS63142845A (en) 1986-12-05 1986-12-05 Detector for supply voltage

Country Status (1)

Country Link
JP (1) JPS63142845A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126666A (en) * 1988-11-07 1990-05-15 Sanyo Electric Co Ltd Generation circuit of substrate bias voltage
JP2010103503A (en) * 2008-09-29 2010-05-06 Semiconductor Energy Lab Co Ltd Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826275A (en) * 1981-08-10 1983-02-16 Matsushita Electric Ind Co Ltd Power-supply voltage detecting circuit
JPS59158122A (en) * 1983-02-26 1984-09-07 Ricoh Co Ltd Power-on resetting circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826275A (en) * 1981-08-10 1983-02-16 Matsushita Electric Ind Co Ltd Power-supply voltage detecting circuit
JPS59158122A (en) * 1983-02-26 1984-09-07 Ricoh Co Ltd Power-on resetting circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126666A (en) * 1988-11-07 1990-05-15 Sanyo Electric Co Ltd Generation circuit of substrate bias voltage
JP2010103503A (en) * 2008-09-29 2010-05-06 Semiconductor Energy Lab Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JP3319406B2 (en) Comparison amplification detection circuit
JPH0774550A (en) Overheat detection circuit
JP2724872B2 (en) Input circuit for semiconductor integrated circuit
US4622476A (en) Temperature compensated active resistor
US20110148471A1 (en) Temperature-Independent Undervoltage Detector and Related Method
US7485931B2 (en) Semiconductor integrated circuit
US5150188A (en) Reference voltage generating circuit device
JPH1032260A (en) Input protecting circuit
JP3132587B2 (en) Power device overheat detection circuit
JP2560018B2 (en) CMOS circuit
JPS63142845A (en) Detector for supply voltage
TWI736408B (en) Undervoltage detection circuit
JPH06347337A (en) Temperature detecting circuit
JP3152340B2 (en) Analog switch circuit
JP2012251917A (en) Temperature detection circuit
JPH04247653A (en) Delay compensation apparatus of semiconductor integrated circuit device
JP2000146709A (en) Device and method for temperature detection
JPH06152376A (en) Semiconductor integrated circuit device
JPH07235608A (en) Semiconductor integrated circuit device
JP3657193B2 (en) Temperature detection circuit
JPH03217915A (en) Semiconductor integrated circuit device
JP2819950B2 (en) Output circuit
US20020153568A1 (en) Semiconductor device
JP2671304B2 (en) Logic circuit
JP3776586B2 (en) Thermal protection circuit