JPS588890B2 - Chitsusosan Kabutsurenzokushiyorihohou - Google Patents

Chitsusosan Kabutsurenzokushiyorihohou

Info

Publication number
JPS588890B2
JPS588890B2 JP50098318A JP9831875A JPS588890B2 JP S588890 B2 JPS588890 B2 JP S588890B2 JP 50098318 A JP50098318 A JP 50098318A JP 9831875 A JP9831875 A JP 9831875A JP S588890 B2 JPS588890 B2 JP S588890B2
Authority
JP
Japan
Prior art keywords
waste gas
catalyst
reaction
nitrogen
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50098318A
Other languages
Japanese (ja)
Other versions
JPS5221263A (en
Inventor
井田宏明
垣下智成
深津孝雄
的場浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP50098318A priority Critical patent/JPS588890B2/en
Publication of JPS5221263A publication Critical patent/JPS5221263A/en
Publication of JPS588890B2 publication Critical patent/JPS588890B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、煙道ガスのごとき廃ガスから窒素酸化物を連
続的に除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously removing nitrogen oxides from waste gases such as flue gases.

窒素酸化物には一酸化窒素(NO)、二酸化窒素( N
O 2 )、三酸化二窒素( N2 0a )、一酸化
二窒素(N20)、五酸化二窒素(N203)などさま
ざまな化合物があるが、人間の身体への影響で重要なも
のは、一酸化窒素と二酸化窒素で、その他のものは量的
にも少なく、大気汚染上は無視できる。
Nitrogen oxides include nitric oxide (NO) and nitrogen dioxide (N
There are various compounds such as dinitrogen trioxide (N20a), dinitrogen monoxide (N20), and dinitrogen pentoxide (N203), but the most important one due to its effect on the human body is monoxide. Nitrogen and nitrogen dioxide; other substances are small in quantity and can be ignored in terms of air pollution.

一般には一酸化窒素と二酸化窒素を合わせたものを窒素
酸化物(NOx)と呼んでいる。
Generally, the combination of nitrogen monoxide and nitrogen dioxide is called nitrogen oxide (NOx).

窒素酸化物は微少量でも人体に対し生理学的に有害であ
るたけでなく、人体のみならず農作物にも損害を与える
光化学スモッグの引き金的役割を果し、きわめて少量存
在するたけでも有害であることが最近になって明らかに
された。
Nitrogen oxides are not only physiologically harmful to the human body even in minute amounts, but they also play the role of triggering photochemical smog that damages not only the human body but also agricultural crops, and even in extremely small amounts they are harmful. was recently revealed.

一酸化窒素は大気中において容易に二酸化窒素に変わる
が、この二酸化窒素は太陽光によって一酸化窒素と原子
状酸素に分解し、この原子状酸素が大気中の酸素分子を
オゾンに、大気汚染物質のひとつである炭化水素をアル
デヒドにそれぞれ転化し、光化学スモッグの第一段の原
因が作られるといわれている。
Nitric oxide easily converts into nitrogen dioxide in the atmosphere, but this nitrogen dioxide is decomposed into nitrogen monoxide and atomic oxygen by sunlight, and this atomic oxygen converts oxygen molecules in the atmosphere into ozone, an air pollutant. It is said that the first stage of photochemical smog is caused by converting hydrocarbons, which are one of the two, into aldehydes.

窒素酸化物を含む廃ガスにアンモニアガスヲ吹き込みな
がら、窒素酸化物を150℃ないし400℃の高温にて
炭素触媒を用いて接触還元し、窒素酸化物を除去する方
法は公知である。
A known method is to remove nitrogen oxides by catalytically reducing the nitrogen oxides using a carbon catalyst at a high temperature of 150° C. to 400° C. while blowing ammonia gas into the waste gas containing nitrogen oxides.

かかる方法は、廃ガス中に硫黄酸化物がない系において
は、炭素触媒は実質的に永久に窒素酸化物の還元触媒と
して使用できる。
In such a method, in a system where there are no sulfur oxides in the exhaust gas, the carbon catalyst can be used as a nitrogen oxide reduction catalyst substantially permanently.

しかし、廃ガス中に硫黄酸化物が共存する系においては
、特に350℃以下の温度では硫黄酸化物とアンモニア
の反応がおこり、生成物が触媒上に経時的に付着するた
め、窒素酸化物処理効率(以下脱硝率という)が、一定
時間経過後低下し、それとともに触媒層の圧損が大きく
なり、ガス風量が小さくなり、著しい場合、装置運転が
困難となるなどの事態が生じる。
However, in systems where sulfur oxides coexist in the exhaust gas, reactions between sulfur oxides and ammonia occur, especially at temperatures below 350°C, and the products adhere to the catalyst over time. The efficiency (hereinafter referred to as denitrification rate) decreases after a certain period of time, and along with this, the pressure loss of the catalyst layer increases, the gas flow rate decreases, and in severe cases, it becomes difficult to operate the device.

(脱硝率の低下するまでp時間は、廃ガス中の硫黄酸化
物濃度や処理温度により異なるが、一例を示すと窒素酸
化物200ppm,硫黄酸化物5 0 0 ppm,処
理温度230℃では約80時間程度である。
(The p time until the denitrification rate decreases varies depending on the concentration of sulfur oxides in the waste gas and the treatment temperature, but as an example, at 200 ppm of nitrogen oxides, 500 ppm of sulfur oxides, and a treatment temperature of 230°C, it takes about 80 It takes about an hour.

)これらの欠点を克服するため、一般には反応を350
℃程度以上の高温で実施するかまたは、二酸化硫黄(S
O2)をあらかじめ三酸化硫黄(SO)に酸化させた後
、アンモニアと反応させ、硫安として捕集した後、窒奏
酸化物のみを処理することを実施してきた。
) To overcome these drawbacks, reactions are generally reduced to 350
It is carried out at a high temperature of about ℃ or higher, or sulfur dioxide (S
It has been practiced to previously oxidize O2) to sulfur trioxide (SO), react it with ammonia, collect it as ammonium sulfate, and then treat only the nitride oxide.

しかし、前者においては廃ガスを加熱するためのエネル
ギーは無駄になり、後者の場合は反応が複雑となる。
However, in the former case, energy for heating the waste gas is wasted, and in the latter case, the reaction becomes complicated.

そこで上記の改良法として、300℃以下の低温でこれ
らの硫黄化合物が付着した場合は、触媒の硫黄酸化物に
よるいわゆる「永久被毒」ではないので、炭素触媒は窒
素酸化物処理反応より切り離した後、水洗するかあるい
は酸素を含まない高温(通常300℃以上)の不活性ガ
スに接触させることによって再生するかした後、再度反
応に供する方法がしばしばとられてきた。
Therefore, as an improvement method for the above, when these sulfur compounds adhere at low temperatures below 300°C, the carbon catalyst is separated from the nitrogen oxide treatment reaction because the catalyst is not permanently poisoned by sulfur oxides. Thereafter, methods have often been used to regenerate the material by washing it with water or contacting it with a high temperature (usually 300° C. or higher) inert gas that does not contain oxygen, and then subjecting it to the reaction again.

しかし、このような方法では、一時的に窒素酸化物の還
元処理を中断させる結果となるかまたは連続化させるた
めには同様な別の処理装置を具備させるよまたは硫黄化
合物の付着した炭素触媒を連続して取り出すかする必要
が生じる。
However, with this method, the nitrogen oxide reduction treatment may be temporarily interrupted, or in order to make it continuous, it is necessary to equip another similar treatment device or use a carbon catalyst with sulfur compounds attached. It becomes necessary to take them out continuously.

しかも付着した炭素触媒を再生させる装置もあわせて必
要となる。
Furthermore, a device for regenerating the attached carbon catalyst is also required.

硫黄化合物の付着した炭素触媒を水洗によって再生する
場合は、多量の水を必要とし、これらの化合物による装
置の腐食ももたらすため200℃以上の耐熱性をもつ耐
腐食性の装置が必要となる,再生後再び処理反応に供す
るためには、乾燥のために多犬の熱量が必要となる欠点
がある。
When a carbon catalyst with sulfur compounds attached is regenerated by washing with water, a large amount of water is required, and these compounds cause corrosion of the equipment, so corrosion-resistant equipment that can withstand temperatures of 200°C or higher is required. There is a drawback that a large amount of heat is required for drying in order to subject the material to a treatment reaction again after regeneration.

酸素を含まない高温の不活性ガスによって炭素触媒を再
生する方法も考察されているが、しかしこの場合も不活
性ガスの発生装置を付属させなければならない。
A method of regenerating the carbon catalyst with a high-temperature inert gas that does not contain oxygen has also been considered, but in this case as well, an inert gas generator must be attached.

加えて不活性ガス中の酸素をなくすためかなりの努力が
払わなければならない。
In addition, considerable efforts must be made to eliminate oxygen in the inert gas.

本発明者らは、炭素触媒の再生をかかる水や不活性ガス
を使用することなく、また特別な再生装置を付属させる
ことなく行なえる、窒素酸化物の比較的低温で行なえる
連続処理方法を検討した結果、本発明に到達したもので
ある。
The present inventors have developed a continuous treatment method for nitrogen oxides that can be carried out at relatively low temperatures and that can regenerate carbon catalysts without using such water or inert gas or attaching special regeneration equipment. As a result of this study, we have arrived at the present invention.

すなわち、本発明は接触還元触媒を使用し、温度350
℃以下で硫黄酸化物の共存する窒素酸化物含有の廃ガス
を処理する際、触媒層の中間にアンモニアを導入し、触
媒層前半部は該廃ガスのみ通過させ、談廃ガスによって
触媒の再生を行ない次いで該廃ガスが後半部に流れる前
にアンモニアを混入し、触媒層後半部にて該廃ガス中の
窒素酸化物の接触還元処理を行ない、触媒層後半部の触
媒能が低下したときに該廃ガスの流れを逆転させること
を特徴とする窒素酸化物連続処理方法である。
That is, the present invention uses a catalytic reduction catalyst, and the temperature is 350°C.
When treating nitrogen oxide-containing waste gas that coexists with sulfur oxides at temperatures below ℃, ammonia is introduced into the middle of the catalyst layer, and only the waste gas is allowed to pass through the first half of the catalyst layer, allowing the catalyst to be regenerated by the waste gas. Then, before the waste gas flows to the latter half, ammonia is mixed in, and the nitrogen oxides in the waste gas are subjected to catalytic reduction treatment in the latter half of the catalyst layer, and when the catalytic ability of the latter half of the catalyst layer decreases. This is a continuous nitrogen oxide treatment method characterized by reversing the flow of the waste gas.

反応搭として一搭を用い、触媒の再生と窒素酸化物の還
元反応を一搭中で同時に連続して行なうには、次のよう
に行なえばよい。
In order to use one reactor tower and perform the catalyst regeneration and the nitrogen oxide reduction reaction simultaneously and continuously in the same reactor, the following procedure may be performed.

すなわち、触媒層前半部は、処理しようとする廃ガスの
み通過させ、反応温度まで高められた廃ガスによって触
媒上に付着した物質を除去しつつ、触媒の再生を行ない
、次いで後半部に流れる前にアンモニアを混入し、触媒
層後半部にて窒素酸化物を接触還元によって処理し、安
全な窒素と水に分解させる。
In other words, only the waste gas to be treated passes through the first half of the catalyst layer, and the waste gas heated to the reaction temperature removes substances adhering to the catalyst and regenerates the catalyst. Ammonia is mixed into the reactor, and nitrogen oxides are treated by catalytic reduction in the latter half of the catalyst layer, decomposing them into safe nitrogen and water.

しかる後搭後半部における脱硝率が低下してきた時点に
おいて廃ガスの流れを切り換え逆転させ、切り換え前の
後半部は前半部として触媒の再生を行ない、前半部は後
半部として脱硝に使用し、これを連続させればよい。
After that, when the denitrification rate in the rear half of the column begins to decrease, the flow of waste gas is switched and reversed, and the latter half before switching is used as the first half to regenerate the catalyst, and the first half is used as the second half for denitration. All you have to do is make them consecutive.

また、反応搭としてA,B2搭を用い、A,B2搭の触
媒充填搭(すなわち反応搭)間にアンモニア吹き込み口
を具備させた場合は、反応搭A,Bを直列になるように
配置させ、反応搭Aの部分が触媒層前半、Bの部分を触
媒層後半として前記のように行なえばよい。
In addition, when two reactors A and B are used and an ammonia inlet is provided between the two catalyst-filled towers (i.e. reaction towers), the reactors A and B may be arranged in series. , the reaction column A may be the first half of the catalyst layer, and the section B may be the second half of the catalyst layer, as described above.

この場合、廃ガスが多量であるなら、A,B2搭のほか
にA/ , B/の2搭をまた別に具備させ、A,B2
搭に対して並列的に配置させ、廃ガスの流れの逆転させ
る時期をずらしてもよい。
In this case, if there is a large amount of waste gas, in addition to A and B2 towers, two towers, A/ and B/, should be provided separately, and A and B2 towers would be installed.
They may be arranged in parallel to the tower and the timing of the reversal of the waste gas flow may be staggered.

本発明の方法によって処理される廃ガスは、石炭のごと
き硫黄含有固体燃料または重油のごとき硫黄含有液体燃
料をバーナーにおいて空気とともに燃焼させることによ
って発生し、このようにして発生した煙道ガス(廃ガス
)は過剰空気の使用による酸素、0.5〜10容量%、
微量の三酸化硫黄(SO3)、0.3容量%程度までの
二酸化硫黄(SO2)100〜1500ppmの窒素酸
化物(NOX)を通常含有している。
The waste gas treated by the method of the invention is generated by burning a sulfur-containing solid fuel such as coal or a sulfur-containing liquid fuel such as heavy oil with air in a burner, and the flue gas (waste gas) thus generated is gas) is oxygen by using excess air, 0.5-10% by volume,
It usually contains trace amounts of sulfur trioxide (SO3), up to about 0.3% by volume of sulfur dioxide (SO2), and 100-1500 ppm of nitrogen oxides (NOX).

煙道ガスのほか、ガラス熔融炉からの廃ガス、焼結炉か
らの廃ガスなどにも本発明は適用できる。
In addition to flue gas, the present invention can also be applied to waste gas from glass melting furnaces, waste gas from sintering furnaces, and the like.

本発明に使用しうる触媒は、窒素酸化物をアンモニアの
存在下で、選択的接触還元処理できる触媒なら、炭素質
、アルミナ、シリカ、ケイソウ土のいずれをベースにし
た触媒でもよく、特に制限はない。
The catalyst that can be used in the present invention may be any catalyst based on carbonaceous material, alumina, silica, or diatomaceous earth as long as it can selectively catalytically reduce nitrogen oxides in the presence of ammonia, and there are no particular restrictions. do not have.

本発明を適用することによって窒素酸化物(NOx)は
、連続的に約90%除去できる。
By applying the present invention, about 90% of nitrogen oxides (NOx) can be continuously removed.

本発明に用いる触媒の再生を窒素酸化物とアンモニアと
を反応させる温度状態の廃ガスで行なうことは、従来公
知のどの方法にもなかったことであり、まったく新しい
方式である。
Regenerating the catalyst used in the present invention using waste gas at a temperature that causes nitrogen oxides and ammonia to react is a completely new method, which has not been found in any conventionally known method.

以下に実施例によって本発明を詳細に説明するが、本発
明は、これら実施例に限定されるものではない。
EXAMPLES The present invention will be explained in detail below with reference to Examples, but the present invention is not limited to these Examples.

実施例 1 500mm角の断面の二つの触媒反応搭A,Bにおのお
の炭素質触媒6Mを充填させた。
Example 1 Two catalytic reaction towers A and B each having a cross section of 500 mm square were each filled with 6M of carbonaceous catalyst.

解媒層の高さはおのおの250mmであった。The height of each solution layer was 250 mm.

この反応搭にボイラー煙道廃ガスを導入して反応を行な
った。
A reaction was carried out by introducing boiler flue waste gas into this reaction column.

廃ガスは窒素酸化物(NOX)250ppm、硫黄酸化
物( SOX ) 5 0 0 ppm,酸素(02)
4%、水蒸気(H20)12%、炭酸ガス(C02)1
0%窒素(N2)残りの組成で温度は250℃、ガス量
は43Nm3/Hであった。
The waste gas contains 250 ppm of nitrogen oxides (NOX), 500 ppm of sulfur oxides (SOX), and oxygen (02).
4%, water vapor (H20) 12%, carbon dioxide gas (C02) 1
With the remaining composition being 0% nitrogen (N2), the temperature was 250°C and the gas amount was 43 Nm3/H.

反応開始は、反応搭A,Bの間に設けたアンモニア導入
口から、アンモニア5 0 0 ppmをB搭に添加さ
せることにより行ない、B搭において反応を実施した。
The reaction was started by adding 500 ppm of ammonia to the B column from the ammonia inlet provided between the reaction columns A and B, and the reaction was carried out in the B column.

反応の空間速度(SV)は710hSであった。The space velocity (SV) of the reaction was 710 hS.

処理後B搭出口の窒素酸化物(NOx)濃度は2 2
ppm,脱硝率は91%であった。
The nitrogen oxide (NOx) concentration at the B outlet after treatment is 2 2
ppm, and the denitrification rate was 91%.

反応開始90時間後、B搭触媒層の圧損が28mmAq
から8 7mmAqに、脱硝率87%と低下したので、
反応搭を新しく後半部として反応に供し、反応を行なっ
てきたB搭を前半部とし、廃ガスによってB搭中の触媒
の再生を実施した。
90 hours after the start of the reaction, the pressure drop in the B catalyst layer was 28 mmAq.
Since the denitrification rate decreased from 87 mmAq to 87%,
The reaction column was newly used as the second half for the reaction, and the B column, which had been undergoing the reaction, was used as the first half, and the catalyst in the B column was regenerated using the waste gas.

反応搭をB搭からA搭に切り換えた後の脱硝率は92%
であった。
After switching the reaction tower from B tower to A tower, the denitrification rate was 92%.
Met.

また切り換えた後72時間で87mmAqまで圧損の上
昇していたB搭は、347l1mAqまで回復した。
In addition, 72 hours after the changeover, the pressure drop in Tower B, which had increased to 87 mmAq, recovered to 347 l1mAq.

そして、切り換え直前のB搭中の触媒上には、触媒10
0mA当り硫黄分が二酸化硫黄(SO2)に換算して6
230mg相当量吸着していたが、再生後(72時間後
)は、100ml当り7 3 8mgになっていた。
Then, the catalyst 10 is placed on the catalyst in the B chamber immediately before switching.
Sulfur content per 0mA is 6 in terms of sulfur dioxide (SO2)
The amount equivalent to 230 mg was adsorbed, but after regeneration (72 hours), the amount was 738 mg per 100 ml.

一方、反応に供したA搭の圧損は28imAqから60
mmAqまで上昇していた。
On the other hand, the pressure drop in tower A used for the reaction was 28 imAq to 60 imAq.
It had risen to mmAq.

以後72時間ごとにガスの流れを切り換え、連続的に窒
素酸化物を処理したが、脱硝率は92%のままで一定で
あった。
Thereafter, the gas flow was switched every 72 hours to continuously treat nitrogen oxides, but the denitrification rate remained constant at 92%.

実施例 2 直径100mmの円搭状の触媒反応搭(A,B搭)おの
おのに、アルミナ担体に硫黄第一鉄(FeSO4)を担
持させた触媒1lを充填させた。
Example 2 Each of cylindrical catalytic reaction towers (A and B towers) with a diameter of 100 mm was filled with 1 liter of catalyst in which ferrous sulfur (FeSO4) was supported on an alumina carrier.

実施例1と同様の煙道廃ガスを導入し、温度270℃、
Sv2,0 0 0hr ’で反応を行なった。
The same flue gas as in Example 1 was introduced, and the temperature was 270°C.
The reaction was carried out at Sv2,000hr'.

反応開始は反応搭A,Bの間に設けたアンモニア導入口
からアンモニア5 0 0 ppmをB搭に添加させる
ことにより行ない、B搭において窒素酸化物の還元処理
を行なった。
The reaction was started by adding 500 ppm of ammonia to the B column from an ammonia inlet provided between the reaction columns A and B, and nitrogen oxides were reduced in the B column.

処理後B搭出口の窒素酸化物(NOx)の濃度は6 0
ppm,脱硝率は76%であった。
After treatment, the concentration of nitrogen oxides (NOx) at the outlet B is 60
ppm, and the denitrification rate was 76%.

反応開始後100時間後B搭触媒層の圧損が2mmAq
から9miAqまで上昇したので、ガスの流れを実施例
1と同様にして切り換え、反応搭をB搭からA搭に切り
換えた。
100 hours after the start of the reaction, the pressure drop in the B catalyst layer was 2 mmAq.
9 miAq, the gas flow was changed in the same manner as in Example 1, and the reaction tower was switched from B tower to A tower.

切り換えた後、60時間でB搭中の触媒はほぼ再生され
、圧損は3mmAqまで回復した。
After switching, the catalyst in column B was almost regenerated in 60 hours, and the pressure drop recovered to 3 mmAq.

以後60時間ごとにガスの流れを切り換えつつ連続的に
窒素酸化物を処理したが、支障なく運転できた。
Thereafter, nitrogen oxides were treated continuously while changing the gas flow every 60 hours, but the operation was successful without any problems.

Claims (1)

【特許請求の範囲】[Claims] 1 接触還元触媒を使用し、温度350℃以下で、硫黄
酸化物の共存する窒素酸化物含有の廃ガスを処理する際
、触媒層の中間にアンモニアを導入し触媒層前半部は該
廃ガスのみ通過させ、該廃ガスによって触媒の再生を行
ない、次いで該廃ガスが後半部に流れる前にアンモニア
を混入し、触媒層後半部にて該廃ガス中の窒素酸化物の
接触還元処理を行ない、触媒層後半部の触媒能が低下し
たときに該廃ガスの流れを逆転させることを特徴とする
窒素酸化物連続処理方法。
1 When using a catalytic reduction catalyst to treat nitrogen oxide-containing waste gas that coexists with sulfur oxides at a temperature of 350°C or lower, ammonia is introduced into the middle of the catalyst layer, and the first half of the catalyst layer is used only for the waste gas. The catalyst is regenerated by the waste gas, and then ammonia is mixed in before the waste gas flows to the latter half of the catalyst layer, and the nitrogen oxides in the waste gas are subjected to catalytic reduction treatment in the latter half of the catalyst layer. A continuous nitrogen oxide treatment method characterized by reversing the flow of the waste gas when the catalytic ability of the latter half of the catalyst layer decreases.
JP50098318A 1975-08-12 1975-08-12 Chitsusosan Kabutsurenzokushiyorihohou Expired JPS588890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50098318A JPS588890B2 (en) 1975-08-12 1975-08-12 Chitsusosan Kabutsurenzokushiyorihohou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50098318A JPS588890B2 (en) 1975-08-12 1975-08-12 Chitsusosan Kabutsurenzokushiyorihohou

Publications (2)

Publication Number Publication Date
JPS5221263A JPS5221263A (en) 1977-02-17
JPS588890B2 true JPS588890B2 (en) 1983-02-18

Family

ID=14216553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50098318A Expired JPS588890B2 (en) 1975-08-12 1975-08-12 Chitsusosan Kabutsurenzokushiyorihohou

Country Status (1)

Country Link
JP (1) JPS588890B2 (en)

Also Published As

Publication number Publication date
JPS5221263A (en) 1977-02-17

Similar Documents

Publication Publication Date Title
Knoblauch et al. Application of active coke in processes of SO2-and NOx-removal from flue gases
US7655204B2 (en) Heat-treated active carbons for use in denitration, processes for producing same, denitration method using same, and denitration system using same
AU693966B2 (en) Regeneration of catalyst/absorber
KR100235854B1 (en) Flue-gas treatment system
JPS6297630A (en) Method for removing nitrogen oxide from nitrogen oxide-containing gas
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
US6106791A (en) Exhaust gas treating systems
US6814948B1 (en) Exhaust gas treating systems
JPH0587291B2 (en)
JPS588890B2 (en) Chitsusosan Kabutsurenzokushiyorihohou
JPS61287423A (en) Treatment of exhaust gas
JPH0647282A (en) Catalyst for low temperature denitrification of flue gas, its production and method for low temperature denitrification of flue gas
CA2118120C (en) Process and apparatus for recovering sulphur from a gas stream containing hydrogen sulphide
JP2001113131A (en) Method for regenerating denitration catalyst
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JPS5913893B2 (en) Flue gas denitrification catalyst with low temperature activity
JP3381973B2 (en) Exhaust gas treatment method
JPH07256052A (en) Simultaneous desulfurization and denitration of exhaust gas
JPH0824579A (en) Treatment of low concentration nox containing gas
WO1995024258A1 (en) Method for removing nitrous oxide
JPS5817821A (en) Method for removing nox and sox from waste gas
JPH07185338A (en) Dry flue gas desulfurizing agent and denitration catalyst and production thereof
JPS61178040A (en) Activation treatment of denitration catalyst
KR20010017297A (en) A method for simultaneous removal of nitrogen oxides and dioxins from waste gases
JPS6113060Y2 (en)