JPS5888130A - Manufacture of fine glass particle - Google Patents

Manufacture of fine glass particle

Info

Publication number
JPS5888130A
JPS5888130A JP18533981A JP18533981A JPS5888130A JP S5888130 A JPS5888130 A JP S5888130A JP 18533981 A JP18533981 A JP 18533981A JP 18533981 A JP18533981 A JP 18533981A JP S5888130 A JPS5888130 A JP S5888130A
Authority
JP
Japan
Prior art keywords
particles
glass
halide
gas
doped silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18533981A
Other languages
Japanese (ja)
Inventor
Fumiaki Hanawa
文明 塙
Shoichi Sudo
昭一 須藤
Motohiro Nakahara
基博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18533981A priority Critical patent/JPS5888130A/en
Publication of JPS5888130A publication Critical patent/JPS5888130A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To manufacture transparent glass particles having large diameter, by synthesizing fine glass particles by the flame hydrolysis or thermal oxidation reaction of the vapor of glass-forming halide, and exposing the particles again to an atmosphere of the halide at high temperature. CONSTITUTION:A halide such as SiCl4, GeCl4, etc. is subjected to the flame hydrolysis or thermal oxidation reaction to obtain fine glass particles (hereinafter referred to as ''primary particles''), and the primary particles are exposed again to an atmosphere of a halide such as SiCl4, GeCl4 etc. at high temperature. The growth of the primary particle is accelerated, and glass fine particles having the optimum particle size for the production of high-quality doped silica glass free from residual bubbles can be obtained.

Description

【発明の詳細な説明】 本発明は大きな粒径を有するシリカガラス粒子の製造に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of silica glass particles having large particle sizes.

従来、光フアイバ用シリカガラス特にドープトシリカガ
ラスの製造方法においては、例えば四塩化ケイ素の蒸気
とドーパント例えば四塩化ゲルマニウムの蒸気のような
ガラス形成原料ガスを、火炎バーナ等によって火炎加水
分解又は熱酸化してガラス微粒子を生成していた。この
場合、ガラス微粒子は気相から同相への反応によって生
成されるため、その微粒子の太きさd1火炎加水分解(
1000〜1300 ℃)の場合で500〜2000A
1熱酸化(1ooo〜1300℃)の場合で100〜5
00Aと極めて小さかった。
Conventionally, in a method for producing silica glass for optical fibers, particularly doped silica glass, glass forming raw material gases such as silicon tetrachloride vapor and dopant such as germanium tetrachloride vapor are subjected to flame hydrolysis or heat using a flame burner or the like. It oxidized and produced glass particles. In this case, since the glass particles are generated by a reaction from the gas phase to the same phase, the particle size d1 is the flame hydrolysis (
500-2000A at 1000-1300℃)
100-5 in case of thermal oxidation (1ooo-1300℃)
It was extremely small at 00A.

一方、ガラス微粒子を火炎またはプラズマ炎中に供給し
て溶融し、気泡のない透明なドープトシリカガラスを高
速度で製造するための該微粒子の大きさは直径10〜1
50本m程度が最適であり、これ以下の粒径の場合には
ドープトシリカガラス中に気泡が残留することが、実験
的に明らかにされている。
On the other hand, in order to produce transparent doped silica glass without bubbles at high speed by supplying glass particles into a flame or plasma flame and melting them, the size of the particles is 10 to 1 in diameter.
It has been experimentally revealed that the optimum particle size is about 50 m, and that bubbles remain in the doped silica glass if the particle size is smaller than this.

従って、従来の方法で生成したガラス微粒子を、火炎ま
たはプラズマ炎に供給して溶融することによシ、残留気
泡のないドープトシリカガラスを製造することは非常に
困難であるという欠点があった。
Therefore, it is very difficult to produce doped silica glass without residual bubbles by supplying glass particles produced by conventional methods to a flame or plasma flame and melting them. .

さらにこのような従来法で得られる粒径の小さいガラス
微粒子から火炎ま九はプラズマ炎によってドープトシリ
カガラスを製造する場合、ガラス微粒子の堆積効率が悪
いという欠点があった。
Furthermore, when doped silica glass is produced using a plasma flame from glass fine particles having a small particle size obtained by such conventional methods, there is a drawback that the deposition efficiency of the glass fine particles is poor.

本発明は以上のような欠点を解決するためになされたも
のであり残留気泡を含塘ない面品質ドープトシリカガラ
スの製造に最適な直径金有するガラス微粒子の製造方法
を提供するものである。
The present invention has been made to solve the above-mentioned drawbacks, and provides a method for producing glass fine particles having a diameter that is optimal for producing surface-quality doped silica glass that does not contain residual air bubbles.

本発明につき概説すれば、本発明による第1のガラス微
粒子製造方法は、四塩化ケイ素、四塩化ゲルマニウム等
のハロゲン化物を火炎加水分解反応又は熱酸化反応させ
てガラス微粒子(以下、−次粒子と称す)を生成した後
、前記ガラス微粒子を再度高温度中で四塩化ケイ素、四
塩化ゲルマニウム等のハロゲン化物の雰囲気に曝すもの
である。
To summarize the present invention, the first method for producing glass particles according to the present invention involves subjecting a halide such as silicon tetrachloride or germanium tetrachloride to a flame hydrolysis reaction or a thermal oxidation reaction to produce glass particles (hereinafter referred to as secondary particles). After the glass particles are produced, the glass particles are again exposed to an atmosphere of a halide such as silicon tetrachloride or germanium tetrachloride at high temperature.

本発明による第2のガラス微粒子の製造方法は5iC4
、H! O,ルOと反応しSiへ −ドーパント固溶体
を形成しうるガス状添加物より成るドープトシリカガラ
ス形成用ガスにガラス微粒子粉または水晶粉を曝し形成
させたドープトシリカガラス微粒子を再度高温中で同−
又は同穐のドープトシリカガラス形成用ガスに曝すこと
を特徴とするものである。
The second method for producing glass particles according to the present invention is 5iC4
, H! The doped silica glass particles formed by exposing the glass fine particles powder or crystal powder to a doped silica glass forming gas consisting of a gaseous additive that can react with O and O to form a dopant solid solution are heated again at high temperature. Same as -
Alternatively, it is characterized by being exposed to the same doped silica glass forming gas.

本発明によるガラス微粒子の製造方法によれば、従来法
で生成された一次粒子を、四塩化ケイ素、四塩化ゲルマ
ニウム等のハロゲン化物雰囲気中に曝すので、−次粒子
が核となって粒子の粒成長が著しく促進され、粒径の大
きなガラス粉(以下二次粒子と称す)を得ることができ
る。
According to the method for producing glass fine particles according to the present invention, the primary particles produced by the conventional method are exposed to an atmosphere of halides such as silicon tetrachloride and germanium tetrachloride, so that the primary particles become the nucleus and form the particles. Growth is significantly promoted and glass powder with a large particle size (hereinafter referred to as secondary particles) can be obtained.

本発明を更に詳しく説明する。The present invention will be explained in more detail.

本発明の第1の発明に使用される一次粒子はガラス形成
用ハロゲン化物蒸気を火炎加水分解ないし熱酸化して合
成されたs i ox  微粒子及びドーパント添加5
ift 微粒子であり、それらを溶融してガラス体が得
られる本のであれば特に限定される。
The primary particles used in the first aspect of the present invention are s i ox fine particles synthesized by flame hydrolysis or thermal oxidation of halide vapor for glass formation and dopant addition 5
If it is a book that is fine particles and can be melted to obtain a glass body, it is particularly limited.

本発明による第2の発明において使用される一次粒子は
、sicム、H*0.  前記&Oと反応しStO,−
ドパント固溶体を形成しうるガス状添加物より成るドー
プトシリカガラス形成ガスに曝して合成したドープトシ
リカガラス微粒子、たとえばStow −060g  
ガラス微粒子、SiO!−Gl!01水晶粉等である。
The primary particles used in the second invention according to the present invention are SICM, H*0. Reacts with the above &O to form StO,-
Doped silica glass fine particles synthesized by exposure to a doped silica glass forming gas consisting of a gaseous additive capable of forming a dopant solid solution, such as Stow-060g
Glass particles, SiO! -Gl! 01 crystal powder etc.

前記ガス状添加物は特に限定されないが、たとえば、G
eC4、POC4、Pct@ 、 TiC4、BBg 
The gaseous additive is not particularly limited, but for example, G
eC4, POC4, Pct@, TiC4, BBg
.

PC/、等の一種以上であることができる。It can be one or more of PC/, etc.

本発明において、第1、第2の発明のいずれも、−次粒
子を偽温度下でハロゲン化物雰囲気中に曝すことにより
、−次粒子の粒成長を促進させるものであるが、ここで
使用するハロゲン化物の椙類は一次粒子の製造に使用し
たハロゲン化物あるいはドーパントを固溶添加する除用
いたドープトシリカガラス形成用ガスと同一のものでも
、別な組成の同種のものであってもよいが、二次粒子の
品質の観点からすると同一のものが望ましい0例えばS
low −Gl!+02  固溶二次粒子を製造する場
合、−炭粒子製造原料、二次粒子製造原料共に5iC4
およびGeCムを使用すると、製造される二次粒子中の
G・へ 濃度分布はほぼ均一であ、るが、二次粒子製造
原料に5ick単独で使用すると製造される二次粒子中
のGeへ濃度分布は中心部分にGeへが存在しく一次粒
子)、その周囲にはほとんどGeへ  が存在しない分
布になる。
In the present invention, in both the first and second inventions, grain growth of the -order particles is promoted by exposing the -order particles to a halide atmosphere under a pseudo temperature. The halide type may be the same as the doped silica glass forming gas used to form the halide or dopant used in the production of the primary particles, or may be the same type of gas with a different composition. However, from the viewpoint of the quality of the secondary particles, it is desirable that they be the same. For example, S
low-Gl! +02 When producing solid solution secondary particles, - 5iC4 for both the raw material for producing carbon particles and the raw material for producing secondary particles.
When 5ick and GeC are used, the concentration distribution of G in the produced secondary particles is almost uniform, but when 5ick is used alone as the raw material for producing secondary particles, the Ge concentration in the produced secondary particles is almost uniform. The concentration distribution is such that Ge is present in the center (primary particles), and almost no Ge is present in the surrounding area.

このような−次粒子の粒成長させるハロゲン化物は特に
限定されないが、たとえばS i C4、GeC4e 
POCls *  PCI4t  Tf C1s + 
 BBrs W BO2等の一種以上(ただし、ケイ素
ハロゲン化物は常に含まれる必要がある)をあげること
かで専る。
The halide that causes the grain growth of such secondary particles is not particularly limited, but for example, SiC4, GeC4e, etc.
POCls * PCI4t Tf C1s +
BBrs W BO2 and the like (however, silicon halides must always be included).

本発明による一次粒子の粒成長速度は、−次粒子をハロ
ゲン化物雰囲気中に曝す際のハロゲン化物供給im(4
Iに主原料となるS I C4) 、雰囲気温凌、反応
時間に主に支配される。従来ハロゲン化物からガラス微
粒子を得るためのハロゲン化物供給方法は、ハロゲン化
物の蒸気をキャリアーガスで供給する方法がとられてい
た0本発明においても、従来の供給法と同じでよいが、
キャリアーガスのNIK4はハロゲン化物を火炎加水分
解反応させるか、熱酸化反応させるかによって選定する
必要があり、前者の場合にはAr ガス、Nガス、後者
の場合にはO,ガスを使用した方が反応効率がよく、い
ずれの反応においても、ハロゲン化物の蒸気圧は主原料
となるハロゲン化ケイ素(たとえばSiCム)で200
〜1000閾HP  の範囲が最適である。ハロゲン化
ケイ素が200 mm Ht  よ抄少ないと、温度の
制御が短かしくな抄、粒成長はしに〈〈なり、反対に1
000 mm HP  を超えると、温度の制御がしに
くくなるからである。
The grain growth rate of the primary particles according to the present invention is determined by the halide supply im(4) when the primary particles are exposed to a halide atmosphere.
It is mainly controlled by SIC4), which is the main raw material in I, the ambient temperature, and the reaction time. Conventionally, the halide supply method for obtaining glass fine particles from a halide was to supply halide vapor using a carrier gas; however, in the present invention, the same method as the conventional supply method may be used.
The carrier gas NIK4 must be selected depending on whether the halide is subjected to a flame hydrolysis reaction or a thermal oxidation reaction. In the former case, Ar gas or N gas is used; in the latter case, O gas is used. The reaction efficiency is high, and in both reactions, the vapor pressure of the halide is 200% for silicon halide (for example, SiC), which is the main raw material.
A range of ~1000 threshold HP is optimal. If the amount of silicon halide is less than 200 mm Ht, the temperature control becomes short and grain growth becomes difficult.
This is because if the temperature exceeds 000 mm HP, it becomes difficult to control the temperature.

このようにハロゲン化物を用いて一次粒子を粒成長させ
るわけであるが、雰囲気温度は火炎加水分解反応と熱酸
化反応によって異なるが300〜1800℃の温度で粒
成艇させるのが好ましい、温度が300℃以下であると
反応時間が長くなつ九り、反応効率が著しく悪くなり粒
成長が促進されなくなる。また1800℃を超えるとガ
ラス微粒子が生成されなくなるからである。また熱源は
所望の温度が祷られるものであれば酸水素炎、プラズマ
炎、電気炉など特に限定するもので1よない。
In this way, primary particles are grown using a halide, and although the atmospheric temperature varies depending on the flame hydrolysis reaction and thermal oxidation reaction, it is preferable to grow the particles at a temperature of 300 to 1800°C. If the temperature is below 300°C, the reaction time will become long, the reaction efficiency will be extremely poor, and grain growth will not be promoted. Further, if the temperature exceeds 1800°C, glass fine particles will no longer be generated. Further, the heat source is not particularly limited, such as an oxyhydrogen flame, a plasma flame, or an electric furnace, as long as a desired temperature is desired.

反応時間は、ハロゲン化物供給量、雰囲気温度および一
次粒子供給量などを考慮し機能的に定めるのがよい。
The reaction time is preferably determined functionally, taking into account the amount of halide supplied, the ambient temperature, the amount of primary particles supplied, and the like.

本発明の第1のガラス微粒子製造方法は、−次粒子製造
と二次粒子製造を連続して行なうことも可能であり、ま
た第1及び第2の発明のいずれも二次粒子製造とシリカ
ガラスあるいはドープトシリカガラスの製造を連続的に
行なうことも可能である。
In the first method for producing glass fine particles of the present invention, it is also possible to carry out the production of primary particles and the production of secondary particles continuously, and in both the first and second inventions, the production of secondary particles and the production of silica glass Alternatively, it is also possible to manufacture doped silica glass continuously.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図お・よび第2図は本@明による方法を実施するだ
めの装置の一例であり、第1図は一次粒子から二次粒子
を製造するための装置の概略図、第2図は一次粒子と二
次粒子を連続的に製造するための装置の概略図である。
Figures 1 and 2 are an example of an apparatus for carrying out the method according to the present invention. Figure 1 is a schematic diagram of an apparatus for producing secondary particles from primary particles, and Figure 2 is a FIG. 1 is a schematic diagram of an apparatus for continuously producing primary particles and secondary particles.

#141図において1は一次粒子、2は反応管、3は電
気炉、4は二次粒子、5は二次粒子集結容器、6は排気
口、7は5i(4用容器、8はGaCl2  用視9は
反応ガス嘲送用管路である。また第2図において21.
22は反応管、23は二次粒子集結容器、24は一次粒
子拡散防止用ガス流入口、25は排気口、26.27は
電気炉、28は一次粒子、29は二次粒子、30.32
はStCム用容缶容器1.33はGeCム用容器、34
.35は反応ガス輸送用管路である。
#141 In the diagram, 1 is the primary particle, 2 is the reaction tube, 3 is the electric furnace, 4 is the secondary particle, 5 is the secondary particle collection container, 6 is the exhaust port, 7 is 5i (container for 4, 8 is for GaCl2) Reference numeral 9 is a pipeline for conveying the reactant gas.In addition, in FIG.
22 is a reaction tube, 23 is a secondary particle collection container, 24 is a gas inlet for preventing primary particle diffusion, 25 is an exhaust port, 26.27 is an electric furnace, 28 is a primary particle, 29 is a secondary particle, 30.32
1 is a container for StC. 33 is a container for GeC. 34 is a container for StC.
.. 35 is a reactant gas transport pipe line.

実施例1 第1図における装置を用い、G・Ot を10モル−添
加した500〜2000 Aの粒径のドープトシリカガ
ラス−次粒子1を流速10CIL/秒、毎分10tの割
合で反応管2に送ね込む一方、SICム用容器7及びG
eC/4用容a8より反応ガス輸送用管路9を経て、偽
ガスによりsic/14  及びGeCム の蒸気を反
応管2に送り、前記−次粒子1を5ICt4、  Ge
C4及びヘ ガスを含む反応ガスに曝した。
Example 1 Using the apparatus shown in Fig. 1, doped silica glass particles 1 having a particle size of 500 to 2000 A to which 10 mol of G. 2, while the SIC container 7 and G
From the eC/4 capacity a8, the vapors of sic/14 and GeC are sent to the reaction tube 2 via the reaction gas transport pipe 9 using fake gas, and the secondary particles 1 are transferred to 5ICt4, Ge
It was exposed to a reaction gas containing C4 and H2 gases.

この時の反応ガスの組成は、5iC420モルー1Ge
C42モル%、O! 78モルチで供給量は毎分2tと
した。
The composition of the reaction gas at this time is 5iC420 mol 1 Ge
C42 mol%, O! The feed rate was 2 tons per minute at 78 molti.

また反応管2の温度は電気炉3により1400℃に保持
した。
Further, the temperature of the reaction tube 2 was maintained at 1400° C. by an electric furnace 3.

この結果、反応管2の内部で一次粒子の粒成長が進み、
Geへが添加された二次粒子4が、二次粒子集結容器5
に得られた。得られた二次粒子の粒径を測定したところ
10〜1004m”であった。
As a result, the growth of primary particles progresses inside the reaction tube 2,
The secondary particles 4 added to Ge are transferred to the secondary particle collection container 5.
obtained. The particle diameter of the obtained secondary particles was measured and was 10 to 1004 m''.

このようにして得られた粒径の大角な二次粒子を火炎ま
たはプラズマ炎を用いて溶融し、透明で残留気泡を含−
まないドープトシリカガラスを約2009/分の高速度
で製造することができた。
The large-sized secondary particles obtained in this way are melted using flame or plasma flame, and are transparent and contain no residual air bubbles.
It was possible to produce doped silica glass at a high speed of about 2009/min.

実施l+I12 第2図にお・ける湊岬に吐いて、あらかじめ反応管21
および22のmWを電気炉26および27によって14
00℃に保持した後、5IC14用容姦:(0およびG
eC!4用容器31より反応ガス輸送用管路34を経て
、0!ガスによりSiCムおよびGeC^の蒸気を反応
管21に送った0反応管21の構造は電気炉26に入る
清PlrIiで2重構造になっており、前菖ピSiC&
 、 GeC’14および0.ガスを含む反応ガスは2
重管構造の中心管に送った。この時の反応ガスの組成は
5ic4モルチ、GeCム2モルチ、へ78モル嘩で供
給量は毎分21とした。
Implementation 1 + I12 Discharge to Cape Minato in Figure 2 and prepare the reaction tube 21 in advance.
and 22 mW by electric furnaces 26 and 27 at 14
After holding at 00°C, the temperature for 5IC14: (0 and G
eC! From the container 31 for 0! The structure of the reaction tube 21, in which SiC and GeC^ vapors are sent to the reaction tube 21 by gas, is a double structure with the liquid PlrIi entering the electric furnace 26.
, GeC'14 and 0. The reaction gas containing gas is 2
It was sent to the center pipe of the heavy pipe structure. The composition of the reaction gas at this time was 5ic4 mol, GeC 2 mol, and 78 mol, and the supply rate was 21 mol/min.

−次粒子拡散防止用ガス流入口24からArガス5t/
m1n  およびヘガス5t/mln  の混合ガスを
流入し、反応管21の内部で生成される一次粒子が拡散
して反応管21の内面に付着するのを防上した。
- 5 tons of Ar gas from the secondary particle diffusion prevention gas inlet 24;
A mixed gas of 5 t/ml of mln and 5 t/ml of gas was introduced to prevent primary particles generated inside the reaction tube 21 from diffusing and adhering to the inner surface of the reaction tube 21.

tfcstct4用容器32およびGeC4用容器33
より、反応ガス輸送用管路35を経てヘガスにょすsi
cムおよびGeC4の蒸気を反応管22に送った。この
時の組成は前記した一次粒子製造用反応ガスと同一にし
た。
tfcstct4 container 32 and GeC4 container 33
From there, the gas is transported through the reactant gas transport pipe 35.
cm and GeC4 vapors were sent to reaction tube 22. The composition at this time was the same as that of the reaction gas for producing primary particles described above.

この結果二次粒子集結容器23に二次粒子29が連続的
に得られた。得られた二次粒子の粒径を測定したところ
、7〜180 m の大きさであった。従来法との比較
のため反応カス帽送用管路35から反応管22への蒸気
状原料供給を止め、この時得られた粒子の粒径を測定し
たところ100〜500Aの大きさであった。この結果
は反応管22の内部で粒径100〜500Aの一次粒子
28が生成され、反応管22の内部において一次粒子2
8が核となって粒成長が急激に進み、粒径の大きな二次
粒子が製造されていることを示している本のである。
As a result, secondary particles 29 were continuously obtained in the secondary particle collection container 23. When the particle size of the obtained secondary particles was measured, it was found to be 7 to 180 m. For comparison with the conventional method, the supply of vaporized raw materials from the reaction scum cap feeding pipe 35 to the reaction tube 22 was stopped, and the particle size of the particles obtained at this time was measured and found to be 100 to 500A. . This result shows that primary particles 28 with a particle size of 100 to 500A are generated inside the reaction tube 22, and primary particles 28 are generated inside the reaction tube 22.
This book shows that grain growth rapidly progresses with No. 8 serving as a nucleus, producing secondary particles with a large grain size.

このように本発明によるガラス微粒子の製造方法によれ
ば、従来法で得られるガラス微粒子を核として粒成長を
させるので、粒径の大きなガラス粒子を簡単にしかも各
粒子F′i、琳独で完全に透明なものを製造することが
できる利点がある。
As described above, according to the method for producing glass particles according to the present invention, since the glass particles obtained by the conventional method are used as nuclei for grain growth, it is possible to easily produce glass particles with a large particle size, and each particle F′i, It has the advantage of being able to produce completely transparent products.

また、このようにして製造されたガラス粒子を火炎また
はプラズマ炎に投入してドープトシリカガラスを製造す
れば、残留気泡を含まないドープトシリカガラスが高速
度で効率よく製造できる利点本ある。
Further, if doped silica glass is produced by introducing the glass particles thus produced into a flame or plasma flame, there is an advantage that doped silica glass containing no residual bubbles can be produced efficiently at high speed.

さらにこのように製造されたドープトシリカガラス金剛
いて光ファイバを製造すれば低価格になるという利点も
ある。
Furthermore, manufacturing an optical fiber using the doped silica glass manufactured in this manner has the advantage that the cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図および第2図り本発明による方法を実施するため
の装置の一例であり、第1図は一次粒子から二次粒子を
製造するための装置の概略図、第2図は一次粒子と二次
粒子を連続的に製造するための装置の概略図である。
Figure 1 and Figure 2 are an example of an apparatus for carrying out the method according to the present invention. 1 is a schematic diagram of an apparatus for continuously producing secondary particles; FIG.

Claims (1)

【特許請求の範囲】 1、 ガラス形成用ノ・ロゲン化物の蒸気を火炎加水分
解反応または熱酸化反応せしめることにより合成したガ
ラス微粒子を再度高温中で7・ロゲン化物雰囲気中に曝
すことを特徴とするガラス微粒子の製造方法。 2、 5tct4.  so、  aoと反応しSIO
,−)”−パント固溶体を形成しうるガス状添加物より
成るドープトシリカガラス形成用ガスにガラス微粒子粉
ま九は水晶粉を曝し形成させたドープトシリカガラス微
粒子を再度高温中でノ・ロゲン化雰囲気中に曝すことを
%像とするガラス微粒子の製造方
[Claims] 1. Glass fine particles synthesized by subjecting the vapor of a halogenide for glass formation to a flame hydrolysis reaction or a thermal oxidation reaction are again exposed to a halogenide atmosphere at a high temperature. A method for producing glass fine particles. 2, 5tct4. Reacts with so and ao and SIO
,-)"-Glass fine particles are exposed to a doped silica glass forming gas consisting of a gaseous additive capable of forming a panto solid solution. A method for producing glass particles whose percentage is determined by exposure to a logidizing atmosphere.
JP18533981A 1981-11-20 1981-11-20 Manufacture of fine glass particle Pending JPS5888130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18533981A JPS5888130A (en) 1981-11-20 1981-11-20 Manufacture of fine glass particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18533981A JPS5888130A (en) 1981-11-20 1981-11-20 Manufacture of fine glass particle

Publications (1)

Publication Number Publication Date
JPS5888130A true JPS5888130A (en) 1983-05-26

Family

ID=16169064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18533981A Pending JPS5888130A (en) 1981-11-20 1981-11-20 Manufacture of fine glass particle

Country Status (1)

Country Link
JP (1) JPS5888130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1106582A2 (en) * 1999-12-10 2001-06-13 Corning Incorporated Silica soot and process for producing it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243810A (en) * 1975-10-03 1977-04-06 Fujikura Ltd Process for preparing silica glass
JPS5510412A (en) * 1978-07-06 1980-01-24 Nippon Telegr & Teleph Corp <Ntt> Production of anhydrous glass base material for optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243810A (en) * 1975-10-03 1977-04-06 Fujikura Ltd Process for preparing silica glass
JPS5510412A (en) * 1978-07-06 1980-01-24 Nippon Telegr & Teleph Corp <Ntt> Production of anhydrous glass base material for optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1106582A2 (en) * 1999-12-10 2001-06-13 Corning Incorporated Silica soot and process for producing it
EP1106582A3 (en) * 1999-12-10 2001-10-24 Corning Incorporated Silica soot and process for producing it

Similar Documents

Publication Publication Date Title
CN1817792B (en) Process for treating synthetic silica powder and synthetic silica powder treated thereof
US3923484A (en) Flame method of producing glass
JPS62171939A (en) Apparatus for production of porous optical fiber preform
JP2001520165A (en) Manufacture of quartz glass articles with high purity surfaces
JPS5888130A (en) Manufacture of fine glass particle
US4539221A (en) Process for the chemical vapor deposition of oxidic particles
JPS6117433A (en) Manufacture of optical fiber preform
JPH01126236A (en) Production of optical fiber preform
JP3078590B2 (en) Manufacturing method of synthetic quartz glass
JPH0222137A (en) Production of synthetic quartz preform
JP3417962B2 (en) Manufacturing method of synthetic quartz glass member
JPH0218291B2 (en)
JPS60221332A (en) Manufacture of optical fiber base material
JPS6225617B2 (en)
JPS60215515A (en) Preparation of synthetic quartz mass and device therefor
JPH10167734A (en) Quartz glass for ultraviolet ray and its synthesis
JPH085683B2 (en) Method for producing synthetic quartz glass member having excellent heat resistance and processability
JPH0459632A (en) Production of nitrogen-containing synthetic quartz glass member
JPS62162646A (en) Production of glass fine particle deposit
RU2061111C1 (en) Process for preparing synthetic quartz articles
JPH0218295B2 (en)
JPS599488B2 (en) Manufacturing method of quartz glass tube
JPS6116740B2 (en)
JPH0829957B2 (en) High NA step index type optical fiber preform manufacturing method
JPH0881224A (en) Device for producing synthetic quartz glass and production of synthetic quartz glass using the same