JPS588711A - Production of copolymer - Google Patents

Production of copolymer

Info

Publication number
JPS588711A
JPS588711A JP10566781A JP10566781A JPS588711A JP S588711 A JPS588711 A JP S588711A JP 10566781 A JP10566781 A JP 10566781A JP 10566781 A JP10566781 A JP 10566781A JP S588711 A JPS588711 A JP S588711A
Authority
JP
Japan
Prior art keywords
copolymer
ethylene
olefin
polymerization
olefins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10566781A
Other languages
Japanese (ja)
Inventor
Masayasu Furusato
古里 正保
Tadashi Ikegami
正 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10566781A priority Critical patent/JPS588711A/en
Publication of JPS588711A publication Critical patent/JPS588711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a low-density, low-MI copolymer and, at the ame time, to decrease the amount of expensive 5C or higher olefins, by copolymerizing ethylene and alpha-olefin first by a solution process and then by a vapor phase process while selecting the kinf of the olefin used. CONSTITUTION:In the copolymerization of ethylene and alpha-olefins in the presence of a catlyst consisting of (A) a solid catalytic component containing Mg, Ti and a halogen and (B) an organometallic compound component, ethylene and about 1-250mol%, based on ethylene 5-15C olefins (e.g., 4-methyl-1-pentene) are copolymerized at 0-120 deg.C in the presence of a hydrocarbon solvent to form a copolymer in an amount of 1-70wt% based on total weight of the final copolymer, then the solvent is removed from the resulting copolymer (density about 0.925- 0.955) and, if necessary, an organometallic compound component is added and ethylene and about 1-250mol%, based on ethylene, 3-4C olefin (e.g., 1-butene) are fed and copolymerized in a vapor phase at about 20-110 deg.C.

Description

【発明の詳細な説明】 本発明は、エチレンと2種以上のα−オレフィンを共重
合する幼規な共重合体の製造方法に関するものであり、
さらに詳細には、炭化水素溶媒の存在下エチレンと炭素
原子数5〜15個のα−オレフィンを共重合した後、溶
媒を除去し、気相状態でエチレンと炭素原子数3〜4個
のα−オレフィンの共重合を行うことを特徴とする共重
合体の製造方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a childish copolymer by copolymerizing ethylene and two or more α-olefins,
More specifically, after copolymerizing ethylene and an α-olefin having 5 to 15 carbon atoms in the presence of a hydrocarbon solvent, the solvent is removed and ethylene and an α-olefin having 3 to 4 carbon atoms are copolymerized in the gas phase. - A method for producing a copolymer characterized by copolymerizing olefins.

従来より、チーグラー型触媒を用い、エチレンと他のα
−オレフィンを共重合することにより、エチレン共重合
体の密度をコ/トロールし、中、低密度ポリエチレンを
製造できることは、カナダ特許第664211号等によ
り公知であった。しかもチーグラー型触媒を用い、エチ
レンと他のα−オレフィンを共重合することにより得ら
れる低密度ポリエチレンは、高圧法による低密度ポリエ
チレンに比較し、耐引裂性等の機緘的性質に優れ、また
融点も10〜12℃高いと言う優れた牛5徴を有する。
Traditionally, Ziegler-type catalysts have been used to convert ethylene and other α
It has been known from Canadian Patent No. 664,211, etc. that it is possible to control/control the density of an ethylene copolymer by copolymerizing -olefins to produce medium to low density polyethylene. In addition, low-density polyethylene obtained by copolymerizing ethylene and other α-olefins using a Ziegler-type catalyst has superior mechanical properties such as tear resistance compared to low-density polyethylene produced by high-pressure methods. It also has the five excellent characteristics of beef: its melting point is 10 to 12 degrees higher.

さらにこの特徴は、炭素原子数5個以上のα−オレフィ
ンを用いることにより極めて効果的に発揮される。しか
しながら、炭素原子数5個以−りのα−オレフィンは工
業的に高価で力)す、生Vすd゛も少ないため、共重合
体のコストが上り、寸だ生産量が制限される等の問題が
ある。
Furthermore, this feature is extremely effectively exhibited by using an α-olefin having 5 or more carbon atoms. However, α-olefins with 5 or more carbon atoms are industrially expensive and have low raw VSD, which increases the cost of the copolymer and severely limits production. There is a problem.

一方、エチレンと他のα−オレフィンとの共重合体の製
造方法としては、炭化水素溶〃1(1中、共重合体の融
点以下の湿度で懸濁状態で71合を行う懸濁重合法、炭
化水素溶/1I11中、共重合体の1(iB点以上の温
度で溶液状状態で重合を行う溶液重合法、および、実質
的に溶媒の不イJ、在下、120℃以下の温度で気相状
態で重合を行う気相重合法が公知である0 シカジエチレンと他のα−オレフィンの共重合を懸濁重
合にて実施する際には、密度を下げるに従い溶媒に可溶
の共重合体慴が増加するため、共重合体の嵩密度が低下
し、反応器壁へのファウリングが激しく寸だ重合系の粘
度上昇中ベタツキが起る傾向である。このため、共重合
体の密度0.940以上では運転に支部・はほぼ生じな
いが、共重合体の密度を0.9204で下げると工業的
運転が困難となる。
On the other hand, as a method for producing copolymers of ethylene and other α-olefins, there is a suspension polymerization method in which 71 polymerization is carried out in a suspended state at a humidity below the melting point of the copolymer. , a solution polymerization method in which polymerization is carried out in a solution state at a temperature above the iB point of the copolymer in a hydrocarbon solution/1I11, and a method in which the copolymer is polymerized in a solution state at a temperature above the iB point, and in the presence of substantially no solvent, at a temperature below 120 ° C. A gas phase polymerization method in which polymerization is carried out in a gas phase is well known.0 When carrying out copolymerization of shikadiethylene and other α-olefins by suspension polymerization, copolymerization that is soluble in the solvent increases as the density decreases. Due to the increase in copolymerization, the bulk density of the copolymer decreases, and fouling on the reactor wall is severe.As the viscosity of the polymerization system increases, stickiness tends to occur.For this reason, the density of the copolymer decreases. If the density is 0.940 or more, almost no problems will occur during operation, but if the density of the copolymer is lowered to 0.9204, industrial operation becomes difficult.

ところが、溶液重合においては、共重合体が溶解してお
り、溶液状で操作するため上記の様な問題は生じないが
、高粘度溶液を攪拌するので、メルトインデクス(以下
MIど略記する)の低い高分子量共重合体になるほど溶
液の濃度を低くしなければ寿らず、MIO05以下の高
分子量共重合体の製造は非常に困難である。しかも、溶
液重合においては、粉末で共重合体を得ることができ々
いと言う欠点がある。
However, in solution polymerization, the copolymer is dissolved and the operation is performed in a solution state, so the above-mentioned problems do not occur. The lower the molecular weight copolymer is, the lower the concentration of the solution must be for its longevity, and it is extremely difficult to produce a high molecular weight copolymer with an MIO of 05 or less. Moreover, solution polymerization has the disadvantage that it is difficult to obtain a copolymer in the form of powder.

一方、気相重合においては、密度およびMIを下げた共
7]i合体を製造することは、比較的容易であるが、気
相状態であるため、沸点の高い炭素原子数5個以上のα
−オレフィンを用いることは工業的に非常に困難である
。これに対し、懸濁重合、溶液重合では、α−オレフィ
ンの種類の選択は基本的には制限はない。
On the other hand, in gas phase polymerization, it is relatively easy to produce a co7]i polymer with lower density and MI, but because it is in a gas phase, α
- It is industrially very difficult to use olefins. On the other hand, in suspension polymerization and solution polymerization, there are basically no restrictions on the selection of the type of α-olefin.

本発明者らは、上記諸問題を解決すべく鋭意研究を進め
た結果、本発明の新規製造方法をなすに紋ったものであ
り、本発明により、低密度かつ低MIの共重合体を容易
に製3りjでき、かつ、炭素原子数3〜4個のα−オレ
フィンおよび5〜15個のα−オレフィンを組み合わせ
て用いることにより、高価な炭素原子数5〜15個のα
−オレフィンの使用セ4を派、らしてj、)(、! 造
した共重合体がエチレンと炭素原子数5個以上のα−オ
レフィンとの共)17合体と同等以上のイ〈に能を有す
ることI:[驚くべきことである。
As a result of intensive research to solve the above-mentioned problems, the present inventors have developed the new production method of the present invention, and have succeeded in producing a copolymer with low density and low MI. By using a combination of α-olefins having 3 to 4 carbon atoms and α-olefins having 5 to 15 carbon atoms, which can be easily produced, expensive α-olefins having 5 to 15 carbon atoms can be easily produced.
- Use of olefins The resulting copolymer has an ability equivalent to or better than that of a copolymer of ethylene and an α-olefin having 5 or more carbon atoms. Having I: [Surprising.

す々わち本発明P、Iエチレンと(a)炭素原子数3〜
4個のα−オレフィン、(b)炭素原子数5〜15個の
α−オレフィン、の各々のグループより選ばれた2机以
上のα−オレフィンを、〔A〕少なくとも、マグネシウ
ム、チタンおよびハ1]ゲン原子を含有する固体触媒及
び〔B〕有機金If’、:化合物の存在下共1合せしめ
、共重合CI=を製造するに当り第1段: 炭化水素溶
媒の存在下0〜120℃でエチレンと(l〕)炭素すっ
手数5〜15個のα−5− 一オレフインの共重合を行い、最終共 重合体全量に対し1〜70fi聞゛チの共重合体を生成
させる。
That is, the present invention P, I ethylene and (a) having 3 or more carbon atoms;
(b) α-olefins having 5 to 15 carbon atoms; [A] at least magnesium, titanium, and ] Gen atom-containing solid catalyst and [B] organic gold If', in the presence of the compound: 1st stage in producing copolymer CI=: 0 to 120°C in the presence of a hydrocarbon solvent. Copolymerization of ethylene and (1) α-5-1 olefin having 5 to 15 carbon atoms is carried out to produce a copolymer of 1 to 70 fi based on the total amount of the final copolymer.

第2段: 共重合体より炭化水素溶媒を除去する。Second stage: Remove the hydrocarbon solvent from the copolymer.

第3段: 実質的に無溶媒下、気相状態でエチレンと(
ロ)炭素原子数3〜4個のα−オレフィンの共重合を行
う。
3rd stage: Ethylene and (
b) Copolymerizing an α-olefin having 3 to 4 carbon atoms.

ことを特徴とする共重合体の製造方法に係るものである
The present invention relates to a method for producing a copolymer characterized by the following.

以下、本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

本発明の第1の特徴は、高価な長鎖α−オレフィンの使
用量を最少限に押え、なおかつ高品質の共重合体を製造
しうろことであり、後述の実施例1.2、比較例1より
本発明の優位性は明らかである。
The first feature of the present invention is to minimize the amount of expensive long-chain α-olefin used and to produce high-quality copolymers. 1, the superiority of the present invention is clear.

本発明の第2の特徴は、溶液重合では製造が困難なMI
 0.5以下の共重合体を製造しうることである。
The second feature of the present invention is that MI, which is difficult to produce by solution polymerization,
It is possible to produce a copolymer with a molecular weight of 0.5 or less.

本発明の第3の特徴は、低密度の共重合体を、 6− 高嵩密度の粉末として製造しうろことであり、これは、
共重合体をペレタイズと言う余分のエネルギーを必要と
する工程を省略し、粉末のオま出荷を可能とするもので
ある。
A third feature of the invention is the production of the low density copolymer as a high bulk density powder, which
This eliminates the process of pelletizing the copolymer, which requires extra energy, and enables bulk shipment of the powder.

本発明の第4の特徴は、分子量分布の狭い共重合体を高
活性で製造しうることであり、以下で説明する本発明に
好適な触媒を用いることにより、初めて達成されるもの
である。A・た、特定の触媒を用いれば分子量分布の広
い共311合体の製造も可能である。さらに、第1段と
第3段の71−j:合条件をコントロールすることによ
っても分子量分布の広い共重合体の製造が可能である。
The fourth feature of the present invention is that a copolymer with a narrow molecular weight distribution can be produced with high activity, and this can be achieved for the first time by using a catalyst suitable for the present invention as described below. A. If a specific catalyst is used, it is also possible to produce a co-311 complex with a wide molecular weight distribution. Furthermore, it is also possible to produce a copolymer with a wide molecular weight distribution by controlling the synthesis conditions of 71-j in the first and third stages.

本発明で用いられるα−オレフィンについて説明する。The α-olefin used in the present invention will be explained.

(a)  炭素原子数3〜4個のα−オレフィンとして
は、プロピレン、1−ブテンもしくは、これらの混合物
であり、好ましくは1−ブテンが用いられる。
(a) The α-olefin having 3 to 4 carbon atoms is propylene, 1-butene, or a mixture thereof, and 1-butene is preferably used.

(b)  炭素原子数5〜15個のα−オレフィンとし
てU 、例工Itf、 i −ヘンテン、1−ヘキセン
、1−セン、1−ウンデセン、l−ドデセン、1−トリ
テセン、1−テトラデセン、1−ペンタデセン、3−メ
チル−1−ブテン、3−メチル−1−ペンテン、4−メ
チル−1−ペンテン、4,4−ジメチル−1−ペンテン
、ビニルシクロセサン等もしくはこれらの混合物が用い
られる。
(b) As an α-olefin having 5 to 15 carbon atoms, U, Example Itf, i-hentene, 1-hexene, 1-cene, 1-undecene, l-dodecene, 1-tritecene, 1-tetradecene, 1 -Pentadecene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, vinylcyclocethane, etc., or mixtures thereof are used.

本発明は、第1段として、エチレンと(b)炭素原子数
5〜15個のα−オレフィンの共重合を炭化水素溶媒の
存在下懸濁重合で実施するが、炭化水素溶媒としては、
プロパン、n−ブタン、i−ブタン、n−ペンタン、i
−ペンタン、n−ヘキサン、i−ヘキサン、n−へブタ
ン等もしくはこれらの混合物が用いられる。好適には、
炭素原子数3〜6個の炭化水素化合物が用いられる。重
合温度は0〜120℃、好ましくは10〜90℃、重合
圧力は、常圧〜Zoo Kg/crAGの範囲で実施さ
れる。
In the present invention, as a first step, copolymerization of ethylene and (b) an α-olefin having 5 to 15 carbon atoms is carried out by suspension polymerization in the presence of a hydrocarbon solvent.
Propane, n-butane, i-butane, n-pentane, i
- Pentane, n-hexane, i-hexane, n-hebutane, etc. or mixtures thereof are used. Preferably,
Hydrocarbon compounds having 3 to 6 carbon atoms are used. The polymerization temperature is from 0 to 120°C, preferably from 10 to 90°C, and the polymerization pressure is from normal pressure to Zoo Kg/crAG.

分子量の調節は、□連鎖移動を起し易い有機化合物の添
加、重合温度、α−オレフィン添加]゛等によっても可
能であるが、重合系中に水素を導入することにより、効
才的に分子h)の調節が実施される α−オレフィン(1))の使用1.71”は、エチレン
に対し1〜250 mo1%、好寸しくけs 〜200
 mot%、の範囲である。
Molecular weight can be adjusted by □ addition of organic compounds that easily cause chain transfer, polymerization temperature, addition of α-olefin, etc., but by introducing hydrogen into the polymerization system, it is possible to effectively control the molecular weight. The use of α-olefin (1)) in which the adjustment of h) is carried out is 1.71”, based on ethylene, 1 to 250 mo1%, preferably 1 to 200 moles
mot%.

本発明においては、第1段にて生成する共重合体量が、
最終共重合体全量に対I7.1〜70重量%好ましくは
10〜65重(1チであることが、本発明の目的を達成
するために必要である。捷た。第1段にて生成する共重
合体の密度&j: 、 0.925〜0.955、好ま
しくは、0.935〜0.950の範囲とすることが好
ましい。
In the present invention, the amount of copolymer produced in the first stage is
7.1 to 70% by weight of I based on the total amount of the final copolymer, preferably 10 to 65% (1% by weight is necessary to achieve the purpose of the present invention. The density of the copolymer &j: is preferably in the range of 0.925 to 0.955, preferably 0.935 to 0.950.

懸濁重合の後、第2段として、炭化水素溶媒を除去した
のち、第3段の気相1合全実施するが。
After the suspension polymerization, the hydrocarbon solvent is removed in the second stage, and then the gas phase 1 reaction is carried out in the third stage.

炭化水素溶媒の除去には、ろ過、遠心分離、もしくは、
加熱せたは減圧による溶媒の留去等の方法が用いられる
Hydrocarbon solvents can be removed by filtration, centrifugation, or
Methods such as distillation of the solvent by heating or reduced pressure are used.

第3段として、実Ij的に無溶媒下、気相状態でエチレ
ンと(a)炭素原子数3〜4個のα−オレフィンの共重
合を行うが、このとき、第1段の懸濁重合と同一の反応
器内で行っても良いしまた第1段を単数−1,f?:、
は複数の反応器で懸濁重合を行った後第3段を別個の単
数″!fたは複数の反応器で気相重合を行うことも可能
である。
As the third stage, ethylene and (a) α-olefin having 3 to 4 carbon atoms are copolymerized in a gas phase without a solvent, but at this time, the suspension polymerization in the first stage is The first stage may be carried out in the same reactor as -1, f? :,
It is also possible to carry out the suspension polymerization in a plurality of reactors and then carry out the gas phase polymerization in the third stage in a separate reactor or in a plurality of reactors.

気相重合は、重合温度は20〜110’C1好ましくは
40〜900C、重合圧力は常圧〜100 Kり/cn
lQの範囲で、新たにエチレンとα−オレフィン(a”
lを導入することにより行なわれる。分子量の調節は1
重合温度、α−オレフィンの添加量によっても可能であ
るが1重合系中に水素を導入することにより効果的に分
子量の調節が実施される。
In the gas phase polymerization, the polymerization temperature is 20 to 110'C, preferably 40 to 900C, and the polymerization pressure is normal pressure to 100K/cn.
In the range of lQ, new ethylene and α-olefin (a”
This is done by introducing l. Adjustment of molecular weight is 1
Although it is possible to adjust the polymerization temperature and the amount of α-olefin added, the molecular weight can be effectively controlled by introducing hydrogen into the polymerization system.

α−オレフィン(a)の使用惜は、エチレンに対し1〜
250 motチ、杆部しくけ5〜200 mot%の
範囲である。
The amount of α-olefin (a) used is 1 to 1 to ethylene.
The range is 250 mot% and the stem thickness is 5 to 200 mot%.

気相重合においては、新たに触媒を加えないがもしくは
、有機金属化合物〔B〕のみを新たに添加するのが良い
。新たに固体触媒(A)を添加すると。
In gas phase polymerization, it is preferable not to add a new catalyst, or to add only the organometallic compound [B]. When a new solid catalyst (A) is added.

共重合体の物性が低下するので杆部しくない。The physical properties of the copolymer deteriorate, making the stem unsuitable.

本発明に用いる触媒は、〔A〕 少なくとも、マグネシ
ウム、チタンおよびハロゲン原子を含有する固体触媒お
よび〔B〕有機金属化合物よシ成シ。
The catalyst used in the present invention is composed of [A] a solid catalyst containing at least magnesium, titanium, and halogen atoms, and [B] an organometallic compound.

固体触媒〔A〕としては、有機マグネシウム化合物とハ
ロゲン含有チタン化合物またはハロゲン含有チタン化合
物とバナジン化合物または/およびジルコン化合物の反
応物、有機マグネシウム化合物とハロゲン化剤(チタン
、バナジン、ジルコン化合物は除く)の反応物とチタン
化合物またはチタン化合物とバナジン化合物または/お
よびジルコン化合物との反応物 マグネシウムまたはマ
グネシウムとカルシウム、ホウ素、アルミニウム、ケイ
素、亜鉛よシ選ばれた少なくとも1種を含有するハロゲ
ン化物、水酸化物、酸化物、炭酸塩、アルコキシド等と
ハロゲン含有チタン化合物またはハロゲン含有チタン化
合物とバナジン化合物または/およびジルコン化合物の
反応物等が用いられる。
The solid catalyst [A] is a reaction product of an organomagnesium compound and a halogen-containing titanium compound or a halogen-containing titanium compound and a vanadine compound or/and a zircon compound, an organomagnesium compound and a halogenating agent (excluding titanium, vanadine, and zircon compounds). and a reaction product of a titanium compound or a titanium compound and a vanadine compound or/and a zircon compound A halide containing at least one selected from magnesium or magnesium and calcium, boron, aluminum, silicon, and zinc, hydroxide A reaction product of a halogen-containing titanium compound, a halogen-containing titanium compound, a vanadine compound or/and a zircon compound, etc. is used.

有機金属化合物(BEとしては、AL (C2Hg )
 m 。
Organometallic compound (BE: AL (C2Hg)
m.

kt (C8H7)s 、 At(C4H,)s 、 
At(C5H,1)、 、 A1.(c、九)。
kt (C8H7)s, At(C4H,)s,
At(C5H,1), , A1. (c, 9).

At(Cs HIT)いAt(C1oHn ) s等の
トリアルキルアルミニウム、n(C2Hs)、HlAt
(i−C4H,)2H等のアルキルアルミニウムハイド
ライド、At(C,Hg )、 CL、Az(C2H5
)Ca2. Az(i−C,I(、)Ca2. Az(
C2H,)、Br等のハロゲン化アルキルアルミニウム
、 A、L (C2Hs)z(OC2■J5)、AA(
i−C4T−T9)2 (QC,Hg)等のアルコキシ
アルキルアルミニウム、At(02H,)、 (O8i
E(CH。
At(Cs HIT) At(C1oHn) Trialkylaluminum such as s, n(C2Hs), HlAt
Alkylaluminum hydrides such as (i-C4H,)2H, At(C,Hg), CL, Az(C2H5
) Ca2. Az(i-C,I(,)Ca2.Az(
Alkylaluminum halides such as C2H,), Br, A, L (C2Hs)z(OC2■J5), AA(
Alkoxyalkyl aluminum such as i-C4T-T9)2 (QC,Hg), At(02H,), (O8i
E(CH.

C2Hg ) 、 kA (x C4Hg )1 ・(
OSt (CHB )1 i’−Ca H,)のシロキ
シアルキルアルミニウム、イソプレニルアルミニウム、
ミルセニルアルミニウム等ノアルキルアルミニウムと共
役ジエンとの反応生成物、Zn (CgHs )z 、
Zn (c4i−(、)!!、Zn (Cm Hu )
 ! −Zn (C8HIT) t、Zn (C,H,
) (n−C5I−17)、Z”(CsHs)i、Zn
 (C,H7)(QC,H,)  等の有機亜鉛化合物
、一般式MαMg% Xq Dr  (式中M ハ周M
 体表m I 族〜第1[1族の金属原子、α−p、q
−rは0以上の数で、p十q=mα+2,0≦q / 
(、+s ) < 2の関係を有し、mはMの原子価、
R′は炭素原子数1〜20個の炭化水素基の1種もしく
は2種以上の混合物、Xけ水素原子もしくは酸素、窒素
またけ硫黄原子を含有する陰性な基の1種もしくけ、2
種以上の混合物、Dは電子供与性有機化合物を表わす)
で示される有機マグネシウム化合物、およびこれらの混
合物が用いられる。
C2Hg ), kA (x C4Hg )1 ・(
OSt (CHB)1i'-CaH,) siloxyalkyl aluminum, isoprenyl aluminum,
Reaction product of noalkyl aluminum such as myrcenyl aluminum and conjugated diene, Zn (CgHs)z,
Zn (c4i-(,)!!, Zn (Cm Hu)
! -Zn (C8HIT) t, Zn (C,H,
) (n-C5I-17), Z”(CsHs)i, Zn
Organozinc compounds such as (C,H7)(QC,H,), general formula MαMg%
Body surface m Group I to Group 1 [Group 1 metal atoms, α-p, q
-r is a number greater than or equal to 0, p1q=mα+2,0≦q/
(, +s) < 2, m is the valence of M,
R' is one kind or a mixture of two or more kinds of hydrocarbon groups having 1 to 20 carbon atoms;
mixture of more than one species, D represents an electron-donating organic compound)
Organomagnesium compounds represented by the following and mixtures thereof are used.

本発明の効果を十分に発揮するには、触媒の性能が重要
である。本発明の製造方法に好適な触媒の具体的ガもの
としては1例えば、一般式MαMgR′pX、(式中M
は周期律表第1族〜第■族の金属原子、α、p−q−r
  はO以」二の数で。
In order to fully exhibit the effects of the present invention, the performance of the catalyst is important. Specific catalysts suitable for the production method of the present invention include, for example, the general formula MαMgR′pX, (in the formula M
is a metal atom of Groups 1 to 2 of the periodic table, α, p-q-r
is a number greater than or equal to O.

p+q=mα+2,0≦q/ (,2+1 ) < 2
  の関係を有し1mけMの原子価、R′は炭叱原子数
1〜20個の炭化水素基の1種もしくけ2種以」二の混
合物、Xは水素原子もしくは酸素、窒素t フこは硫黄
原子を含有する陰性な基のl ;141iもしくけ、2
種以上の混合物を表わす)で表わされる炭化水素溶媒に
可溶のマグネシウム化合物とハロゲン含有チタン化合物
またはハロゲン含有チタン化合物とバナジン化 。
p+q=mα+2,0≦q/ (,2+1)<2
The relationship is as follows: valence of 1 m x M, R' is one type or a mixture of two or more hydrocarbon groups having 1 to 20 carbon atoms, X is a hydrogen atom or oxygen, nitrogen t. This is a negative group containing a sulfur atom; 141i also works, 2
A magnesium compound soluble in a hydrocarbon solvent and a halogen-containing titanium compound or a halogen-containing titanium compound and vanadation.

合物の反応物を固体触媒〔A〕として用いる系(特公昭
52−36788号、特公昭52−36790号、特公
昭52−36791号、特公昭52−36795号、特
公昭52−36796号、特公昭52−36914号、
特公昭52−36915号、特u1」昭53−8799
0−弓、q′J開昭54−66391号、18− 特開昭54−66392号等に記載)、」二記これらの
固体触媒〔A〕とハロゲン含有のアルミニウムおよび/
またはチタン化合物の反応物を用いる系(特公昭53−
6019号、特開昭51−148785号に記載)、一
般式MαMgR6X、・Dr(式中M、R+’、X、α
、p、qけ前述の意味であり、Dけ電子供与性有機化合
物を表わし、rは0以上の数を示す)で表わされる炭化
水素溶媒に可溶のマグネシウム化合物とハロゲン化剤(
チタン、バナジン、ジルコン化合物ハ除く)との反応物
とチタン化合物またはチタン化合物とバナジン化合物の
反応物を固体触媒(A〕として用いる系(特開昭53−
40696号、特開昭53−57195号等に記載)、
一般式MaMg札X、Dr  とハロゲン化剤(チタン
、バナジン、ジルコン化合物は除く)の反応物の存在下
、チタン化合物またはチタン化合物とバナジン化合物も
しくはジルコン化合物および有機金属化合物を反応して
成る固体を固体触媒〔A〕として用いる触媒系(特願昭
56−20074号、特願昭56−35205号、特願
昭56−39655号に記載)、チタン酸エステルオリ
ゴマー14− とハロゲン化チタンの混合物を熱分解した後、一般式M
ctM、鴎Xq−D、(式中M、R’、X、D、α、p
Systems using compound reactants as solid catalysts [A] (Japanese Patent Publication No. 52-36788, Japanese Patent Publication No. 52-36790, Japanese Patent Publication No. 52-36791, Japanese Patent Publication No. 52-36795, Japanese Patent Publication No. 52-36796, Special Publication No. 52-36914,
Special Publication No. 52-36915, Special U1” 1982-8799
0-bow, q'J JP-A No. 54-66391, 18- JP-A No. 54-66392, etc.), 2.These solid catalysts [A] and halogen-containing aluminum and/or
Or a system using a reactant of a titanium compound (Japanese Patent Publication No. 53-
No. 6019, JP-A-51-148785), general formula MαMgR6X, .Dr (in the formula M, R+', X, α
, p, and q have the above-mentioned meanings; D represents an electron-donating organic compound, and r represents a number of 0 or more; a magnesium compound soluble in a hydrocarbon solvent and a halogenating agent (
A system using a reaction product of a titanium compound (excluding titanium, vanadine, and zircon compounds) and a titanium compound or a reaction product of a titanium compound and a vanadine compound as a solid catalyst (A)
No. 40696, JP-A No. 53-57195, etc.)
A solid formed by reacting a titanium compound or a titanium compound with a vanadine compound or a zircon compound and an organometallic compound in the presence of a reactant of the general formula MaMg tag X, Dr and a halogenating agent (excluding titanium, vanadine, and zircon compounds). The catalyst system used as the solid catalyst [A] (described in Japanese Patent Application No. 56-20074, Japanese Patent Application No. 56-35205, and Japanese Patent Application No. 56-39655) is a mixture of titanate ester oligomer 14- and titanium halide. After thermal decomposition, the general formula M
ctM, seagull Xq-D, (in the formula M, R', X, D, α, p
.

q、r  け前述の意味である)で処理したものを固体
触媒(A]として用いる系(特開昭55−38806号
に記載)等が挙げられる。
Examples include a system (described in JP-A-55-38806) in which a solid catalyst (A) treated with q and r has the meanings given above) is used.

触媒成分〔A〕および[n)は、重合条件下に重合系内
に添加しても良い12、あらかじめ重合に先立って組み
合わせても良い。捷た組み合わされる両成分の比率は 
〔A〕1y当D [13:]を0.1 rnmot〜5
00 mmot、軽重しくけ1 mmol 〜300 
mmotの範囲で用いられる。
Catalyst components [A] and [n) may be added into the polymerization system under polymerization conditions12 or may be combined in advance prior to polymerization. The ratio of the two components to be combined is
[A] 1y to D [13:] to 0.1 rnmot ~ 5
00 mmot, light and heavy weight 1 mmol ~ 300
Used in the mmot range.

少量割合の共役または非共役ジエンの存在下重合を行い
、重合体主鎖もしくは側鑓に二重結合を多く含む重合体
も製造可能である。
Polymers containing many double bonds in the polymer main chain or side chains can also be produced by carrying out polymerization in the presence of a small proportion of conjugated or non-conjugated diene.

本発明の実施例を以下に示すが1本発明はこの実施例に
よって何ら制限されるものではない。
Examples of the present invention are shown below, but the present invention is not limited to these examples in any way.

カお、これらの実施例中、MIはタルトインデックスを
表わし、ASTM D−1238により温度190℃、
荷重2.16 K9の条件下で測定したものである。
In these examples, MI stands for tart index, and the temperature was 190°C according to ASTM D-1238.
This was measured under a load of 2.16K9.

PRは温度190℃、荷M 21.6 K、yで測定し
た値をMIで除した商を意味し1分子量分布の尺度の1
つであり、値が低いほど分子弼:分布が狭いことを示し
ている。触媒活性は固体触媒(A) I S’ Mりの
共重合体生成量7で表わされる。
PR means the quotient obtained by dividing the value measured at a temperature of 190°C and a load M of 21.6 K, y by MI, and is 1 of the molecular weight distribution scale.
The lower the value, the narrower the molecular weight distribution. The catalytic activity is expressed by the amount of copolymer produced from the solid catalyst (A) IS'M.

実施例1 滴下ロートと水冷還流冷却器とを取付けた容量2501
11tのフラスコの内部の酸素と水分を窒素置換によっ
て除去し、窒素雰囲気下、トリクロルシラン1mot/
l のへブタン溶液25w4およびヘプタン25−を仕
込み70℃に昇温した。次に、kt6.02Mg (C
+HsL、yy (n C4HIL、?7 (n C4
H9)0.77 (On C4H9L、5221.5m
motを含有するヘプタン50tLtを滴下ロートに秤
取し、70℃で攪拌下に2時間かけて滴下した。
Example 1 Capacity 2501 with dropping funnel and water-cooled reflux condenser installed
Oxygen and moisture inside the 11 t flask were removed by nitrogen substitution, and 1 mot/ml of trichlorosilane was added under nitrogen atmosphere.
1 of heptane solution 25w4 and heptane 25% were charged and the temperature was raised to 70°C. Next, kt6.02Mg (C
+HsL,yy (n C4HIL,?7 (n C4
H9) 0.77 (On C4H9L, 5221.5m
50 tL of heptane containing mot was weighed into a dropping funnel, and added dropwise over 2 hours while stirring at 70°C.

この結果、反応液は白色の懸濁液となった。室温まで冷
却、静置し、上澄液をデカンテーションで除き、さらに
50tRtのへブタンで2回洗浄した後へブタ7を加え
”00*0液量とし7’n、(jD反応液7四塩化チタ
ン1.4 m mol  とジエチルアルミニウムクロ
リド3.2mmot を導入し、60℃で2時間反応を
行った後、固体触媒を単離し、ヘプタンで洗浄後乾燥し
た。
As a result, the reaction solution became a white suspension. Cool to room temperature, let stand, remove supernatant by decantation, wash twice with 50tRt hebutane, add Hebutane 7 to make 00*0 liquid volume, (jD reaction solution 74) After introducing 1.4 mmol of titanium chloride and 3.2 mmot of diethylaluminium chloride and carrying out a reaction at 60°C for 2 hours, the solid catalyst was isolated, washed with heptane, and then dried.

この固体触媒[A) 50■と、トリインブチルアルミ
ニウム2 mmotを脱水脱気したイソブタン6tとと
もに内部を脱水脱気した10tオートクレーブに導入し
た。次に1−オクテン1.7motを導入し、オートク
レーブの内温を70℃に昇温した1、水素を10.6 
Kg/cd−(Jxの圧力を加圧し、エチレンを導入し
全圧を14にグ/−・Gとした。エチレンを補給するこ
とにより14Kq/c11−Gの圧を保ちつつエチレ7
30motを重合した。ここで生成した共重合体はMI
 1.8、密度0゜942 であった。ついで、この権
1濁液を流動床型50 tオートクレーブに移送した後
 イソブタンをパージ除去した。オートクレーブの内温
を70°Cとし、エチレン:1−ブテン:水素のモル比
1: 0.15 : 0.05の混合ガスを17cnl
/秒の速度で導入しつつ10 Kr/c+J−Gの圧力
で10も間重合を行い、2120りの共重合体粉末を得
た。共重合体のMIは2.11、密度0.920、FR
24,嵩密度0.39 f/g!、融点は121℃であ
った。この共重合体をベレット状にした後、ダイ径50
11I+IIφのインフレフィルム成形機−一17〜 (小野製作新製30 、、ψ押出機)を使用して、厚み
30μのフィルムを製膜した。このフィルム特性を表工
に示す。
50 μm of this solid catalyst [A] and 2 mmot of triynebutylaluminum were introduced together with 6 tons of dehydrated and degassed isobutane into a 10-t autoclave whose interior was dehydrated and degassed. Next, 1.7 mot of 1-octene was introduced, and the internal temperature of the autoclave was raised to 70°C.
Kg/cd-(Jx pressure was increased, and ethylene was introduced to bring the total pressure to 14 kg/-・G. By replenishing ethylene, the pressure of 14 Kq/c11-G was maintained and the ethylene was increased to 7.
30 mots were polymerized. The copolymer produced here is MI
1.8, and the density was 0°942. This suspension was then transferred to a 50 ton fluidized bed autoclave, and the isobutane was removed by purging. The internal temperature of the autoclave was set to 70°C, and 17 cnl of a mixed gas of ethylene:1-butene:hydrogen in a molar ratio of 1:0.15:0.05 was added.
Polymerization was carried out for 10 minutes at a pressure of 10 Kr/c+J-G while introducing at a rate of 2,120 Kr/sec to obtain a copolymer powder of 2,120 Kr/sec. MI of copolymer is 2.11, density 0.920, FR
24, bulk density 0.39 f/g! , the melting point was 121°C. After making this copolymer into a pellet shape, the die diameter was 50.
A film with a thickness of 30 μm was formed using a 11I+IIφ inflation film molding machine-117 (Ono Seisaku Shinsei 30, ψ extruder). The characteristics of this film are shown in the surface finish.

実施例2 2個の滴下ロートを取付けた容i 500 mlのフラ
スコの内部の酸素と水分を乾燥窒素置換によって除去し
、160−のへブタンを加え一5℃に冷却した。次にM
g(C2H5) (n−C4H0)(n c4I(9I
、t )o、os40 mmotを含有するヘプタン8
0−と四塩化チタン60 mrnotを含有するヘプタ
ン80m1.とを、各々の滴下ロートに秤取し、−5℃
で攪拌下に両成分を同時に2時間かけて添加し、さらに
5℃で1時間熟成反応を行った。生成した固体触媒を単
離し、ヘプタンで洗浄後乾燥した。
Example 2 Oxygen and moisture inside a 500 ml flask equipped with two dropping funnels were removed by dry nitrogen substitution, 160-hbutane was added, and the flask was cooled to -5°C. Next M
g(C2H5) (n-C4H0)(n c4I(9I
, t ) o, heptane 8 containing os40 mmot
80 ml of heptane containing 0- and 60 mrnot of titanium tetrachloride. were weighed into each dropping funnel, and heated to -5°C.
Both components were added simultaneously over 2 hours while stirring, and the aging reaction was further carried out at 5°C for 1 hour. The produced solid catalyst was isolated, washed with heptane, and then dried.

この固体触媒[A:] 5s■とトリエチルアルミニウ
ム、5mmoLを脱水脱気したイソブタン6Lとともに
内部を脱水脱気した10tオートクレーブに導入した。
This solid catalyst [A:] 5s and triethylaluminum, 5mmol, were introduced together with 6L of dehydrated and degassed isobutane into a 10t autoclave whose interior was dehydrated and degassed.

次に4−メチル−1−ペンテン1.2motを導入し、
オートクレーブの内温を70℃に昇温した。水素を10
.7 V′c−・Gの圧力で加圧し、エチレ18− ンを導入し全圧を14 Ky/讐・Gとした。エチレン
を補給することにより14 Kv/ctl−Gの圧力を
保ちつつエチレン16 motを重合しフ?−6ついで
との懸濁液を流動床型50 tオートクレーブに移送し
た後、イソブタンをパー 除去した。共111合体を少
量抜き取り、MI 、密度を測定した所MTは2.3、
密度0.940であった。オートクレーブの内部1を7
0℃とし、エチレン=1−ブテン:水素のモル比1 :
 0.19 :0o09の混合ガスを15ozt/秒の
速度で導入しつつ10に9/讐・Gの圧力で1.5時間
11[合を行い、2380 fの共重合体粉末を得た。
Next, 1.2 mot of 4-methyl-1-pentene was introduced,
The internal temperature of the autoclave was raised to 70°C. 10 hydrogen
.. It was pressurized at a pressure of 7 V'c-G, and ethylene was introduced to bring the total pressure to 14 Ky/V'G. By supplying ethylene, 16 mot of ethylene was polymerized while maintaining a pressure of 14 Kv/ctl-G. -6 The suspension was then transferred to a 50 t fluidized bed autoclave, and the isobutane was then removed. A small amount of the 111 compound was taken out and the MI and density were measured, and the MT was 2.3.
The density was 0.940. Inside the autoclave 1 to 7
The temperature is 0°C, and the molar ratio of ethylene = 1-butene: hydrogen is 1:
While introducing a mixed gas of 0.19:0:09 at a rate of 15 ozt/sec, a copolymer powder of 2380 f was obtained by combining at a pressure of 10 to 9/g for 1.5 hours.

共重合体のMIは1.8、密度Q、924、F’R35
、宸密度は0.41 t/−であった。
Copolymer MI is 1.8, density Q is 924, F'R35
, the density was 0.41 t/-.

共重合体を実施例1と同様な条件で厚み30μのフィル
ムに製膜し、これの特性を測定した。この結果を表工に
示す。
The copolymer was formed into a film having a thickness of 30 μm under the same conditions as in Example 1, and its properties were measured. Show the results to the tablework.

比較例1 滴下ロート及び水冷還流冷却器を取り伺けた容量500
 mlのフラスコの内部の酸素と水分を窒素置換によっ
て除去し、窒素雰囲気下、四塩化チタン200 mmo
t  を含有するヘプタ7200 mgを仕込んだ。
Comparative Example 1 Capacity 500 with dropping funnel and water-cooled reflux condenser
Oxygen and moisture inside the ml flask were removed by nitrogen substitution, and 200 mmol of titanium tetrachloride was added under a nitrogen atmosphere.
7200 mg of hepta containing t was charged.

滴下ロートにジエチルアルミニウムクロリド250mr
notを含有するヘプタン200コを秤取し、30℃で
攪拌下1時間で滴下した後、70℃に昇温し、2時間反
応を行い、固体触媒を単離し、ヘプタンで洗浄後乾燥し
た。
Add 250ml of diethylaluminum chloride to the dropping funnel.
200 pieces of heptane containing not were weighed out and added dropwise at 30° C. over 1 hour while stirring, then the temperature was raised to 70° C., reaction was carried out for 2 hours, and the solid catalyst was isolated, washed with heptane, and then dried.

この固体触媒(A、) soo■とトリエチルアルミニ
ウム600 mmot及び1−ブテン2.Omotを用
いる以外は実施例1と同様の操作で懸濁重合を行いエチ
レン30 matを重合した。続いて、エチレン:1−
ブテン:水素のモル比1 : 0.23 : 0.02
の混合ガスを用いる以外は実施例1と同様の操作で気相
重合を行い、240Ofの共重合体粉末を得た。共重合
体のMIは3.2、密度0.923、FR39、嵩密度
は0,25、融点は、117℃であった。共重合体を実
施例1と同様な条件で厚み30μのフィルムを製膜し、
これの特性を測定した。この結果を表工に示す。
This solid catalyst (A,) soo■, triethylaluminum 600 mmot and 1-butene 2. Suspension polymerization was carried out in the same manner as in Example 1 except that Omot was used, and 30 mat of ethylene was polymerized. Subsequently, ethylene: 1-
Butene:hydrogen molar ratio 1: 0.23: 0.02
Gas phase polymerization was carried out in the same manner as in Example 1 except that a mixed gas of 240Of was used to obtain a copolymer powder of 240Of. The copolymer had an MI of 3.2, a density of 0.923, a FR of 39, a bulk density of 0.25, and a melting point of 117°C. A film with a thickness of 30μ was formed using the copolymer under the same conditions as in Example 1,
The characteristics of this were measured. Show the results to the tablework.

比較例2 実施例1で合成した固体触媒[:A) 80■、トリエ
チルアルミニウム3mmot及びダイヤレン124(三
菱化成社製、1−ドデセンと1−テトラデセンの混合物
) 5 molを用いる以外は実施例1と同様な操作で
1時間重合を行った。重合途中より攪拌動力が上り円滑
な撲:拌が困離となり、またジャケットによる冷却効果
が下り、リアクター内の温度コントロールに乱れが生じ
た。重合俵、塊状の共重合体1350 t f:得た。
Comparative Example 2 Same as Example 1 except that 80 mol of the solid catalyst [:A] synthesized in Example 1, 3 mmot of triethylaluminum, and 5 mol of Dialene 124 (manufactured by Mitsubishi Kasei Corporation, a mixture of 1-dodecene and 1-tetradecene) were used. Polymerization was carried out in the same manner for 1 hour. In the middle of polymerization, the stirring power increased and smooth stirring became difficult, and the cooling effect of the jacket deteriorated, causing disturbances in the temperature control inside the reactor. A polymer bale of 1350 tf of bulk copolymer was obtained.

この共重合体のMIは6.7、密度は0.938であっ
た。
This copolymer had an MI of 6.7 and a density of 0.938.

表  1 実施例3〜8 実施例1で合成した固体触媒〔A〕50〜とトリイ21
− ツブチルアルミニウム2.8 mmc)Lを用い表■に
示す条件を用いる以外は実施例1と同様々操作で重合を
行い該表の結果を得た。
Table 1 Examples 3 to 8 Solid catalyst [A] 50 to synthesized in Example 1 and Toli 21
- Polymerization was carried out in the same manner as in Example 1, except that 2.8 mmc) L of subbutylaluminum was used and the conditions shown in Table 1 were used to obtain the results shown in the table.

実施例9〜10 滴下ロートと水冷還流冷却器とを取付けた容量250−
のフラスコの内部の酸素と水分を窒素置換によって除去
し、窒素雰囲気下、 A4+、15 Mg(C2N(s )o、45(n−C
4Hg )250 mmotを含有するヘプタン50−
を仕込み80℃に昇温した。次に、ジクロルメチルシラ
ン50mmotを含有するヘプタン50−を滴下ロート
に秤取し、80℃で攪拌下30分で滴下し、さらにこの
温度で1時間攪拌した。生成した白色固体を単離し、乾
燥した。この白色固体2tと四塩化チタン40 mlを
130℃で2時間反応させた後、固体を単離し、ヘプタ
ンで洗浄後乾燥した。この固体触媒[A’:] 100
■とトリイソブチルアルミニウム8.4mmoAを用い
、表■に示す条件を用いる以外は実施例1と同様な操作
で重合を行い該表の結果を得た。
Examples 9-10 Capacity 250- with dropping funnel and water-cooled reflux condenser installed
Oxygen and moisture inside the flask were removed by nitrogen substitution, and A4+, 15 Mg(C2N(s)o, 45(n-C)
4Hg) Heptane 50- containing 250 mmot
was charged and the temperature was raised to 80°C. Next, 50 mmol of heptane containing 50 mmot of dichloromethylsilane was weighed into the dropping funnel, added dropwise over 30 minutes while stirring at 80° C., and further stirred at this temperature for 1 hour. The white solid that formed was isolated and dried. After reacting 2 tons of this white solid with 40 ml of titanium tetrachloride at 130° C. for 2 hours, the solid was isolated, washed with heptane, and then dried. This solid catalyst [A':] 100
Polymerization was carried out in the same manner as in Example 1 except for using 8.4 mmoA of triisobutylaluminum and 8.4 mmoA of triisobutyl aluminum, and the results shown in the table were obtained.

=22−=22-

Claims (1)

【特許請求の範囲】 1、 エチレンと(a)炭素原子数3〜4個のα−オレ
フィン、(b)炭素原子数5〜15個のα−オレフィン
、の各々のグループより選ばれた2fHfj以上のα−
オレフィンを、[A、)少なくとも、マグネシウム、チ
タンおよびハロゲン原子を含有する固体触媒及び(13
)有機金属化合物の存在下共重合せしめ、共重合体を里
1!造するに当り第1段: 炭化水素溶媒の存在下θ〜
120℃でエチレンと(b)炭素原子数5〜15個のα
−オレフィンの共重合を行い、 最終共重合体全量に対し1〜70重量 %の共重合体を生成させる。 第2段: 共重合体より炭化水素溶媒を除去する。 第3段: 実質的に無溶媒下、気相状態でエチレンと(
a)炭素原子数3〜4個のα−オレフィンの共重合を行
う。 ことを特徴とする共重合体の製造方法。
[Scope of Claims] 1. 2fHfj or more selected from the following groups: 1. Ethylene, (a) α-olefins having 3 to 4 carbon atoms, and (b) α-olefins having 5 to 15 carbon atoms. α−
The olefin is combined with [A,) a solid catalyst containing at least magnesium, titanium and halogen atoms and (13
) Copolymerized in the presence of an organometallic compound to form a copolymer! First stage: θ ~ in the presence of a hydrocarbon solvent
At 120°C, ethylene and (b) α having 5 to 15 carbon atoms
- Copolymerizing the olefin to produce a copolymer of 1 to 70% by weight based on the total amount of the final copolymer. Second stage: removing the hydrocarbon solvent from the copolymer. 3rd stage: Ethylene and (
a) Copolymerizing an α-olefin having 3 to 4 carbon atoms. A method for producing a copolymer, characterized by:
JP10566781A 1981-07-08 1981-07-08 Production of copolymer Pending JPS588711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10566781A JPS588711A (en) 1981-07-08 1981-07-08 Production of copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10566781A JPS588711A (en) 1981-07-08 1981-07-08 Production of copolymer

Publications (1)

Publication Number Publication Date
JPS588711A true JPS588711A (en) 1983-01-18

Family

ID=14413783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10566781A Pending JPS588711A (en) 1981-07-08 1981-07-08 Production of copolymer

Country Status (1)

Country Link
JP (1) JPS588711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100568A (en) * 1985-10-26 1987-05-11 Toagosei Chem Ind Co Ltd Adhesive composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56815A (en) * 1979-05-24 1981-01-07 Nippon Oil Co Ltd Preparation of polyolefin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56815A (en) * 1979-05-24 1981-01-07 Nippon Oil Co Ltd Preparation of polyolefin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100568A (en) * 1985-10-26 1987-05-11 Toagosei Chem Ind Co Ltd Adhesive composition

Similar Documents

Publication Publication Date Title
JP2557054B2 (en) Alpha-olefin polymerization catalyst composition
KR0142196B1 (en) Ziegler-natta catalyst
FI59603B (en) OLEFIN-POLYMERISERINGSKATALYSATOR FOERFARANDE FOER DESS FRAMSTAELLNING OCH FOERFARANDE FOER POLYMERISERING AV OLEFINER GENOM DENNA KATALYSATORN
CA1187470A (en) Solid catalyst component for olefin polymerization
US5013802A (en) Process for preparing ethylene polymers
US4384983A (en) Catalyst and process for production of polyolefins of improved morphology
JP2003503562A (en) Method for producing magnesium / transition metal alkoxide complex and polymerization catalyst produced therefrom
EP0110608B1 (en) Process for making olefin polymerization catalyst
EP0902794B1 (en) Catalyst
FI80058C (en) Process for polymerizing ethylene
GB1595072A (en) Process for the preparation of polymers of ethylene and copolymers of ethylene with other alphaolefins and catalysts therefor
JPS588711A (en) Production of copolymer
JPS6026407B2 (en) Method for producing ethylene copolymer
JPS5846129B2 (en) Method for producing highly crystalline olefin polymer
US5744414A (en) Process for preparing an olefin polymerisation catalyst
US5399540A (en) ZR/V multi-site olefin polymerization catalyst
JPS5840307A (en) Production of copolymer
JPS61275303A (en) Polymerization of ethylene or alpha-olefin
US5286818A (en) Polymerization process employing metal halide catalyst and polymer produced
JPS58141201A (en) Solid catalytic component for olefin polymerization
CN107880169B (en) Catalyst component for olefin polymerization and preparation and application thereof
Kim et al. Synthesis of Terpolymers and Dependence of Their Characteristics on Types and Content of High α-olefin
JPS5915407A (en) Polymerization of 1-olefin
KR0139882B1 (en) Catalyst for ethylene polymerization and its processing method
JP2536527B2 (en) Method for producing polyethylene