JPS5840307A - Production of copolymer - Google Patents

Production of copolymer

Info

Publication number
JPS5840307A
JPS5840307A JP13832581A JP13832581A JPS5840307A JP S5840307 A JPS5840307 A JP S5840307A JP 13832581 A JP13832581 A JP 13832581A JP 13832581 A JP13832581 A JP 13832581A JP S5840307 A JPS5840307 A JP S5840307A
Authority
JP
Japan
Prior art keywords
copolymer
ethylene
olefin
polymerization
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13832581A
Other languages
Japanese (ja)
Inventor
Masayasu Furusato
古里 正保
Tadashi Ikegami
正 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13832581A priority Critical patent/JPS5840307A/en
Publication of JPS5840307A publication Critical patent/JPS5840307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To reduce the amount of an expensive long-chain alpha-olefin used and at the same time to produce a high-quality, low-density copolymer, by subjecting ethylene and an alpha-olefin to vapor-phase polymerization in the 1st stage and to suspension polymerization in the 2nd stage in the presence of a Ziegler catalyst under specified conditions. CONSTITUTION:Ethylene and an alpha-olefin are copolymerized in two stages in the presence of (A) a solid catalyst containing Mg, Ti and a halogen atom and (B) an organometallic compound. Namely, (i) in a vapor phase, ethylene and a 3-4 C alpha-olefin are polymerized at about 20-110 deg.C under atmospheric pressure to 100kg/cm<2>G to form 10-80wt%, based on the total weight of the final copolymer, copolymer of density about 0.935-0.96, and subsequently (ii) ethylene and a 5 C or higher alpha-olefin are polymerized at about 0-120 deg.C under atmospheric pressure to 100kg/cm<2>G in the presence of a hydrocarbon solvent to form a low- density (<= about 0.92) copolymer.

Description

【発明の詳細な説明】 本発明は、エチレンと2種以上のα−オレフィンを共重
合する新規な共重合体の製法に関するものであり、さら
に詳しくは、気相状態でエチレンと炭素原子数5〜4個
のα−オレフィンを共重合した後、炭化水素溶媒め存在
下、エチレンと炭素原子数5〜15個のα−オレフィン
の共重合を行う共重合体の製法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a novel copolymer in which ethylene and two or more α-olefins are copolymerized. This method involves copolymerizing ~4 α-olefins and then copolymerizing ethylene with an α-olefin having 5 to 15 carbon atoms in the presence of a hydrocarbon solvent.

従来より、チーク2−型触媒を用い、エチレンと他のα
−オレフィンを共重合することにより、エチレン共重合
体の密度をコン)o−ルし、中、低密度ポリエチレンを
製造できることは、カナダ特許第!!4211号勢によ
シ公知であった。しかも、チーグラー型触媒を用い、エ
チレンと他のα−オレフィンを共重合するととKより得
られる低密度ポリエチレンは、嵩圧法による低密度ボリ
エパチレンに比較し、耐引訣性勢の機械的性質に優れ、
また融点も10〜12℃高いという優れた特徴を有する
。さらにこの特徴社、炭素原子数5個以上のα−オレフ
ィンを用いることによシ極めて効果的に発揮される。し
かしながら、炭素原子数5個以上のα−オレフィンは工
業的に高価であり、生産1′ 量も少ないため、共重合体のコストが上り、また生産量
が制限される等の問題がある。
Conventionally, a Teak 2-type catalyst has been used to convert ethylene and other α
- It is possible to control the density of an ethylene copolymer by copolymerizing olefins to produce medium- to low-density polyethylene, which is the subject of a Canadian patent! ! It was well known in No. 4211. Moreover, the low-density polyethylene obtained from K by copolymerizing ethylene and other α-olefins using a Ziegler type catalyst has superior mechanical properties such as tensile strength compared to low-density polyethylene produced by the bulk pressure method. ,
It also has an excellent melting point of 10 to 12°C higher. Furthermore, this method is extremely effective when using α-olefins having 5 or more carbon atoms. However, α-olefins having 5 or more carbon atoms are industrially expensive and can be produced in small amounts, resulting in problems such as increased cost of the copolymer and limited production.

一方、エチレンと他のα−オレフィンとの共重合体の製
造方法としては、炭化水素溶媒中、共重合体の融点以下
の温度で懸濁状態で重合を行う懸濁重合法、膨化水素溶
媒中、共重合体の融点以上の温度で溶液状状態で重合を
行う溶液重合法、および実質的に溶媒の不存在下、12
0℃以下の温度で気相状態で重合を行う気相重合法が公
知である。
On the other hand, methods for producing copolymers of ethylene and other α-olefins include a suspension polymerization method in which polymerization is carried out in suspension at a temperature below the melting point of the copolymer in a hydrocarbon solvent, and a suspension polymerization method in which polymerization is carried out in a suspended state in a hydrocarbon solvent at a temperature below the melting point of the copolymer. , a solution polymerization method in which polymerization is carried out in a solution state at a temperature higher than the melting point of the copolymer, and substantially in the absence of a solvent, 12
A gas phase polymerization method in which polymerization is carried out in a gas phase at a temperature of 0° C. or lower is known.

しかし、エチレンと他のα−オレフィンの共重合を懸濁
重合にて実施する際には、密度を下げるにしたがい溶媒
に可溶の共重合体量が増加するため、共重合体の嵩密度
が低下し、反応器壁へのファウリングが激しく、また重
合系の粘度上昇やペタツキが起る傾向がある。この喪め
、共重合体の密gO,940以上では、運転に支障はほ
ぼ生じないが、共重合体の密度を0.920 fiで下
げると工業的運転が困難となる。
However, when copolymerizing ethylene and other α-olefins by suspension polymerization, the bulk density of the copolymer increases because the amount of copolymer soluble in the solvent increases as the density decreases. This tends to cause severe fouling on the reactor wall, as well as increase in viscosity and stickiness of the polymerization system. If the copolymer density gO is 940 or higher, there will be almost no trouble in operation, but if the copolymer density is lowered to 0.920 fi, industrial operation becomes difficult.

ところが、溶液重合においては、共重合体が溶解してお
り、溶液状で操作するため上記のような問題は生じない
が、高粘度溶液を攪拌するので、メルトインデックス(
以下、MIと略記する)の低い高分子量共重合体になる
ほど溶液の濃度を低く°シなければならず、MI O,
5以下の高分子量共重合体の製造は非常に困難である。
However, in solution polymerization, the copolymer is dissolved and the operation is performed in a solution state, so the above problems do not occur, but since a highly viscous solution is stirred, the melt index (
The lower the high molecular weight copolymer (hereinafter abbreviated as MI), the lower the concentration of the solution must be.
It is very difficult to produce high molecular weight copolymers with a molecular weight of 5 or less.

しかも、溶液重合においては、粉末で共重合体を得ると
とができないという欠点がある。
Moreover, solution polymerization has the disadvantage that if the copolymer is obtained as a powder, it cannot be sharpened.

一方、気相重合においては、密度およびMTを下は友共
重合体を製造することは比較的容易であるが、気相状態
であるため、沸点の高い炭素原子数5個以上のα−オレ
フィンを用いることは工業的に非常に困難である。これ
に対し、懸濁重合、溶液重合では、α−オレフィンの種
類の選択は基本的には制限はない。
On the other hand, in gas phase polymerization, it is relatively easy to produce a copolymer with low density and MT, but because it is in a gas phase, α-olefins with a high boiling point and 5 or more carbon atoms can be produced. It is industrially very difficult to use. On the other hand, in suspension polymerization and solution polymerization, there are basically no restrictions on the selection of the type of α-olefin.

本発明者らは、上記論問題を解決すべく鋭意研究を進め
た結果、本発明を完成するに到ったのであり、本発明に
より、低密度かつ低M!の共重合体を容易に製造でき、
かつ炭素原子数3〜4個のα−オレフィンおよび5〜1
5個のα−オレフィンを組合わせて用いることにより、
高価な炭素原子数5〜15個のα−オレフィンの使用量
を減らして製造した共重合体が、エチレンと炭素原子数
5個以上のα−オレフィンとの共重合体と同等以上の性
能を有することは驚くべきことである。
The inventors of the present invention have completed the present invention as a result of intensive research to solve the above-mentioned problems. can easily produce copolymers of
and α-olefin having 3 to 4 carbon atoms and 5 to 1
By using a combination of five α-olefins,
A copolymer produced by reducing the amount of expensive α-olefin having 5 to 15 carbon atoms has performance equivalent to or better than a copolymer of ethylene and α-olefin having 5 or more carbon atoms. That is surprising.

すなわち、本発明は、エチレンと、(a)炭素原子数3
〜4個のα−オレフィン、(b)炭素原子数5〜15個
のα−オレフィンの各々のグループより選ばれた2種以
上のα−オレフィンを、囚少なくともマグネシウム、チ
タンおよびハロゲン原子を含有する固体触媒および圓有
機金属化合物の存在下に共重合せしめ、共重合体を製造
するに当シ第1段:実質的に無溶媒下、気相状態でエチ
レンと(a)炭素原子数3〜4個のα−オレフィンの共
重合を行い、最終共重合体全量に対し10〜80重量−
〇共重合体を生成させる 第2段二縦化水素溶媒の存在下、0〜120℃でエチレ
ンと(b)炭素原子数5〜15個のα−オレフィンの共
重合を行うことを特徴とする共重合体の製法に係るもの
である。
That is, the present invention provides ethylene and (a) a carbon atom having 3 carbon atoms.
~4 α-olefins, (b) two or more α-olefins selected from each group of α-olefins having 5 to 15 carbon atoms, and containing at least magnesium, titanium, and halogen atoms. Copolymerization in the presence of a solid catalyst and a spherical organometallic compound to produce a copolymer. 1st step: ethylene and (a) having 3 to 4 carbon atoms in a gas phase substantially in the absence of a solvent. Copolymerization of α-olefins is carried out, and 10 to 80% by weight of the total amount of the final copolymer is copolymerized.
〇The second stage for producing a copolymer is characterized by copolymerizing ethylene and (b) an α-olefin having 5 to 15 carbon atoms at 0 to 120°C in the presence of a double vertical hydrogen solvent. This relates to a method for producing a copolymer.

以下、本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

本発明の第1の特徴は、高価な長鎖α−オレフィンの使
用量を最少限に押え、なおかつ高品質の共重合体を製造
できることであシ、後述の実施例1.2、比較例1より
本発明の優位性は明らかである。
The first feature of the present invention is that it is possible to minimize the amount of expensive long-chain α-olefin used and still produce a high-quality copolymer. The superiority of the present invention is clear.

本発明の第2の特徴社、溶液重合では製造が困難なMI
 O,5以下の共重合体を製造できることである。
The second feature of the present invention is MI, which is difficult to produce by solution polymerization.
It is possible to produce copolymers with O,5 or less.

本発明の第3の特徴は、低密度の共重合体を粉体特性良
好な粉末として製造できることであり、これは共重合体
をペレタイズと言う余分のエネルギーを必要とする工程
を省略し、粉末のまま出荷を可能とするものである。
The third feature of the present invention is that a low-density copolymer can be produced as a powder with good powder characteristics. This allows for shipment as is.

前述のごとく、懸濁重合で低密度の共重合体の製造は困
難であるが、もし可能となれば粉末の共重合体を容易に
製造できる丸め、種々の試みがなされてきた。例えば、
特開昭51−52487号、特開昭52−121689
号、特開昭52−12408?号のごとく、少量のエチ
レンを予重合した後、エチレンとα−オレフィンの共重
合を実施する方法である。しかし、この方法で杜、使用
できる溶媒が非常に限られる上、予重合で生成する重合
体が高密度、高分子量である良め、フィルム製膜、回転
成形等で成品のゲルやプッの原因となるととである。一
方、現在本発明者がすでに発明した、懸濁重合の後気相
重合を実施する方法(%願昭56−105447号)に
よっても、本特徴は達成される。
As mentioned above, it is difficult to produce a low-density copolymer by suspension polymerization, but if it were possible, various attempts have been made to easily produce a powdered copolymer. for example,
JP-A-51-52487, JP-A-52-121689
No., Japanese Patent Publication No. 52-12408? This method involves prepolymerizing a small amount of ethylene and then copolymerizing ethylene and α-olefin. However, in this method, the solvents that can be used are very limited, and the polymer produced by prepolymerization has a high density and high molecular weight, which can cause gel or stickiness in the product during film formation, rotational molding, etc. That's it. On the other hand, this characteristic can also be achieved by a method (% Application No. 105447/1983), which has been invented by the present inventor, in which suspension polymerization is followed by gas phase polymerization.

しかし、この方法でd、懸濁重合より気相重合に移行す
る際、溶媒を除去する必要があるため、この工程で触媒
が失活しえり、溶媒除去が不十分で気相重合に支障をき
たしたりする可能性が大きいといった問題がある。
However, in this method, when transitioning from suspension polymerization to gas phase polymerization, it is necessary to remove the solvent, so the catalyst may be deactivated in this step, and the solvent removal may be insufficient, causing problems in gas phase polymerization. There is a problem in that there is a high possibility that this will occur.

本発明は、以下で詳述する条件下、第1段で気相重合を
行う九後、第2段で懸濁重合を行うことにより、密度0
.9 jOの共重合体の粉末をも製造可能としたもので
ある。
In the present invention, under the conditions detailed below, after gas phase polymerization is performed in the first stage, suspension polymerization is performed in the second stage.
.. 9 jO copolymer powder can also be produced.

本発明の第4の特徴は、分子量分布の狭い共重合体を高
活性で製造できることであシ、以下で説明する本発明に
好適な触媒を用いることによ)、初めて達成されるもの
である。また、特定の触媒を用いれば分子量分布の広い
共重合体の製造も可能である。さらに1第1段と第2段
の重合条件をコン)o−ルすることによっても分子量分
布の広い共重合体の製造が可能である。
The fourth feature of the present invention is that a copolymer with a narrow molecular weight distribution can be produced with high activity, which is achieved for the first time (by using a catalyst suitable for the present invention as described below). . Furthermore, if a specific catalyst is used, it is also possible to produce a copolymer with a wide molecular weight distribution. Furthermore, by controlling the polymerization conditions in the first and second stages, it is also possible to produce a copolymer with a wide molecular weight distribution.

本発明で用いられるα−オレフィンについて説明する。The α-olefin used in the present invention will be explained.

(M)  炭素原子数3〜4個のα−オレフィンとして
は、プロピレン、1−ブテン、もしくはこれらの混合物
であり、好ましくFil−ブテンが用いられる。
(M) The α-olefin having 3 to 4 carbon atoms is propylene, 1-butene, or a mixture thereof, and Fil-butene is preferably used.

伽)炭素原子数5〜15個のα−オレフィンとしては、
例えば、1−ペンテン、1−ヘキセン、1−ヘプテン、
1−オクテン、1−ノネン、1−デセン、1−ウンデ竜
ン、1−ドデセン、1−トリテセン、1−テトラデセン
、1−ペンタデセン、5−メチル−1−ブテン、5−メ
チル−1−ペンテン、4−メチル−1−ペンテン、4.
4−ジメチル−1−ペンテン、ビニルシクロセサン等モ
しくはこれらの混合物が用いられる。
佽) As an α-olefin having 5 to 15 carbon atoms,
For example, 1-pentene, 1-hexene, 1-heptene,
1-octene, 1-nonene, 1-decene, 1-undene, 1-dodecene, 1-tritecene, 1-tetradecene, 1-pentadecene, 5-methyl-1-butene, 5-methyl-1-pentene, 4-methyl-1-pentene, 4.
4-dimethyl-1-pentene, vinylcyclocethane, or mixtures thereof are used.

本発明は、第1段として、実質的に無溶媒下、気相状態
でエチレンと(8)炭素原子数3〜4個のα−オレフィ
ンの共重合を実施するが、重合温度は20〜110℃、
好ましくは40〜90℃、重合圧力は常圧〜10 Q 
kg/cd・Gの範囲で実施される。
In the first stage of the present invention, copolymerization of ethylene and (8) an α-olefin having 3 to 4 carbon atoms is carried out in a gas phase substantially without a solvent, and the polymerization temperature is 20 to 110°C. °C,
Preferably 40 to 90°C, polymerization pressure is normal pressure to 10Q
It is carried out in the range of kg/cd・G.

分子量の調節祉、重合温度、α−オレフィンの添加量に
よっても可能であるが、重合系中に水素を導入すること
により効果的に実施される。
Although it is possible to control the molecular weight, the polymerization temperature, and the amount of α-olefin added, it is effectively carried out by introducing hydrogen into the polymerization system.

α−オレフィン(a)の使用量ハ、′エチレンに対し1
〜250molチ、好ましくは5〜200mot91G
の範囲である。
The amount of α-olefin (a) used is 1 for ethylene.
~250 mol, preferably 5-200 mol91G
is within the range of

本発明においては、第1段にて生成する共重合体量が最
終共重合体全量に対し10〜80重量−1好ましくは2
5〜65重量−であることが、本発明の目的を達成する
丸めに必要である。また、第1段、で生成する共重合体
の密度はO,? 35〜0.960、好ましくは0.9
40〜O1? 55の範囲であることが重要である。
In the present invention, the amount of copolymer produced in the first stage is 10 to 80% by weight, preferably 2% by weight, based on the total amount of the final copolymer.
5 to 65 weights is necessary for rounding to achieve the purpose of the invention. Also, the density of the copolymer produced in the first stage is O,? 35-0.960, preferably 0.9
40~O1? It is important that it is in the range of 55.

懸濁重合においては、前述のごとく密[0,940以下
の製造は容易でなく、種々の製造上の制限が生じ、密度
0.? 20以下はほとんど工業的に不可能である。と
ころが、本発明は、第1段の気相重合で密度をコントロ
ールした共重合体粉末を生成し、引き続き懸濁重合を実
施することにより、これまで不可能とされていた密度0
.? 20以下の共重合体を懸濁重合で製造可能とし喪
ものである。
In suspension polymerization, as mentioned above, it is not easy to produce a density of 0.940 or less, and various manufacturing restrictions arise. ? A value of 20 or less is almost industrially impossible. However, the present invention produces a copolymer powder with a controlled density in the first stage of gas phase polymerization, and then performs suspension polymerization to achieve a density of 0, which was previously considered impossible.
.. ? 20 or less can be produced by suspension polymerization.

この理由はいまだ明らかでは表いが、気相重合において
生成し九密度の高い共重合体が、各粒子の表面で殻のよ
うな役割を果し、懸濁重合で内部に生成する重度の低い
共重合体が溶媒に溶解するのを防いでいる九めと考えら
れる。さらに、第1段と第2段で生成する共重合体量、
各段の共重合体の密度の差が小さい丸め、フィルム製膜
、回転成形にシける成品のゲル、プツの生成を防げると
いう特徴を持ち合わせている。
The reason for this is still unclear, but the highly dense copolymer produced during gas phase polymerization plays a role like a shell on the surface of each particle, and the less dense copolymer produced inside during suspension polymerization acts as a shell. This is thought to be the ninth factor that prevents the copolymer from dissolving in the solvent. Furthermore, the amount of copolymer produced in the first stage and the second stage,
It has the characteristic that the difference in density between the copolymers at each stage is small, which prevents the formation of gels and lumps in the finished product during rounding, film forming, and rotational molding.

気相重合の後、第2段として炭化水素溶媒の存在下、懸
濁状態でエチレンと伽)炭素原子数5〜15個のα−オ
レフィンの共重合を行うが、第1段が攪拌機付オートク
レーブであれば、同一の反応器内で溶媒を導入し重合を
行ってもよいし、また第1段を単数または複数の反応器
で気相重合を行った後、第2段を別個の単数ま九は複数
の反応器で懸濁重合を行うこと本可能である。
After gas phase polymerization, in the second stage, ethylene and α-olefin having 5 to 15 carbon atoms are copolymerized in a suspended state in the presence of a hydrocarbon solvent, but the first stage is an autoclave equipped with a stirrer. If so, the polymerization may be carried out by introducing a solvent in the same reactor, or the first stage may be carried out in a gas phase polymerization in one or more reactors, and then the second stage may be carried out in a separate single or plural reactor. Nine, it is possible to carry out suspension polymerization in multiple reactors.

懸濁重合は炭化水素溶媒として、プロパンハ n−ブタ
ン、i−7’タン、n−ペンタン、i−ペンタン、n−
ヘキサン、i−へキサン等の混合物、好ましくは脚素原
子数が3〜5個の炭化水素化合物を用い、重合温度0〜
120℃、好ましくは10〜90℃、重合圧力は常圧〜
1ookg/c11・Gの範囲で実施される。
Suspension polymerization uses propane as a hydrocarbon solvent, n-butane, i-7'tane, n-pentane, i-pentane, n-
A mixture of hexane, i-hexane, etc., preferably a hydrocarbon compound having 3 to 5 legome atoms, is used at a polymerization temperature of 0 to 0.
120℃, preferably 10 to 90℃, polymerization pressure is normal pressure to
It is carried out in the range of 1ookg/c11・G.

分子量の調節は、連鎖移動を起し易い有機化合物の添さ
、重合温度、α−オレフィン添加量等によっても可能で
あるが、重合系中に水素を導入することにより、効果的
に分子量の調節が実施される。
Molecular weight can be adjusted by adding organic compounds that are likely to cause chain transfer, polymerization temperature, amount of α-olefin added, etc., but molecular weight can be effectively adjusted by introducing hydrogen into the polymerization system. will be implemented.

α−オレフィン(b)の使用量は、エチレンに対し1〜
250 mole、好ましくは5〜200 mot−の
範囲である。
The amount of α-olefin (b) used is 1 to 1 per ethylene.
250 moles, preferably in the range of 5 to 200 mots.

懸濁重合においては、新7[触媒を加えないか、もしく
は有機金属化合物(2)のみを添加して実施するのが好
ましい。新たに固体触媒囚を添加すると、共重合体の物
性が低下するので好ましくない。
In suspension polymerization, it is preferable to carry out the suspension polymerization without adding a catalyst or adding only the organometallic compound (2). It is not preferable to add a new solid catalyst because it deteriorates the physical properties of the copolymer.

本発明に用いる触媒社、囚少なくともマグネシウム、チ
タンおよびハロゲン原子を含有する固に触媒および圓有
機金属化合物よりなり、固体触媒囚としては、有機マグ
ネシウム化合物とハロゲン含有チタン化合物または^ロ
ゲン含有チタン化合物とバナジン化合物tた#′i/お
よびジルコン化合物の反応物、有機iグネシウム化合物
とハロゲン化剤(チタン、バナジ/、ジルコン化合物は
除く)の反応物とチタン化合物またはチタン化合物とバ
ナジン化合物または/およびジルコン化合物との反応物
、マグネシウムまたはマグネシウムとカルシウム、ホウ
素、アルミニウム、ケイ素、亜鉛より選ばれた少なくと
も1種を含有するハロゲン化物、水酸化物、酸化物、炭
酸塩、アルコキシド等とハロゲン含有チタン化合物また
はハロゲン含有チタン化合物とバナジン化合物または/
およびジルコン化合物の反応物等が用いられる。
The catalyst used in the present invention consists of a solid catalyst and a round organometallic compound containing at least magnesium, titanium, and halogen atoms. A reaction product of a vanadine compound and a zircon compound, a reaction product of an organic magnesium compound and a halogenating agent (excluding titanium, vanadium, and zircon compounds) and a titanium compound, or a titanium compound and a vanadine compound or/and zircon A reaction product with a compound, a halide, hydroxide, oxide, carbonate, alkoxide, etc. containing at least one selected from magnesium or magnesium and calcium, boron, aluminum, silicon, zinc, and a halogen-containing titanium compound or Halogen-containing titanium compound and vanadine compound or/
and reactants of zircon compounds are used.

有機金属化合物(5)としては、At(CaHe )s
 、At(CsHJs、AJ!(C*1’1s)s %
  At(Cs  Hat)s% At(C@Hti)
s %  At(Ca)I+y)s %A/−(CIl
l H!I ) a等のトリアルキルアルミニウム、A
t(C,H,)!H,At’(i−C4H,)、H等の
アルキルアルミニウムハイドライド、At’(CtHs
)*Ct、 At(CtHs)CI4、At(j C4
HI )C4、At(CaHe)tBr等のハ0ゲン化
アルキルアルミニウム、A−4(CtHs)t(OC*
Hs’)、Al’(i  C4H11)1(QC4He
 )等のアルコキシアルキルアルミニウム、kl (C
xHs)* (081HcH1ct Ha )、At(
’  CaHe)t・(O8i (CHs)*’−Ci
H,)等のシロキシアルキルアルミニウム、イソプレニ
ルアルミニウム、ミルセニルアルミニウム等のアルキル
アルミニウムと共役ジエンとの反応生成物、fin (
C,H,)、 、Zn (C,H,)、 、Zn (C
sHts )t、zn (CaHn)t、Zn (C@
H@ ) (n−C1Hy )、zn (CllMB)
1、”(CmHd (OeiH*) 尋の有機亜鉛化合
物、一般式MaMgR′pX、Dr(式中Mは周期律表
gI族〜第■族の金属原子、α、p、q、rは0以上の
数で、p+ Q=mα+2.0≦q/(α+1)<2の
関係を有し、m ij Mの原子価、R′は炭素原子数
1〜20個の縦比水素基のIllもしくFi2m以上の
混合物、XFi水素原子もしくは酸素、窒素または硫黄
原子を含有する陰性な基の1種もしくll12種以上の
混合物、Dは電子供与性有機化合物を表わす)で示され
る有機マグネシウム化合物、およびこれらの混合物が用
いられる。
As the organometallic compound (5), At(CaHe)s
, At(CsHJs, AJ!(C*1'1s)s %
At(Cs Hat)s% At(C@Hti)
s % At(Ca)I+y)s %A/-(CIl
l H! I) Trialkylaluminum such as a, A
t(C,H,)! Alkylaluminum hydride such as H, At'(i-C4H,), H, At'(CtHs
)*Ct, At(CtHs) CI4, At(j C4
HI) C4, alkylaluminum halide such as At(CaHe)tBr, A-4(CtHs)t(OC*
Hs'), Al'(i C4H11)1(QC4He
), etc., alkoxyalkylaluminum, kl (C
xHs) * (081HcH1ct Ha ), At(
'CaHe)t・(O8i (CHs)*'-Ci
fin (
C,H,), ,Zn (C,H,), ,Zn (C
sHts )t, zn (CaHn)t, Zn (C@
H@) (n-C1Hy), zn (CllMB)
1, "(CmHd (OeiH*) fathom organozinc compound, general formula MaMgR'pX, Dr (where M is a metal atom of group gI to group II of the periodic table, α, p, q, r are 0 or more , p+ Q=mα+2.0≦q/(α+1)<2, where m ij is the valence of M, and R′ is Ill or Ill of an aspect ratio hydrogen group having 1 to 20 carbon atoms. An organomagnesium compound represented by a mixture of Fi2m or more; Mixtures of these are used.

本発明の効果を十分に発揮するには、触媒の性能が重要
である。本発明の製造方法に好適な触媒の具体的なもの
としては、例えば、一般式Ma’g”pXq   (式
中Mt1周期律表第■族〜第■族の金属原子、αe P
 a Q e ’は0以上の数で、p+q=mα+2.
0≦q/(α+1)く2の関係を有し、m FiMの原
子価 Blは炭素原子数1〜20個の炭化水素基の1種
もt、<Fizs以上の混合物、x#′i水素原子もし
くは酸素、窒素または硫黄原子を含有する陰性な基の1
種もしくは2種以上の混合物を表わす)で示される炭化
水素溶媒に可溶のマグネシウム化合物とハロゲン含有チ
タン化合物またはハロゲン含有チタン化合物とバナジン
化合物の反応物を固体触媒囚として用いる系(q#、公
昭52−34788号、特公昭52−36790号、特
公昭52−36791号、特公昭52−316795号
、特公昭52−56796号、特公昭52−56914
号、特公昭52−34915号、特開昭55−8799
0号、特開昭54−66391号、特開昭54−61a
S92号等に記載゛)、上記これらの固体触媒囚とハロ
ゲン含有のアルミニウムおよび/またはチタン化合物の
反応物を用いる系(特公昭53−401?号、%開開5
1−148785号に記載)、一般式1!iaMgR;
X、Dr(式中M、 R’、X、α、plqは前述、の
意味であり、Dは電子供与性有機化合物を表わし、rは
0以上の数を表わす)で示される炭化水素溶媒に可溶の
マグネシウム化合物とハロゲン化剤(チタン、バナジン
、ジルコン化合物は除く)との反応物とチタン化合物ま
たはチタン化合物とバナジン化合物の反応物を固体触媒
囚として用いる系(%開開53−40696号、特開昭
53−57195号等に記載)、一般式′に!iaMg
R′pX、Drとハロゲン化剤(チタン、バナジン、ジ
ルコン化合物は除く)の反応物の存在下、チタン化合物
またはチタン化合物とバナジン化合物本しくけジルコン
化合物および有機化合物を反応してなる固体を固体触媒
囚として用いる触媒系(特願昭56−20074号1、
特願昭56−35205号、特願昭56−59655号
に記載)、チタン酸エステルオリゴマーとハロゲン化チ
タンの混合物を熱分解し死後、一般式MaMgR′px
、D、(式中M、 R’、X1D1α、9% qS’F
i前述の意味である)で処理したものを固体触媒囚とし
て用いる系(%開開55−38806号に記載)等が挙
げられる。
In order to fully exhibit the effects of the present invention, the performance of the catalyst is important. Specific catalysts suitable for the production method of the present invention include, for example, those having the general formula Ma'g''p
a Q e ' is a number greater than or equal to 0, and p+q=mα+2.
It has the relationship of 0≦q/(α+1)×2, m FiM valence Bl is a mixture of t, <Fizs or more of hydrocarbon groups having 1 to 20 carbon atoms, x#'i hydrogen 1 of the atoms or negative groups containing oxygen, nitrogen or sulfur atoms
A system (q#, Kosho 52-34788, Special Publication No. 52-36790, Special Publication No. 52-36791, Special Publication No. 52-316795, Special Publication No. 52-56796, Special Publication No. 52-56914
No., Special Publication No. 52-34915, Japanese Patent Publication No. 55-8799
No. 0, JP-A-54-66391, JP-A-54-61a
S92 etc.), a system using a reaction product of these solid catalysts and a halogen-containing aluminum and/or titanium compound (Japanese Patent Publication No. 53-401?, % open 5
1-148785), general formula 1! iaMgR;
In a hydrocarbon solvent represented by X, Dr (in the formula, M, R', A system using a reaction product of a soluble magnesium compound and a halogenating agent (excluding titanium, vanadine, and zirconium compounds) and a titanium compound or a reaction product of a titanium compound and a vanadine compound as a solid catalyst prisoner (%Kaikai No. 53-40696) , described in JP-A No. 53-57195, etc.), to the general formula '! iaMg
A solid obtained by reacting a titanium compound or a titanium compound with a vanadine compound, a zircon compound, and an organic compound in the presence of a reactant of R'pX, Dr and a halogenating agent (excluding titanium, vanadine, and zircon compounds) is solidified. Catalyst system used as catalyst prisoner (Japanese Patent Application No. 56-20074 1,
(described in Japanese Patent Application No. 56-35205 and Japanese Patent Application No. 56-59655), after thermal decomposition of a mixture of titanate ester oligomer and titanium halide and after death, the general formula MaMgR'px
, D, (where M, R', X1D1α, 9% qS'F
Examples include a system (described in %Kokai No. 55-38806) in which a solid catalyst treated with the above-mentioned method is used as a solid catalyst.

触媒成分■および圓は、重合条件下に重合系内に添加し
てもよいし、あらかじめ重合に先立って組み合わせても
よい。さらに、炭化水素°溶媒の存在下、固体触媒1f
当り0.1〜509のエチレンを予備重合し、溶媒を留
去した後反応器に導入し、気相重合を行うことも可能で
ある。また組合わされる両成分の比率は、I201f当
り(6)を0.1〜500rrII′n021好ましく
は1〜S OOmmol−の範囲で用いられる。
Catalyst components (1) and (1) may be added to the polymerization system under polymerization conditions, or may be combined in advance prior to polymerization. Furthermore, in the presence of hydrocarbon ° solvent, solid catalyst 1f
It is also possible to prepolymerize 0.1 to 509 ethylene per ethylene and introduce it into a reactor after distilling off the solvent to carry out gas phase polymerization. Further, the ratio of the two components to be combined is used in the range of (6) per I201f to 0.1 to 500rrII'n021, preferably 1 to SOOmmol-.

少量割合の共役tたは非共役ジエンの存在下重合を行い
、重合体主鎖屯しくけ側鎖に二重結合を多く含む1合体
も製造可能である。
By carrying out polymerization in the presence of a small amount of conjugated or non-conjugated diene, it is also possible to produce a monomer containing many double bonds in the main chain and side chains of the polymer.

本発明の実施例を以下に示すが、本発明はこの実施例に
よって何ら制限されるものではない。
Examples of the present invention are shown below, but the present invention is not limited to these examples in any way.

なお、これらの実施例中、Mlはメルトインデックスを
表わし、A8TM  D−1258により温度190℃
、荷重2.16に90条件下で測定したものである。F
Rは温度190℃、荷重21.6 ky″で測定した値
をMIで除し九商を意味し、分子量分布の尺度の1つで
あり、値が低いほど分子量分布が狭いことを示している
。触媒活性は固体触媒rAJ1を当シの共重合体生成量
?で表わされる。
In addition, in these examples, Ml represents melt index, and the temperature was 190°C according to A8TM D-1258.
, measured under 90 conditions at a load of 2.16. F
R means the nine quotient obtained by dividing the value measured at a temperature of 190°C and a load of 21.6 ky'' by MI, and is one of the measures of molecular weight distribution, and the lower the value, the narrower the molecular weight distribution. The catalytic activity is expressed as the amount of copolymer produced using the solid catalyst rAJ1.

実施例1 滴下ロートと水冷還流冷却器とを取付けた容量250−
のフラスコの内部の酸素と水分をiil累置換によって
除去し、窒素雰囲気下、トリクロ)レジラン1 mat
/lのへブタン溶液30−およびヘプタン20−を仕込
み70℃に昇温した。次K。
Example 1 Capacity 250- with dropping funnel and water-cooled reflux condenser installed
Oxygen and moisture inside the flask were removed by repeated displacement, and trichloro)resilane 1 mat was added under a nitrogen atmosphere.
30-liter of hebutane solution and 20-liter of heptane solution were charged, and the temperature was raised to 70°C. Next K.

Aム、、MgfC,%%、、(IS−C1H,、%、、
(On−C,H,)、、、 20 mmotを含有する
ヘプタン50−を滴下ロートに秤岐し、80Cで攪拌下
に1時間かけて滴下した。この結果、反応液は白色の懸
濁液となった。室温まで冷却、静置し、上澄液をデカン
テーションで除き、さらに50−のへブタンで3回洗浄
した後へブタンを加え、100−の液量とした。この反
応液にi−ブトキシチタントリクロリド1.21 mm
qtとイソブチルアルミニウムジクロリド4.84 m
motを導入し、60Cで4時間反応を行った後、固体
触媒を単離し、ヘプタンで洗浄後乾燥した。
Am,,MgfC,%%,,(IS-C1H,,%,,
(On-C,H,), 50 mmol of heptane containing 20 mmot was weighed into a dropping funnel and added dropwise at 80 C over 1 hour while stirring. As a result, the reaction solution became a white suspension. The mixture was cooled to room temperature and allowed to stand, the supernatant liquid was removed by decantation, and the mixture was further washed three times with 50-molecular hebutane, and then hebutane was added to bring the liquid volume to 100-100°. Add 1.21 mm of i-butoxytitanium trichloride to this reaction solution.
qt and isobutylaluminum dichloride 4.84 m
After introducing mot and carrying out the reaction at 60C for 4 hours, the solid catalyst was isolated, washed with heptane, and then dried.

内部を脱水脱気したカイ製攪拌機付40tオートタレー
ブVc、固体触媒tA110Oa9とトリエチルアルミ
ニウム5 mmolを仕込んだ。次に、オートクレープ
の内温175Cに昇温し、エチレン=1−ブテン:水素
のモル比1 : 0.18 : 0,06の混合ガスを
15 kg/傷”・Gの圧力で導入し、エチレン180
0)を重合した。この共重合体のMIは0.56、密度
0.946であっ九。次いで、i−ブタン25t、1−
オクテン2.6 mols  )リエチルアルミニウム
0.2 mmott mえ、65Cに昇温した。水素を
9.5kg/−・Gの圧力で加圧し5、エチレンを導入
し全圧を14 kg/−・Gとした。エチレンを補給す
ることにより14 kg/1m”・Gの圧を保ちつつ、
エチレン1900)を重合した。得られた共重合体のM
Iは5.1、FR1$ 3、密度0,921 。
A 40-ton autotalebe Vc manufactured by Kai with a stirrer whose interior had been dehydrated and degassed, a solid catalyst tA110Oa9, and 5 mmol of triethylaluminum were charged. Next, the internal temperature of the autoclave was raised to 175 C, and a mixed gas of ethylene = 1-butene: hydrogen in a molar ratio of 1: 0.18: 0.06 was introduced at a pressure of 15 kg/wound"·G. ethylene 180
0) was polymerized. This copolymer had an MI of 0.56 and a density of 0.946. Then, i-butane 25t, 1-
2.6 mols of octene) and 0.2 mmottm of ethylaluminum, and the temperature was raised to 65C. Hydrogen was pressurized at a pressure of 9.5 kg/-.G, and ethylene was introduced to bring the total pressure to 14 kg/-.G. While maintaining the pressure of 14 kg/1m"・G by replenishing ethylene,
Ethylene 1900) was polymerized. M of the obtained copolymer
I is 5.1, FR1$3, density 0,921.

嵩密度はo、s 8 t/d、融点は120Cであった
The bulk density was o, s 8 t/d, and the melting point was 120C.

この共重合体をペレット状にした後、ダイ径50讃諷φ
のインフレフィルム成形様(小野製作新製50snφ押
出機)を使用して、厚み30μのフィルムを製膜した。
After making this copolymer into pellets, the die diameter was 50 mm.
A film with a thickness of 30 μm was formed using an inflation film molding method (50 snφ extruder newly manufactured by Ono Seisakusho).

このフィルムの特性を表1に示す。The properties of this film are shown in Table 1.

実施例2 2個の滴下ロートを取付は九容量500−のフラスコの
内部の酸素と水分を乾燥窒素置換によって除去し、16
0−のへブタンを加え、−20cに冷却した0次にAム
、iマMg鳴%)、、、、(n−04鳥)宜40mmo
tを含有するヘプタン80−と四塩化チタン40 mm
otを含有するヘプタン80−とを、各々の滴下ロート
に秤取し、−20Cで攪拌下に両成分を同時に4時間か
叶で添加し友、生成した固体触媒を単離し、ヘプタンで
洗浄後乾燥し喪。
Example 2 Two dropping funnels were installed and oxygen and moisture inside a 9-volume 500-volume flask were removed by dry nitrogen replacement.
Add 0-hebutane and cool to -20C.
80 mm of heptane containing t and 40 mm of titanium tetrachloride
Weigh out 80 kg of heptane containing 200 ml of heptane into each dropping funnel, add both components simultaneously under stirring at -20 C for 4 hours, isolate the solid catalyst produced, and wash with heptane. Dry and mourning.

内部を脱水脱気したカイ型攪拌機付40tオートクレー
ブに、この固体触媒(A1100岬とトリエチルアルミ
ニウムS mmotを仕込んだ。次にオートクレーブの
内温を75Cに昇温し、エチレン:1−ブテン:水素の
モル比1 : 0.20:0,08の混合ガスを15 
kl/e1m”・Gの圧力で導入し、エチレン2700
Fを重合した0次いで、i−ブタン251、ダイキレン
124C三菱化成社製、1−ドデセンと1−テトラデセ
ンの混合物) 1,4 motとトリオクチルアルミニ
ウム0.35mmotを加え、65CK昇温した。λ゛
、素を?、8 ky/au−Gの圧力で加圧し、エチレ
ンを導入し全圧を14 ky/as”・Gとし九エチレ
ンを補給することにより14kyハがGの圧を保ちつつ
、エチレン800tを重合し喪、得られた共重合体のM
Iは2.8、PRは34.密度0.922、嵩密度0.
56 t/ml、融点は120Cであり九。この共重合
体をベレット状にし死後、実施例1と同様に厚み30j
1のフィルムを製膜した。このフィルム特性を表1に示
す。
This solid catalyst (A1100 Misaki and triethylaluminum S mmot) was charged into a 40t autoclave equipped with a chi-type stirrer whose interior had been dehydrated and degassed.Next, the internal temperature of the autoclave was raised to 75C, and a mixture of ethylene:1-butene:hydrogen was added. Mixed gas with a molar ratio of 1:0.20:0.08 is mixed with 15
Introduced at a pressure of kl/e1m"・G, ethylene 2700
Next, i-butane 251, Daikiren 124C (mixture of 1-dodecene and 1-tetradecene) 1,4 mot and trioctylaluminum 0.35 mmot were added, and the temperature was raised to 65 CK. λ゛, the basics? , by pressurizing at a pressure of 8 ky/au-G, introducing ethylene to bring the total pressure to 14 ky/as"・G, and replenishing 9 ethylene. While maintaining the pressure of 14 ky/au-G, 800 tons of ethylene was polymerized. M of the obtained copolymer
I is 2.8, PR is 34. Density 0.922, bulk density 0.
56 t/ml, melting point is 120C, 9. This copolymer was made into a pellet shape and after death, the thickness was 30j as in Example 1.
A film of No. 1 was formed. The properties of this film are shown in Table 1.

比較例1 滴下ロートおよび水冷還流冷却器を取〕付けた容量50
0wtの?ラスコの内部の酸素と水分を窒素置換によっ
て除去し、窒素雰囲気下、四塩化チタン200 mmo
tを含有するヘプタン200mを仕込んだ。滴下ロート
にジエチルアルミニウムクロリド250 mmotを含
有するヘプタン20〇−を秤取し、30Cで攪拌下1時
間で添加した後。
Comparative Example 1 Capacity 50 with dropping funnel and water-cooled reflux condenser
0wt? Oxygen and moisture inside the flask were removed by nitrogen substitution, and 200 mmo of titanium tetrachloride was added under a nitrogen atmosphere.
200 m of heptane containing t was charged. 200 mm of heptane containing 250 mmot of diethylaluminium chloride was weighed into the dropping funnel and added over 1 hour under stirring at 30C.

70Cに昇温し、2時間反応を行い、固体触媒を単離し
、ヘプタンで洗浄後乾燥した。
The temperature was raised to 70C, the reaction was carried out for 2 hours, and the solid catalyst was isolated, washed with heptane, and then dried.

この固体触媒lA1700mgとトリエチルアルばニウ
ム45 mmolおよびエチレン:1−ブテン:水素の
モル比i : 0.22 : 11.06の混合ガスを
用いる以外は、実施例1と同様の操作でエチレン230
0tを重合した。次いで、1−ブテン1.2motを用
いる以外は、実施例1と同様の操作でエチレン1100
)を重合した。得られた共重合体のMIは1.4.FR
57、密度0.926、嵩密度は0.28t/d、融点
は118Cであった。この共重合体を実施例1と同様な
条件で厚み30#のフィルムを製膜し、これの特性を測
定した。この結果を表1に示す。
Ethylene 230 mg was prepared in the same manner as in Example 1, except that 1700 mg of this solid catalyst IA, 45 mmol of triethylalbanium, and a mixed gas with a molar ratio of ethylene:1-butene:hydrogen of i: 0.22: 11.06 were used.
0t was polymerized. Next, 1100 mol of ethylene was prepared in the same manner as in Example 1 except that 1.2 mot of 1-butene was used.
) was polymerized. The MI of the obtained copolymer was 1.4. F.R.
57, density 0.926, bulk density 0.28 t/d, melting point 118C. A film with a thickness of 30# was formed from this copolymer under the same conditions as in Example 1, and its properties were measured. The results are shown in Table 1.

比較例! 実施例1で合成した固体触媒lA1100#、トリエチ
ルアルミニウム10 mmots  i−ブタン25t
Comparative example! Solid catalyst 1A1100# synthesized in Example 1, triethylaluminum 10 mmots i-butane 25t
.

ダイヤレン゛1245motを脱水脱気した40tオー
トクレーブに導入し% 65Cに昇温した。水素を9.
8kflah”・Gの圧力で加圧し、エチレンを導入し
全圧を14 kp/exm”−Gとした。エチレンを補
給することにより14 k17m”・Gの圧を保ちつつ
、1時間重合を行った0重合途中より攪拌動力が上り。
Dialen 1245mot was introduced into a 40t autoclave which had been dehydrated and degassed, and the temperature was raised to %65C. Hydrogen 9.
It was pressurized at a pressure of 8 kflah"-G, and ethylene was introduced to bring the total pressure to 14 kp/exm"-G. By replenishing ethylene, a pressure of 14 k17 m"G was maintained, and the stirring power increased from the middle of 0 polymerization, during which polymerization was carried out for 1 hour.

円滑な攪拌が困難となり、またジャケットによる冷却効
果が下シ、リアクターの内温コントロールに乱れが生じ
た。重合後塊状の共重合体1080?を得た。この共重
合体のMIは8.5、密t′は0.934であった。
Smooth stirring became difficult, and the cooling effect of the jacket was weakened, causing disturbances in the internal temperature control of the reactor. Massive copolymer 1080 after polymerization? I got it. This copolymer had an MI of 8.5 and a density t' of 0.934.

表      1 実施例3〜B 実施例1で合成した固体触媒(A)IsO〜とトリイソ
ブチルアルミニウム0.8 mmott用い1表2に示
す条件を用いる以外は、冥施例1と同様な操作で重合を
行い%該表の結果を得た。
Table 1 Examples 3 to B Polymerization was carried out in the same manner as in Example 1, except that the solid catalyst (A) IsO synthesized in Example 1 and 0.8 mmott of triisobutylaluminum were used, except that the conditions shown in Table 2 were used. % and obtained the results shown in the table.

実施例9〜10 滴下ロートと水冷還流冷却器とを取付社た容量250d
のフラスコの内部の酸素と水分を窒素置換によって除去
し、窒素雰囲気下* A74.ssMg(C2HI)6
.4@ (n −CJI@ )150 mmo/、を含
有するヘプタン50−を仕込みsaCに昇温した0次に
、ジクロルメチルシラン50 mmotを含有するヘプ
タン50−を滴下ロートに秤取し、80Cで攪拌下30
分で滴下し、さらに、この温度で1時間攪拌し良、生成
した白色固体を単離し、乾燥した。この白色固体2tと
四塩化チタン40−を150Cで2時間反応させた後、
固体を単離し、ヘプタンで洗浄後乾燥した。この固体触
媒囚110■とトリイソブチルアルミニウム7.1 m
motを用い、表2に示す条件を用いる以外は、実施例
1と同様な操1作で重合を行い、1表の結果を得た。
Examples 9-10 Capacity 250 d with dropping funnel and water-cooled reflux condenser installed
Oxygen and moisture inside the flask are removed by nitrogen substitution, and under nitrogen atmosphere * A74. ssMg(C2HI)6
.. Heptane 50- containing 4@(n -CJI@) 150 mmo/ was charged and heated to saC. Next, heptane 50- containing 50 mmot of dichloromethylsilane was weighed into a dropping funnel and heated to 80 C. stirring at 30 min.
After stirring for 1 hour at this temperature, the resulting white solid was isolated and dried. After reacting 2t of this white solid with 40-titanium tetrachloride at 150C for 2 hours,
The solid was isolated, washed with heptane and dried. 110 μm of this solid catalyst and 7.1 m of triisobutylaluminum
Polymerization was carried out in the same manner as in Example 1 except that mot was used and the conditions shown in Table 2 were used, and the results shown in Table 1 were obtained.

Claims (1)

【特許請求の範囲】 エチレンと、(a)炭素原子数5〜4個のα−オレフィ
ン、(b)炭素原子数5〜15個のα−オレフィンの各
々のグループよシ選ばれ九2種以上のα−オレフィンを
、叩少なくともマグネシウム、チタンおよびハロゲン政
子を含有する固体触媒および■有機金属化合物の存在下
に共重合せしめ、共重合体を製造するに当シ 第1段:実質的に無溶媒下、気相状態で工゛チレンと(
a)炭素原子数3〜4個のα−オレフィンの共重合を行
い、最終共重合体全量に対し10〜80重量−〇共重合
体を生成させる #!2段:炭化水素溶媒の存在下、0〜120℃でエチ
レンと−)炭素原子数5〜15個のα−オレフィンの共
重合を行うことを特徴とする共重合体の製法。
[Scope of Claims] At least 92 types selected from the following groups: ethylene, (a) α-olefins having 5 to 4 carbon atoms, and (b) α-olefins having 5 to 15 carbon atoms. In the first step: substantially no solvent Below, ethylene and (
a) Copolymerizing an α-olefin having 3 to 4 carbon atoms to produce a copolymer with a weight of 10 to 80% based on the total amount of the final copolymer. 2nd step: A method for producing a copolymer, which comprises copolymerizing ethylene and an α-olefin having 5 to 15 carbon atoms at 0 to 120° C. in the presence of a hydrocarbon solvent.
JP13832581A 1981-09-04 1981-09-04 Production of copolymer Pending JPS5840307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13832581A JPS5840307A (en) 1981-09-04 1981-09-04 Production of copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13832581A JPS5840307A (en) 1981-09-04 1981-09-04 Production of copolymer

Publications (1)

Publication Number Publication Date
JPS5840307A true JPS5840307A (en) 1983-03-09

Family

ID=15219260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13832581A Pending JPS5840307A (en) 1981-09-04 1981-09-04 Production of copolymer

Country Status (1)

Country Link
JP (1) JPS5840307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953511A (en) * 1982-09-22 1984-03-28 Mitsui Petrochem Ind Ltd Manufacture of ethylene copolymer composition
JPS6436607A (en) * 1987-07-16 1989-02-07 Hoechst Ag Manufacture of polyolefin with broad molecular weight distribution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953511A (en) * 1982-09-22 1984-03-28 Mitsui Petrochem Ind Ltd Manufacture of ethylene copolymer composition
JPH0335324B2 (en) * 1982-09-22 1991-05-27 Mitsui Petrochemical Ind
JPS6436607A (en) * 1987-07-16 1989-02-07 Hoechst Ag Manufacture of polyolefin with broad molecular weight distribution

Similar Documents

Publication Publication Date Title
JP2557054B2 (en) Alpha-olefin polymerization catalyst composition
JPS5920681B2 (en) polymerization catalyst
EP0459009A2 (en) A solid catalyst component for the polymerization of olefins and an olefin polymerization catalyst
EP0580930B1 (en) Process for producing polyethylene having a broad molecular weight distribution
JP2003503562A (en) Method for producing magnesium / transition metal alkoxide complex and polymerization catalyst produced therefrom
WO1995010548A1 (en) Process for producing polyethylene having a broad molecular weight distribution
US4199476A (en) Olefin polymerization catalyst
JPH04500832A (en) Elastic propylene copolymers and methods for producing them in the gas phase
US4656151A (en) Intermetallic compound
FI80058C (en) Process for polymerizing ethylene
EP0014337A2 (en) Catalyst, catalyst composition and process for the polymerization of olefins
JPS5840307A (en) Production of copolymer
KR20110096718A (en) Process for ultra high molecular weight polyolefin using supported dinuclear constrained geometry catalyst complexes
JPS6026407B2 (en) Method for producing ethylene copolymer
JPS61285206A (en) Preparation of catalytic component, obtained catalytic system and synthesis of polymer
EP3059261B1 (en) Process for preparing a catalyst for olefin polymerization and polymerization
US4312968A (en) Polymerization of olefins
JPS588711A (en) Production of copolymer
US5955554A (en) Process for polymerization and copolymerization of olefins
US5286818A (en) Polymerization process employing metal halide catalyst and polymer produced
KR0139882B1 (en) Catalyst for ethylene polymerization and its processing method
JP3286850B2 (en) Method for producing polyethylene
JPH1025323A (en) Production of alpha-olefin block copolymer
JP2847839B2 (en) Method for producing polyethylene
JPH0358370B2 (en)