JPH0335324B2 - - Google Patents

Info

Publication number
JPH0335324B2
JPH0335324B2 JP57164086A JP16408682A JPH0335324B2 JP H0335324 B2 JPH0335324 B2 JP H0335324B2 JP 57164086 A JP57164086 A JP 57164086A JP 16408682 A JP16408682 A JP 16408682A JP H0335324 B2 JPH0335324 B2 JP H0335324B2
Authority
JP
Japan
Prior art keywords
gas phase
ethylene
copolymer
phase polymerization
catalyst component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57164086A
Other languages
Japanese (ja)
Other versions
JPS5953511A (en
Inventor
Akifumi Kato
Michiharu Suga
Junichi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP16408682A priority Critical patent/JPS5953511A/en
Publication of JPS5953511A publication Critical patent/JPS5953511A/en
Publication of JPH0335324B2 publication Critical patent/JPH0335324B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、気相重合によつて低密度のエチレン
共重合体組成物を製造する方法に関し、改善され
た操作性をもつて気相重合を行うことができて且
つ加工性、強度特性などの物性も優れた共重合体
組成物を得ることのできる製法に関する。更に詳
しくは、本発明は、チタン触媒成分及び有機アル
ミニウム化合物触媒成分よりなるオレフイン重合
用触媒の存在下に、エチレンと少割合の炭素数3
以上のα−オレフインを気相共重合させてエチレ
ン共重合体組成物を製造する方法に於て; (i) 第一気相重合帯域において、エチレンとプロ
ピレンもしくは1−ブテンとを気相共重合させ
て、密度0.910〜0.950g/cm3の共重合体を、最
終生成共重合体組成物全量の30〜70重量%とな
る量割合で生成させ、 (ii) 次いで、第二気相重合帯域において、第一気
相重合帯域で形成された共重合体の存在下に、
エチレンと該第一気相重合帯域で用いたα−オ
レフインより炭素数の大きいα−オレフインと
を気相共重合させて、密度0.910〜0.945g/cm3
で且つ該第一気相重合帯域で形成された共重合
体より大きい分子量を有する共重合体を、最終
生成共重合体組成物全量の70〜30重量%となる
量割合で生成させる ことを特徴とする密度0.910〜0.945g/cm3のエチ
レン共重合体組成物の製法に関する。 チタン触媒成分及び有機アルミミニウム化合物
触媒成分よりなるオレフイン重合用触媒の存在下
に、エチレンと少割合のα−オレフインを共重合
して密度が0.940g/cm3以下の低密度エチレン共重
合体を製造する方法はすでに知られている。この
ような低密度エチレン共重合体はとくにフイルム
用途に魅力的であるが、中でもα−オレフインと
して炭素数4以上、とくに炭素数5以上のものを
選択するときに、優れた強度物性を示すため注目
されている。 このような低密度エチレン共重合体を気相重合
によつて製造しようとする場合、加工性の良好な
分子量分布の広い共重合体を一段で製造すること
は、実際上、難かしく、通常は、べたつきが生じ
て流動層や撹拌流動層における重合においては重
合体粒子同志の凝集や反応器への付着などによつ
て長期連続運転を行うことが不能となる。また、
上記重合を二段階以上に分け、各段において分子
量の異なる共重合体を製造する多段方式を採用す
る場合にも、α−オレフインとして炭素数の大き
いものを使用するときには、上記と同様の傾向が
現れやすかつた。そのため、強度特性が優れ、し
かも加工特性も優れた低密度エチレン共重合体を
気相重合によつて製造することは、なかなか困難
であつた。 本発明者らは、このような諸問題を解決すべく
検討した結果、気相重合を2段階に分け、一段目
においてエチレンと炭素数の小さいα−オレフイ
ンとくにプロピレンもしくは1−ブテンとから分
子量の比較的小さい共重合体を製造し、次いで、
一段目に形成された共重合体の存在下に、エチレ
ンと一段目で用いたα−オレフインより炭素数の
大きいα−オレフインとから一段目で形成された
共重合体より分子量の大きい共重合体を製造する
と、気相重合の操作性が良く、しかも加工性、強
度特性などの物性の優れたエチレン共重合体組成
物が得られることを知つた。またこの際、両段に
おいて製造する異種のエチレン共重合体の密度が
ほぼ同程度の範囲になるようにすることによつて
透明性の優れた共重合体組成物が得られることも
知つた。 従つて、本発明の目的はエチレン共重合体組成
物のの気相共重合方式による改善製法を提供する
にある。 本発明の上記目的及び更に多くの他の目的なら
びに利点は、以下の記載から一層明らかとなるで
あろう。 本発明によれば、チタン触媒成分及び有機アル
ミニウム化合物触媒成分よりなるオレフイン重合
用触媒の存在下に、エチレンと少割合の炭素数3
以上のα−オレフインを気相共重合させる。この
際、 (i) 第一気相重合帯域において、エチレンとプロ
ピレンもしくは1−ブテンとを気相共重合させ
て密度0.910ないし0.950g/cm3の共重合体を最
終生成共重合体組成物全量の30ないし70重量%
となる量の割合で生成させ、 (ii) 次いで第二気相重合帯域において、上記第一
気相重合帯域で形成された共重合体の存在下
に、エチレンと該第一気相重合帯域で用いたα
−オレフインより炭素数の大きいα−オレフイ
ンとを気相共重合させて、密度が0.910ないし
0.945g/cm3で且つ該第一気相重合帯域で形成さ
れた共重合体より大きい分子量を有する共重合
体を最終生成共重合体組成物全量の70ないし30
重量%となる量割合で生成させることにより、
密度0.910ないし0.945g/cm3のエチレン共重合
体組成物を製造する。 本発明方法の実施に際して、気相共重合を円滑
に行い、しかも気相共重合の利点を生かすため
に、高活性でしかも流動性の優れた重合体を製造
しうる触媒を用いるのが好ましい。このような触
媒として、例えば(A)マグネシウム、チタン及びハ
ロゲンを必須成分とし、好ましくは平均粒径が1
ないし200μ、粒度分布の幾何標準偏差σgが2.1未
満の高活性固体状チタン触媒成分及び(B)有機アル
ミニウム化合物触媒成分から形成される触媒の使
用が推奨できる。 好ましい前記高活性固体状チタン触媒成分(A)
は、マグネシウム/チタン(原子比)が、好まし
くは2ないし100、とくに好ましくは4ないし70、
ハロゲン/チタン(原子比)が好ましくは4ない
し100、とくに好ましくは6ないし40の範囲にあ
るのがよい。又、その比表面積は、好ましくは3
m2/g以上、一層好ましくは約40m2/g以上、さ
らに好ましくは100m2/gないし800m2/gであ
る。該触媒成分(A)は、通常、常温におけるヘキサ
ン洗浄のような簡単な手段ではチタン化合物を脱
離しない。そしてそのx線スペクトルが、触媒調
製に用いた原料マグネシウム化合物の如何にかか
わらずマグネシウム化合物に関して非晶性を示す
か、又はマグネシウムジハライドの通常の市販品
のそれに比べ、望ましくは非常に非晶化された状
態にあるのが普通である。 該固体状チタン触媒成分(A)は、例えば平均粒径
が1ないし200μ、好ましくは5ないし100μ、と
くに好ましくは8ないし50μであつて粒度分布の
幾何標準偏差が2.1未満、好ましくは1.95以下で
あるのがよい。 ここに、チタン触媒成分粒子の粒度分布の測定
は光透過法で行うことができる。具体的にはデカ
リン等の不活性溶媒中に0.01〜0.5%前後の濃度
に触媒成分を希釈し、測定用セルに入れ、セルに
細光をあて、粒子のある沈降状態での液体を通過
する光の強さを連続的に測定して粒度分布を測定
する。この粒度分布を基にして標準偏差σgは対
数正規分布関数から求められる。 平均粒子径が前記範囲より小さい固体チタン触
媒成分(A)を用いた場合には、重合体の凝集や重合
槽の排ガス系への同伴によるトラブルが生じ易く
なり好ましくなく、平均粒子径が前記範囲より大
きいものを用いた場合には、流動層、重合器等を
用いる重合における流動状態が悪くなり、器壁へ
の付着や重合体の凝集が起こつて均一な重合を行
うことが困難となる傾向があるので上記好適条件
から適宜に選択するのがよい。また粒度分布の幾
何標準偏差σgが2.1以上のような分布の広いもの
を用いると、流動状態の悪化や重合体の凝集、壁
付着などが生じ易く、運転操作や重合体品質の面
で好ましくないのでσgが2.1以下のものの利用が
好ましい。チタン触媒成分(A)としては真球状、楕
円球状のような球状のものの利用が好ましい。 該高活性固体状チタン触媒成分(A)は、前記必須
成分以外に、他の元素、金属、官能基、電子供与
体などを含有していてもよい。さらに無機や有機
の希釈剤で希釈されていてもよい。該成分(A)はま
た、チタン1mmol当り約2000g以上のエチレン共
重合体を製造しうる高性能のものであることが好
ましい。 前述のような条件を全て満足するチタン触媒成
分(A)は、例えば平均粒子径及び粒度分布、さらに
好ましくは形状が前述のような範囲にあるような
マグネシウム化合物を形成した後、これを用いて
チタン触媒成分の調製を行う方法、或いは液状の
マグネシウム化合物と液状のチタン化合物を接触
させて、前記のような粒子性状となるように固体
状触媒を形成させる方法などによつて得ることが
できる。かかる方法は知られており、例えば特開
昭55−135102号、同55−135103号、同56−811号、
同56−67311号などに開示されており、本発明で
利用できる。 これらチタン触媒成分(A)の形成方法の数例を簡
単に述べる。 (1) 平均粒子径が1ないし200μ、粒度分布の幾
何標準偏差σgが2.1未満のマグネシウム化合
物:電子供与体錯体を、電子供与体及び/又は
有機アルミニウム化合物及び/又はハロゲン含
有ケイ素化合物のような反応助剤で予備処理
し、又は予備処理せずに、反応条件下に液相を
なすハロゲン化チタン化合物、好ましくは四塩
化チタンと非共粉砕条件下に反応させる。 (2) 還元能を有しないマグネシウム化合物の液状
物と液状のチタン化合物を電子供与体の存在下
で反応させて、平均粒子が1ないし200μ、粒
度分布の幾何標準偏差σgが2.1未満の固体成分
を析出させる。必要に応じさらに液状のチタン
化合物、好ましくは四塩化チタンあるいはこれ
れと電子供与体とを非共粉砕条件下に反応させ
る。 チタン触媒成分の調製に用いられるマグシウム
化合物の例としては、酸化マグネシウム、水酸化
マグネシウム、ハイドロタルサイト、マグネシウ
ムのカルボン酸塩、アルコキシマグネシウム、ア
リロキシマグネシウム、アルコキシマグネシウム
ハライド、アリロキシマグネシウムハライド、マ
グネシウムジハライド有機マグネシウム化合物、
有機マグネシウム化合物と電子供与体、ハロシラ
ン、アルコキシシラン、シラノール、アルミニウ
ム化合物などとの反応物などを例示することがで
きる。 上記チタン触媒成分の調製に用いられることの
ある有機アルミニウム化合物の例としては、後記
するオレフイン重合に用いることのできる有機ア
ルミニウム化合物触媒成分(B)の中から選ぶことが
できる。さらにチタン触媒成分調製に用いられる
ことのあるハロゲン含有ケイ素化合物の例として
は、テトラハロゲン化ケイ素、アルコキシハロゲ
ン化ケイ素、アルキルハロゲン化ケイ素、ハロポ
リシロキサンなどが例示できる。 チタンン触媒成分調製に用いられるチタン化合
物は、テトラハロゲン化チタン、アルコキシチタ
ンハライド、アリロキシチタンハライド、アルコ
キシチタン、アリロキシチタンなどであつてもよ
く、とくにテトラハロゲン化チタン、中でも四塩
化チタンが好ましい。 また、チタン触媒成分製造に利用できる電子供
与体の例としては、アルコール、フエノール類、
ケトン、アルデヒド、カルボン酸、有機酸又は無
機酸のエステル、エーテル、酸アミド、酸無水物
アルコキシシランの如き含酸素電子供与体、アン
モニア、アミン、ニトリル、イソシアネートの如
き含窒素電子供与体などを例示することができ
る。 より具体的には、メタノール、エタノール、プ
ロパノール、ペンタノール、ヘキサノール、オク
タノール、ドデカノール、オクタデシルアルコー
ル、ベンジルアルコール、フエニルエチルアルコ
ール、クミルアルコール、イソプロピルベンジル
アルコールなどの炭素数1ないし18のアルコール
類;フエノール、クレゾール、キシレノール、エ
チルフエノール、プロピルフエノール、ノニルフ
エノール、クミルフエノール、ナフトールなどの
低級アルキル基を有してよい炭素数6ないし20の
フエノール類;アセトン、メチルエチルケトン、
メチルイソブチルケトン、アセトフエノン、ベン
ゾフエノンなどの炭素数3ないし15のケトン類;
アセトアルデヒド、プロピオンアルデヒド、オク
チルアルデヒド、ベンズアルデヒド、トルアルデ
ヒド、ナフトアルデヒドなどの炭素数2ないし15
のアルデヒド類;ギ酸メチル、酢酸メチル、酢酸
エチル、酢酸ビニル、酢酸プロピル、酢酸オクチ
ル、酢酸シクロヘキシル、プピオン酸エチル酪酸
メチル、吉草酸エチル、クロル酢酸メチル、ジク
ロル酢酸エチル、メタクリル酸メチル、クロトン
酸エチル、シクロヘキサンカルボン酸エチル、安
息香酸メチル、安息香酸エチル、安息香酸プロピ
ル、安息香酸ブチル、安息香酸オクチル、安息香
酸シクロヘキシル、安息香酸フエニル、安息香酸
ベンジル、トルイル酸メチル、トルイル酸エチ
ル、トルイル酸アミル、エチル安息香酸エチル、
アニス酸メチル、アニス酸エチル、エトキシ安息
香酸エチル、γ−ブチロラクトン、δ−バレロラ
クトン、クマリン、フタリド、炭酸エチレンなど
の炭素数2ないし18の有機酸エステル類;アセチ
ルクロリド、ベンゾイルクロリド、トルイル酸ク
ロリド、アニス酸クロリドなどの炭素数2ないし
15の酸ハライド類;メチルエーテル、エチルエー
テル、イソプロピルエーテル、ブチルエーテル、
アミルエーテル、テトラヒドロフラン、アニソー
ル、ジフエニルエーテルなどの炭素数2ないし20
のエーテル類;酢酸アミド、安息香酸アミド、ト
ルイル酸アミドなどの酸アミド類;メチルアミ
ン、エチルアミン、ジエチルアミン、トリブチル
アミン、ピペリジン、トリベンジルアミン、アニ
リン、ピリジン、ピコリン、テトラメチルエチレ
ンジアミンなどのアミン類;アセトニトリル、ベ
ンゾニトリル、トルニトリルなどのニトリル類;
ケイ酸エチル、ジフエニルジメトキシシランなど
のアルコキシシラン類;などを挙げることができ
る。これら電子供与体は、2種以上用いることが
できる。 前記有機アルミニウム化合物触媒成分(B)として
は、少なくとも分子内に1個のAl−炭素結合を
有する化合物が利用でき、例えば、(i)一般式R1 n
Al(OR2oHpXq(ここでR1およびR2は炭素原子通
常1ないし15個、好ましくは1ないし4個を含む
炭化水素基で互いに同一でも異なつてもよい。X
はハロゲン、mは0<m≦3、nは0≦n<3、
pは0≦p<3、qは0≦q<3の数であつて、
しかもm+n+p+q=3である)で表わされる
有機アルミニウム化合物、(ii)一般式M1AlR1 4(こ
こでM1はLiNa、Kであり、R1は前記と同じ)で
表わされる第1族金属とアルミニウムとの錯アル
キル化物などを挙げることができる。 前記の(i)に属する有機アルミニウム化合物とし
ては、次のものを例示できる。一般式R1 nAl
(OR23-n(ここでR1およびR2は前記と同じ。m
は好ましくは1.5≦m≦3の数である)。一般式
R1 nAlX3-n(ここでR1は前記と同じ。Xはハロゲ
ン、mは好ましくは0<m<3である)、一般式
R1 nAlH3-n(ここでR1は前記と同じ。mは好まし
くは2≦m≦3である)、一般式R1 nAl(OR2oXq
(ここでR1およよびR2は前記と同じ。xはハロゲ
ン、0<m≦3、0≦n<3、0≦q<3で、m
+n+q=3である)で表わされるものなどを例
示できる。 (i)に属するアルミニウム化合物において、より
具体的にはトリエチルアルミニウム、トリブチル
アルミニウムなどのトリアルキルアルミニウム、
トリイソプレニルアルミニウムのようなトリアル
ケニルアルミニウム、ジエチルアルミニウムエト
キシド、ジブチルアルミニウムブトキシドなどの
ジアルキルアルミニウムアルコキシド、エチルア
ルミニウムセスキエトキシド、ブチルアルミニウ
ムセスキブトキシドなどのアルキルアルミニウム
セスキアルコキシドのほかに、R1 2.5Al(OR2)0.5
などで表わされる平均組成を有する部分的にアル
コキシ化されたアルキルアルミニウム、ジエチル
アルミニウムクロリド、ジブチルアルミニウムク
ロリド、ジエチルアルミニウムブロミドのような
ジアルキルアルミニウムハライド、エチルアルミ
ニウムセスキクロリド、ブチルアルミニウムセス
キクロリド、エチルアルミニウムセスキブロミド
のようなアルキルアルミニウムセスキハライド、
エチルアルミニウムジクロリド、プロピルアルミ
ニウムジクロリド、ブチルアルミニウムブロミド
などのようなアルキルアルミニウムジハライドな
どの部分的にハロゲン化されたアルキルアルミニ
ウム、ジエチルアルミニウムヒドリド、ジブチル
アルミニウムヒドリドなどのジアルキルアルミニ
ウムヒドリド、エチルアルミニウムジヒドリド、
プロピルアルミニウムジヒドリドなどのアルキル
アルミニウムジヒドリドなどの部分的に水素化さ
れたアルキルアルミニウム、エチルアルミニウム
エトキシクロリド、ブチルアルミニウムブトキシ
クロリド、エチルアルミニウムエトキシブロミド
などの部分的にアルコキシ化およよびハロゲン化
されたアルキルアルミニウムである。また(i)に類
似する化合物として、酸素原子や窒素原子を介し
て2以上のアルミニウムが結合した有機アルミニ
ウム化合物であつてもよい。このような化合物と
して例えば(C2H52AlOAl(C2H52
(C4H92AlOAl(C4H92
The present invention relates to a method for producing a low-density ethylene copolymer composition by gas phase polymerization, which allows gas phase polymerization to be performed with improved operability and improves processability, strength properties, etc. The present invention relates to a method for producing a copolymer composition with excellent physical properties. More specifically, in the present invention, in the presence of an olefin polymerization catalyst comprising a titanium catalyst component and an organoaluminum compound catalyst component, ethylene and a small proportion of carbon atoms
In the method for producing an ethylene copolymer composition by vapor phase copolymerizing the above α-olefin; (i) In the first gas phase polymerization zone, ethylene and propylene or 1-butene are vapor phase copolymerized; (ii) Next, a second gas phase polymerization zone is produced. In the presence of the copolymer formed in the first gas phase polymerization zone,
Ethylene and an α-olefin having a larger number of carbon atoms than the α-olefin used in the first gas phase polymerization zone are copolymerized in a gas phase to obtain a product with a density of 0.910 to 0.945 g/cm 3 .
and a copolymer having a molecular weight larger than that of the copolymer formed in the first gas phase polymerization zone is produced in an amount of 70 to 30% by weight of the total amount of the final copolymer composition. The present invention relates to a method for producing an ethylene copolymer composition having a density of 0.910 to 0.945 g/cm 3 . In the presence of an olefin polymerization catalyst consisting of a titanium catalyst component and an organic aluminum compound catalyst component, ethylene and a small proportion of α-olefin are copolymerized to produce a low-density ethylene copolymer with a density of 0.940 g/cm 3 or less. Methods of production are already known. Such low-density ethylene copolymers are particularly attractive for film applications, but among them, α-olefins with carbon atoms of 4 or more, particularly 5 or more, are selected because they exhibit excellent strength properties. Attention has been paid. When attempting to produce such a low-density ethylene copolymer by gas phase polymerization, it is actually difficult to produce a copolymer with good processability and a wide molecular weight distribution in one step; During polymerization in a fluidized bed or agitated fluidized bed, stickiness occurs and long-term continuous operation becomes impossible due to agglomeration of polymer particles and adhesion to the reactor. Also,
Even when adopting a multi-stage method in which the above polymerization is divided into two or more stages and copolymers with different molecular weights are produced in each stage, the same tendency as above occurs when using α-olefin with a large number of carbon atoms. It was easy to appear. Therefore, it has been quite difficult to produce a low-density ethylene copolymer with excellent strength properties and processing properties by gas phase polymerization. As a result of studies to solve these problems, the present inventors divided the gas phase polymerization into two stages, and in the first stage, ethylene and α-olefin with a small number of carbon atoms, particularly propylene or 1-butene, were mixed with a molecular weight of A relatively small copolymer is produced and then
In the presence of the copolymer formed in the first stage, a copolymer having a molecular weight larger than that of the copolymer formed in the first stage is formed from ethylene and an α-olefin having a larger number of carbon atoms than the α-olefin used in the first stage. It has been found that by producing ethylene copolymer compositions, it is possible to obtain ethylene copolymer compositions that have good operability in gas phase polymerization and excellent physical properties such as processability and strength properties. At this time, it was also found that a copolymer composition with excellent transparency can be obtained by controlling the densities of the different types of ethylene copolymers produced in both stages to be in approximately the same range. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an improved method for producing an ethylene copolymer composition using a gas phase copolymerization method. The above objects and many other objects and advantages of the present invention will become more apparent from the following description. According to the present invention, in the presence of an olefin polymerization catalyst comprising a titanium catalyst component and an organoaluminum compound catalyst component, ethylene and a small proportion of carbon atoms
The above α-olefins are subjected to gas phase copolymerization. At this time, (i) in the first gas phase polymerization zone, ethylene and propylene or 1-butene are copolymerized in the gas phase to form a copolymer with a density of 0.910 to 0.950 g/cm 3 in the total amount of the final copolymer composition. 30 to 70% by weight of
(ii) then in a second gas phase polymerization zone, in the presence of the copolymer formed in the first gas phase polymerization zone, ethylene and said first gas phase polymerization zone are produced; α used
- Gas phase copolymerization with α-olefin, which has a larger number of carbon atoms than olefin, to achieve a density of 0.910 or more.
A copolymer having a molecular weight of 0.945 g/cm 3 and greater than the copolymer formed in the first gas phase polymerization zone is added to 70 to 30 of the total amount of the final product copolymer composition.
By producing it at a proportion of weight%,
An ethylene copolymer composition having a density of 0.910 to 0.945 g/cm 3 is prepared. When carrying out the method of the present invention, in order to smoothly perform gas phase copolymerization and take advantage of the advantages of gas phase copolymerization, it is preferable to use a catalyst that can produce a polymer with high activity and excellent fluidity. As such a catalyst, for example, (A) magnesium, titanium and halogen are essential components, and preferably the average particle size is 1.
It is recommended to use a catalyst formed from a highly active solid titanium catalyst component having a diameter of 200μ to 200μ and a geometric standard deviation of particle size distribution σg of less than 2.1, and (B) an organoaluminum compound catalyst component. Preferred highly active solid titanium catalyst component (A)
preferably has a magnesium/titanium (atomic ratio) of 2 to 100, particularly preferably 4 to 70,
The halogen/titanium (atomic ratio) is preferably in the range of 4 to 100, particularly preferably 6 to 40. Further, the specific surface area is preferably 3
m 2 /g or more, more preferably about 40 m 2 /g or more, even more preferably 100 m 2 /g to 800 m 2 /g. The catalyst component (A) usually does not eliminate titanium compounds by simple means such as washing with hexane at room temperature. The x-ray spectrum of the magnesium compound is either amorphous regardless of the raw material magnesium compound used for the preparation of the catalyst, or desirably very amorphous compared to that of a common commercially available magnesium dihalide. It is normal for it to be in a state of being The solid titanium catalyst component (A) has, for example, an average particle size of 1 to 200μ, preferably 5 to 100μ, particularly preferably 8 to 50μ, and a geometric standard deviation of particle size distribution of less than 2.1, preferably 1.95 or less. It's good to have one. Here, the particle size distribution of the titanium catalyst component particles can be measured by a light transmission method. Specifically, the catalyst component is diluted to a concentration of around 0.01 to 0.5% in an inert solvent such as decalin, placed in a measurement cell, illuminated with a narrow light, and passed through the liquid in a settled state with particles. The particle size distribution is determined by continuously measuring the light intensity. Based on this particle size distribution, the standard deviation σg is determined from a lognormal distribution function. If a solid titanium catalyst component (A) with an average particle diameter smaller than the above range is used, troubles due to polymer agglomeration or entrainment into the exhaust gas system of the polymerization tank are likely to occur, which is undesirable. If a larger polymer is used, the fluidity during polymerization using a fluidized bed, polymerization vessel, etc. will deteriorate, and it will tend to adhere to the vessel wall or cause polymer aggregation, making it difficult to perform uniform polymerization. Therefore, it is advisable to appropriately select from the above-mentioned preferable conditions. Furthermore, if a particle size distribution with a wide geometric standard deviation σg of 2.1 or more is used, it is likely to cause deterioration of the flow state, polymer aggregation, wall adhesion, etc., which is unfavorable in terms of operation and polymer quality. Therefore, it is preferable to use one with σg of 2.1 or less. As the titanium catalyst component (A), it is preferable to use a spherical material such as a true sphere or an oval sphere. The highly active solid titanium catalyst component (A) may contain other elements, metals, functional groups, electron donors, etc. in addition to the above-mentioned essential components. Furthermore, it may be diluted with an inorganic or organic diluent. Component (A) is also preferably of high performance capable of producing about 2000 g or more of ethylene copolymer per 1 mmol of titanium. The titanium catalyst component (A) that satisfies all of the above-mentioned conditions can be obtained by forming a magnesium compound having an average particle size and particle size distribution, and more preferably a shape within the above-mentioned range, and then using this. It can be obtained by a method of preparing a titanium catalyst component, or a method of bringing a liquid magnesium compound and a liquid titanium compound into contact to form a solid catalyst so as to have the particle properties as described above. Such methods are known, for example, Japanese Patent Application Publication Nos. 55-135102, 55-135103, 56-811,
It is disclosed in No. 56-67311, etc., and can be used in the present invention. A few examples of methods for forming these titanium catalyst components (A) will be briefly described. (1) Magnesium compounds with an average particle size of 1 to 200μ and a geometric standard deviation of particle size distribution σg of less than 2.1: Electron donor complexes such as electron donors and/or organoaluminum compounds and/or halogen-containing silicon compounds. With or without pretreatment with a reaction aid, it is reacted under non-co-milling conditions with a halogenated titanium compound, preferably titanium tetrachloride, which is in a liquid phase under the reaction conditions. (2) A solid component with an average particle size of 1 to 200μ and a geometric standard deviation σg of particle size distribution of less than 2.1 is obtained by reacting a liquid magnesium compound that does not have reducing ability with a liquid titanium compound in the presence of an electron donor. is precipitated. If necessary, a liquid titanium compound, preferably titanium tetrachloride, or the same and an electron donor are reacted under non-co-pulverization conditions. Examples of magnesium compounds used in the preparation of titanium catalyst components include magnesium oxide, magnesium hydroxide, hydrotalcite, carboxylates of magnesium, alkoxymagnesium, allyloxymagnesium, alkoxymagnesium halides, allyloxymagnesium halides, and magnesium dichlorides. halide organomagnesium compound,
Examples include reactants of organomagnesium compounds and electron donors, halosilanes, alkoxysilanes, silanols, aluminum compounds, and the like. As an example of the organoaluminum compound that may be used in preparing the titanium catalyst component, it can be selected from the organoaluminum compound catalyst component (B) that can be used for olefin polymerization, which will be described later. Furthermore, examples of halogen-containing silicon compounds that may be used for preparing the titanium catalyst component include silicon tetrahalides, silicon alkoxy halides, silicon alkyl halides, and halopolysiloxanes. The titanium compound used in the preparation of the titanium catalyst component may be titanium tetrahalide, alkoxytitanium halide, allyloxytitanium halide, alkoxytitanium, allyloxytitanium, etc., and titanium tetrahalide is particularly preferred, with titanium tetrachloride being particularly preferred. . In addition, examples of electron donors that can be used in the production of titanium catalyst components include alcohols, phenols,
Examples include oxygen-containing electron donors such as ketones, aldehydes, carboxylic acids, esters of organic or inorganic acids, ethers, acid amides, acid anhydride alkoxysilanes, nitrogen-containing electron donors such as ammonia, amines, nitriles, isocyanates, etc. can do. More specifically, alcohols having 1 to 18 carbon atoms such as methanol, ethanol, propanol, pentanol, hexanol, octanol, dodecanol, octadecyl alcohol, benzyl alcohol, phenylethyl alcohol, cumyl alcohol, isopropylbenzyl alcohol; Phenols having 6 to 20 carbon atoms which may have a lower alkyl group such as phenol, cresol, xylenol, ethylphenol, propylphenol, nonylphenol, cumylphenol, naphthol; acetone, methyl ethyl ketone,
Ketones having 3 to 15 carbon atoms such as methyl isobutyl ketone, acetophenone, and benzophenone;
2 to 15 carbon atoms such as acetaldehyde, propionaldehyde, octylaldehyde, benzaldehyde, tolualdehyde, naphthaldehyde, etc.
aldehydes; methyl formate, methyl acetate, ethyl acetate, vinyl acetate, propyl acetate, octyl acetate, cyclohexyl acetate, ethyl propionate, methyl butyrate, ethyl valerate, methyl chloroacetate, ethyl dichloroacetate, methyl methacrylate, ethyl crotonate , ethyl cyclohexanecarboxylate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, octyl benzoate, cyclohexyl benzoate, phenyl benzoate, benzyl benzoate, methyl toluate, ethyl toluate, amyl toluate, ethyl benzoate,
Organic acid esters having 2 to 18 carbon atoms, such as methyl anisate, ethyl anisate, ethyl ethoxybenzoate, γ-butyrolactone, δ-valerolactone, coumarin, phthalide, and ethylene carbonate; acetyl chloride, benzoyl chloride, toluic acid chloride , anisyl chloride etc. with 2 or more carbon atoms
15 acid halides; methyl ether, ethyl ether, isopropyl ether, butyl ether,
2 to 20 carbon atoms such as amyl ether, tetrahydrofuran, anisole, diphenyl ether, etc.
ethers; acid amides such as acetic acid amide, benzoic acid amide, and toluic acid amide; amines such as methylamine, ethylamine, diethylamine, tributylamine, piperidine, tribenzylamine, aniline, pyridine, picoline, and tetramethylethylenediamine; Nitriles such as acetonitrile, benzonitrile, tolnitrile;
Examples include alkoxysilanes such as ethyl silicate and diphenyldimethoxysilane. Two or more types of these electron donors can be used. As the organoaluminum compound catalyst component (B), a compound having at least one Al-carbon bond in the molecule can be used, for example, (i) a compound having the general formula R 1 n
Al ( OR 2 ) o H p
is halogen, m is 0<m≦3, n is 0≦n<3,
p is a number of 0≦p<3, q is a number of 0≦q<3,
and (ii) a Group 1 metal represented by the general formula M 1 AlR 1 4 (where M 1 is LiNa or K, and R 1 is the same as above). Examples include complex alkylated products of aluminum and aluminum. Examples of the organoaluminum compounds that belong to (i) above include the following. General formula R 1 n Al
(OR 2 ) 3-n (where R 1 and R 2 are the same as above. m
is preferably a number of 1.5≦m≦3). general formula
R 1 n AlX 3-n (where R 1 is the same as above, X is halogen, m is preferably 0<m<3), general formula
R 1 n AlH 3-n (where R 1 is the same as above, m is preferably 2≦m≦3), general formula R 1 n Al(OR 2 ) o X q
(Here, R 1 and R 2 are the same as above. x is halogen, 0<m≦3, 0≦n<3, 0≦q<3, m
+n+q=3). Among the aluminum compounds belonging to (i), more specifically, trialkyl aluminum such as triethyl aluminum and tributyl aluminum,
Besides trialkenylaluminums such as triisoprenylaluminum, dialkylaluminum alkoxides such as diethylaluminum ethoxide, dibutylaluminum butoxide, alkylaluminum sesquialkoxides such as ethylaluminum sesquiethoxide, butylaluminum sesquibutoxide, R 1 2.5 Al ( OR2 )0.5
Partially alkoxylated alkyl aluminum halides, such as diethylaluminum chloride, dibutyl aluminum chloride, diethylaluminum bromide, ethyl aluminum sesquichloride, butyl aluminum sesquichloride, ethyl aluminum sesquibromide, etc., with an average composition of alkyl aluminum sesquihalides, such as
Partially halogenated alkylaluminiums such as alkylaluminum dihalides such as ethylaluminum dichloride, propylaluminum dichloride, butylaluminum bromide etc., dialkylaluminum hydrides such as diethylaluminum hydride, dibutylaluminum hydride, ethylaluminum dihydride,
Partially hydrogenated alkyl aluminums such as alkyl aluminum dihydrides such as propyl aluminum dihydride, partially alkoxylated and halogenated such as ethyl aluminum ethoxy chloride, butyl aluminum butoxy chloride, ethyl aluminum ethoxy bromide It is an alkyl aluminum. Further, as a compound similar to (i), it may be an organic aluminum compound in which two or more aluminum atoms are bonded via an oxygen atom or a nitrogen atom. Examples of such compounds include (C 2 H 5 ) 2 AlOAl(C 2 H 5 ) 2 ,
( C4H9 ) 2AlOAl ( C4H9 ) 2 ,

〔触媒合成〕[Catalyst synthesis]

200mlのフラスコに無水MgCl27.2g、デカン23
mlおよび2−エチルヘキサノール23mlを入れ、
120℃で2時間加熱反応を行い、均一溶液とした
のち、安息香酸エチル1.68mlを添加した。 400mlのフラスコにTiCl4200mlを入れ、−20℃
に冷却保持した状態で上記均一溶液を全量、1時
間に渡つて滴下したのち、80℃に昇温した。80℃
で2時間撹拌後、固体部を過により採取し、こ
れを新たなTiCl4200mlに懸濁させ、90℃で2時
間撹拌した。撹拌終了後、熱過により採取した
固体部を熱灯油およびヘキサンで十分洗浄し、チ
チタン触媒成分を得た。該触媒はTi4.5wt%、
Cl60wt%、Mg18wt%を含み、平均粒子径15μ、
σg1.25、比表面積は195m2/gであつた。 〔触媒前処理〕 得られた触媒スラリーを、Ti原子に換算した
5mmol/lとなるようにヘキサン中に再懸濁した
後、トリエチルアルミニウムを15mmol/lとなる
ように添加し、さらにプロピレンをチタン触媒成
分1g当り20gとなるような割合で供給し、35℃で
処理を行つた。 〔重合〕 直径40cm、内容積400lの気相重合器に、n−ブ
タンに懸濁させて、1.2mmolTi/lに調整した上
記前処理触媒を1.8mmolTi/hr、トリエチルアル
ミニウム50mmol/hrの割合で連続的に供給した。
同時にエチレンを6.5Kg/hr、プロピレン及び水
素をガス組成がプロピレン/エチレン(モル比)
=0.25、水素/エチレン=2.3となるように添加
した。圧力7Kg/cm2G、温度80℃、ガス空塔速度
45cm/secの条件で共重合を行つた結果、〔η1〕=
0.57dl/g、メルトフローレート820、密度
0.926g/cm3、平均粒径350μの流動性良好な粉末状
共重合体を6.2Kg/hrの速度で得た。 次いでこの共重合体を同一形状の二段目気相重
合器に送り、圧力5Kg/cm2G、温度85℃、ガス空
塔速度48cm/sec、4−メチル−1−ペンテン/
エチレン(モル比)=0.11、水素/エチレン(モ
ル比)=0.04の条件でエチレンと4−メチル−1
−ペンテンの気相共重合を行つた。その結果、
〔η〕=2.90dl/g、メルトフローレート0.15g/
10min、密度0.925g/cm3、γ2(ずり応力24×
105dyne/cm2におけるずり速度)=270、粒径440μ
の流動性良好な共重合体を12.2Kg/hrで得ること
ができた。この共重合体をインフレーシヨン成形
によつて30μのフイルムを作り、その衝撃強度を
測定したところ3500Kg・cm/cmであつた。 比較例 1 実施例1の初段気相共重合において、プロピレ
ンの代りに4−メチル−1−ペンテンを使用した
ところ、パウダー性状が悪く、運転の続行が不可
能であつた。 比較例 2 実施例1の二段目気相重合器において、4−メ
チル−1−ペンテンの代りにプロピレンを用いて
メルトフローレート0.14g/10min、密度0.925g/
cm3、γ〓2=250sec-1の共重合体を得た。同様に30μ
のフイルムを成形してその衝撃強度を測定したと
ころ、1500Kgcm/cmであつた。 実施例 2 〔重合〕 実施例1と同一の装置を使用して、実施例1の
前処理触媒を1.5mmol/hr、トリエチルアルミニ
ウム60mmol/hrの割合で連続的に供給した。同時
にエチレンを8.2Kg/hr、1−ブテン及び水素を
ガス組成が1−ブテン/エチレン(モル比)=
0.16、水素/エチレン(モル比)=2.0となるよう
に添加した。圧力8.5Kg/cm2G、温度85℃、ガス
空塔速度43cm/secの条件で共重合を行つた結果、
メルトフローレート770、〔η〕=0.59dl/g、密
度0.930g/cm3の粉末状重合体を7.5Kg/hrの速度
で得た。 次いで2段目気相重合器にて、圧力6.5Kg/cm2
G温度85℃、ガス空塔速度46cm/sec、4−メチ
ル−1−ペンテン/エチレン(モル比)=0.08、
水素/エチレン(モル比)=0.05の条件でエチレ
ンと4−メチル−1−ペンテンの気相共重合を行
つた。その結果メルトフローレート0.21g‐
10min、密度0.930g/cm3、〔η〕=2.8dl/gの流動
性良好な共重合体を14.6Kg/hrの速度で得た。こ
の共重合体のフイルム衝撃強度は、4100Kg・cm/
cmであつた。 実施例 3 実施例2において、α−オレフイン及び水素の
使用量を変え、以下の結果を得た。
7.2g of anhydrous MgCl2 in a 200ml flask, 23g of decane
ml and 23 ml of 2-ethylhexanol,
A heating reaction was carried out at 120° C. for 2 hours to obtain a homogeneous solution, and then 1.68 ml of ethyl benzoate was added. Pour 200ml of TiCl 4 into a 400ml flask and heat to -20°C.
The entire amount of the above homogeneous solution was added dropwise over 1 hour while the solution was kept cooled to 80°C, and then the temperature was raised to 80°C. 80℃
After stirring for 2 hours at 90° C., the solid portion was collected by filtration, suspended in 200 ml of fresh TiCl 4 and stirred at 90° C. for 2 hours. After the stirring was completed, the solid portion collected by heating was thoroughly washed with hot kerosene and hexane to obtain a titanium catalyst component. The catalyst contains Ti4.5wt%,
Contains Cl60wt%, Mg18wt%, average particle size 15μ,
σg1.25, and the specific surface area was 195 m 2 /g. [Catalyst pretreatment] The obtained catalyst slurry was resuspended in hexane to give a concentration of 5 mmol/l in terms of Ti atoms, and then triethylaluminum was added to give a titanium concentration of 15 mmol/l. The catalyst components were supplied at a rate of 20 g per 1 g, and the treatment was carried out at 35°C. [Polymerization] In a gas phase polymerization vessel with a diameter of 40 cm and an internal volume of 400 L, the above pretreated catalyst suspended in n-butane and adjusted to 1.2 mmolTi/l was added at a rate of 1.8 mmolTi/hr and triethylaluminum 50 mmol/hr. Supplied continuously.
At the same time, 6.5Kg/hr of ethylene, propylene and hydrogen gas composition is propylene/ethylene (mole ratio)
= 0.25 and hydrogen/ethylene = 2.3. Pressure 7Kg/cm 2 G, temperature 80℃, gas superficial velocity
As a result of copolymerization under the condition of 45 cm/sec, [η 1 ]=
0.57dl/g, melt flow rate 820, density
A powdered copolymer with good fluidity and a weight of 0.926 g/cm 3 and an average particle size of 350 μ was obtained at a rate of 6.2 Kg/hr. Next, this copolymer was sent to a second stage gas phase polymerization vessel of the same shape, and the pressure was 5 Kg/cm 2 G, the temperature was 85°C, the superficial gas velocity was 48 cm/sec, and 4-methyl-1-pentene/4-methyl-1-pentene/
Ethylene and 4-methyl-1 under the conditions of ethylene (molar ratio) = 0.11 and hydrogen/ethylene (molar ratio) = 0.04.
- Gas phase copolymerization of pentene was carried out. the result,
[η] = 2.90dl/g, melt flow rate 0.15g/
10min, density 0.925g/cm 3 , γ 2 (shear stress 24×
Shear rate at 10 5 dyne/ cm2 ) = 270, particle size 440μ
A copolymer with good fluidity could be obtained at 12.2 kg/hr. A 30μ film was made from this copolymer by inflation molding, and its impact strength was measured to be 3500 kg·cm/cm. Comparative Example 1 When 4-methyl-1-pentene was used in place of propylene in the first stage gas phase copolymerization of Example 1, the powder properties were poor and the operation could not be continued. Comparative Example 2 In the second stage gas phase polymerization reactor of Example 1, propylene was used instead of 4-methyl-1-pentene, and the melt flow rate was 0.14 g/10 min, and the density was 0.925 g/10 min.
A copolymer with cm 3 and γ〓 2 =250 sec -1 was obtained. Similarly 30μ
When the film was molded and its impact strength was measured, it was 1500 kgcm/cm. Example 2 [Polymerization] Using the same apparatus as in Example 1, the pretreated catalyst of Example 1 was continuously supplied at a rate of 1.5 mmol/hr and triethylaluminum at a rate of 60 mmol/hr. At the same time, 8.2Kg/hr of ethylene, 1-butene and hydrogen gas composition is 1-butene/ethylene (mole ratio) =
0.16, hydrogen/ethylene (molar ratio) = 2.0. As a result of copolymerization under the conditions of pressure 8.5Kg/cm 2 G, temperature 85℃, and superficial gas velocity 43cm/sec,
A powdered polymer having a melt flow rate of 770, [η]=0.59 dl/g, and a density of 0.930 g/cm 3 was obtained at a rate of 7.5 Kg/hr. Next, in the second stage gas phase polymerization vessel, the pressure was 6.5Kg/cm 2
G temperature 85°C, superficial gas velocity 46 cm/sec, 4-methyl-1-pentene/ethylene (molar ratio) = 0.08,
Gas phase copolymerization of ethylene and 4-methyl-1-pentene was carried out under the conditions of hydrogen/ethylene (molar ratio) = 0.05. As a result, the melt flow rate was 0.21g-
A copolymer with good fluidity and a density of 0.930 g/cm 3 and [η]=2.8 dl/g was obtained at a rate of 14.6 Kg/hr. The film impact strength of this copolymer is 4100Kg・cm/
It was cm. Example 3 In Example 2, the amounts of α-olefin and hydrogen used were changed, and the following results were obtained.

【表】 共重合体のフイルム衝撃強度は5900Kg・cm/cm
であつた。
[Table] Copolymer film impact strength is 5900Kg・cm/cm
It was hot.

Claims (1)

【特許請求の範囲】 1 チタン触媒成分及び有機アルミニウム化合物
触媒成分よりなるオレフイン重合用触媒の存在下
に、エチレンと少割合の炭素数3以上のα−オレ
フインを気相共重合させてエチレン共重合体組成
物を製造する方法に於て; (i) 第一気相重合帯域において、エチレンとプロ
ピレンもしくは1−ブテンとを気相共重合させ
て、密度0.910〜0.950g/cm3の共重合体を、最
終生成共重合体組成物全量の30〜70重量%とな
る量割合で生成させ、 (ii) 次いで、第二気相重合帯域において、 第一気相重合帯域で形成された共重合体の存在
下に、エチレンと該第一気相重合帯域で用いた
α−オレフインより炭素数の大いα−オレフイ
ンとを気相共重合させて、密度0.910〜
0.945g/cm3で且つ該第一気相重合帯域で形成さ
れた共重合体より大きい分子量を有する共重合
体を、最終生成共重合体組成物全量の70〜30重
量%となる量割合で生成させる ことを特徴とする密度0.910〜0.945g/cm3のエチ
レン共重合体組成物の製法。 2 該最終生成共重合体組成物中のエチレン含量
が、約70〜約98重量%である特許請求の範囲第1
項記載の製法。 3 該第二気相重合帯域で生成させる共重合体の
極限粘度〔η2〕(135℃、デカリン中で測定)が、
該第一気相重合帯域で生成した共重合体の極限粘
度〔η1〕の約1.2〜約40倍である特許請求の範囲
第1項記載の製法。 4 該チタン触媒成分がマグネシウム、チタン及
びハロゲンを必須成分とする高活性固体状チタン
触媒成分である特許請求の範囲第1項記載の製
法。
[Claims] 1. Ethylene copolymerization by gas phase copolymerization of ethylene and a small proportion of α-olefin having 3 or more carbon atoms in the presence of an olefin polymerization catalyst comprising a titanium catalyst component and an organoaluminum compound catalyst component. In a method for producing a copolymer composition: (i) in a first gas phase polymerization zone, ethylene and propylene or 1-butene are copolymerized in a gas phase to produce a copolymer having a density of 0.910 to 0.950 g/ cm3 ; (ii) Then, in a second gas phase polymerization zone, the copolymer formed in the first gas phase polymerization zone is In the presence of ethylene, ethylene and an α-olefin having a larger number of carbon atoms than the α-olefin used in the first gas phase polymerization zone are copolymerized in a gas phase to give a density of 0.910 to
A copolymer having a molecular weight of 0.945 g/cm 3 and greater than the copolymer formed in the first gas phase polymerization zone is added in an amount amounting to 70 to 30% by weight of the total amount of the final copolymer composition. A method for producing an ethylene copolymer composition having a density of 0.910 to 0.945 g/cm 3 . 2. The ethylene content of the final copolymer composition is from about 70% to about 98% by weight.
Manufacturing method described in section. 3 The intrinsic viscosity [η 2 ] of the copolymer produced in the second gas phase polymerization zone (measured at 135°C in decalin) is
The method according to claim 1, wherein the intrinsic viscosity [η 1 ] of the copolymer produced in the first gas phase polymerization zone is about 1.2 to about 40 times. 4. The method according to claim 1, wherein the titanium catalyst component is a highly active solid titanium catalyst component containing magnesium, titanium, and halogen as essential components.
JP16408682A 1982-09-22 1982-09-22 Manufacture of ethylene copolymer composition Granted JPS5953511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16408682A JPS5953511A (en) 1982-09-22 1982-09-22 Manufacture of ethylene copolymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16408682A JPS5953511A (en) 1982-09-22 1982-09-22 Manufacture of ethylene copolymer composition

Publications (2)

Publication Number Publication Date
JPS5953511A JPS5953511A (en) 1984-03-28
JPH0335324B2 true JPH0335324B2 (en) 1991-05-27

Family

ID=15786506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16408682A Granted JPS5953511A (en) 1982-09-22 1982-09-22 Manufacture of ethylene copolymer composition

Country Status (1)

Country Link
JP (1) JPS5953511A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618301U (en) * 1992-08-17 1994-03-08 クサカ商事株式会社 Empty can collection bag
RU2064836C1 (en) * 1994-06-20 1996-08-10 Институт катализа им. Г.К.Борескова СО РАН Method to produce applied catalyst for ethylene polymerization and copolymerization of ethylene with alfa-olefins

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840307A (en) * 1981-09-04 1983-03-09 Asahi Chem Ind Co Ltd Production of copolymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840307A (en) * 1981-09-04 1983-03-09 Asahi Chem Ind Co Ltd Production of copolymer

Also Published As

Publication number Publication date
JPS5953511A (en) 1984-03-28

Similar Documents

Publication Publication Date Title
KR860002050B1 (en) Process for producing a chemically blended propylene polymer composition
NO157298B (en) PROCEDURE FOR PREPARING A POLYMER OR COPOLYMER OF AN ALFA-OLEFINE.
US20100196711A1 (en) Ultra-high molecular weight polyolefin fine particles, process for producing the same and molded articles of the same
JPS6312886B2 (en)
JPH0579683B2 (en)
JPH0335324B2 (en)
JPS6237043B2 (en)
JPS6351167B2 (en)
JPH0568481B2 (en)
JPS6354296B2 (en)
JPH0368045B2 (en)
JPS6410532B2 (en)
JPH032166B2 (en)
JP2674953B2 (en) Ultra high molecular weight polyolefin composition for molding
JP2514974B2 (en) Method for producing branched α-olefin polymer
JP3055078B2 (en) Method for producing polyolefin
JPH0323086B2 (en)
JPS59219311A (en) Polymerization of olefin
JP2523109B2 (en) Catalyst component for olefin polymerization
JPH0340046B2 (en)
JP3055079B2 (en) Method for producing polyolefin
JP3273216B2 (en) Method for producing polyolefin
JPH0617399B2 (en) Method for producing polyolefin
JP3273217B2 (en) Method for producing polyolefin
JPH0725837B2 (en) Branched α-olefin polymer composition and process for producing the same