JPS58869B2 - Method for producing microbial cell destruction products - Google Patents

Method for producing microbial cell destruction products

Info

Publication number
JPS58869B2
JPS58869B2 JP55124722A JP12472280A JPS58869B2 JP S58869 B2 JPS58869 B2 JP S58869B2 JP 55124722 A JP55124722 A JP 55124722A JP 12472280 A JP12472280 A JP 12472280A JP S58869 B2 JPS58869 B2 JP S58869B2
Authority
JP
Japan
Prior art keywords
cells
frozen
suspension
destroyed
bacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55124722A
Other languages
Japanese (ja)
Other versions
JPS5750884A (en
Inventor
久保山盛雄
石橋憲雄
島村誠一
立花敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Milk Industry Co Ltd
Original Assignee
Morinaga Milk Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co Ltd filed Critical Morinaga Milk Industry Co Ltd
Priority to JP55124722A priority Critical patent/JPS58869B2/en
Publication of JPS5750884A publication Critical patent/JPS5750884A/en
Publication of JPS58869B2 publication Critical patent/JPS58869B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、−100℃以下の温度で凍結された微生物菌
体(以下微生物菌体を単に菌体と記載する)の5〜20
%(重量。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides 5 to 20 microbial cells (hereinafter referred to simply as microbial cells) of microbial cells frozen at a temperature of -100°C or lower.
%(weight.

以下同じ)濃度の懸濁液を、−40℃以下の温度で凍結
状態のまま微粉砕し、菌体を破壊し、製造することを特
徴とする菌体破壊物の効率的かつ工業的製造法に関する
An efficient and industrial method for producing a bacterial cell-destroying product, which is characterized by pulverizing a suspension with a concentration of (hereinafter the same) in a frozen state at a temperature below -40°C to destroy the bacterial cells. Regarding.

本発明の目的は、工業的規模による効率的かつ連続的な
菌体破壊物の製造法を提供することにある。
An object of the present invention is to provide an efficient and continuous method for producing a bacterial cell destroyer on an industrial scale.

本発明の他の目的は、菌体内蛋白質、酵素等を分離し、
医薬品として使用するための菌体破壊物を提供すること
にある。
Another object of the present invention is to separate intracellular proteins, enzymes, etc.
The objective is to provide a bacterial cell-destroying substance for use as a medicine.

更に、本発明の他の目的は、食料または飼料として利用
し得る菌体破壊物を提供することにある。
Furthermore, another object of the present invention is to provide a bacterial cell destroyer that can be used as food or feed.

従来、菌体を破壊して細胞壁、細胞内顆粒、菌体内酵素
などを抽出することは古くから行なわれており、微生物
学、酵素学、生化学、医学、薬学、栄養学などの広い分
野の研究に実験室的に利用されている。
Conventionally, destroying bacterial cells and extracting cell walls, intracellular granules, intracellular enzymes, etc. has been carried out for a long time, and has been used in a wide range of fields such as microbiology, enzymology, biochemistry, medicine, pharmacy, and nutrition. Used in laboratory for research.

菌体破壊物の工業的生産は、従来主として酵素生産のた
めに行なわれている。
Industrial production of bacterial cell destroyers has conventionally been carried out mainly for enzyme production.

たとえば、グルコースオキシダーゼ、ユリカーゼ、グル
コースイソメラーゼなどで、菌体の破壊は自己消化によ
る方法、凍結融解の反復による氷結晶で細胞壁に損傷を
与える方法、超音波処理、フレンチプレス、乳鉢、ホモ
ジナイザー等を用いる方法に塩類溶液、緩衝液、表面活
性剤などの抽出剤を同時に作用させて抽出している。
For example, for glucose oxidase, urecase, glucose isomerase, etc., bacterial cells can be destroyed using methods such as autolysis, repeated freezing and thawing to damage cell walls with ice crystals, sonication, French press, mortar, homogenizer, etc. Extraction is performed by simultaneously using extractants such as salt solutions, buffers, and surfactants.

これらの破壊処理は、酵素の抽出が細胞膜の透過性を喪
失させ、細胞内成分の漏出を初期目標としているので極
めて軽度な段階に留っている。
These destructive treatments remain at an extremely mild stage because enzyme extraction causes loss of cell membrane permeability and the initial goal is leakage of intracellular components.

酵母菌体の自己消化物は、古くから調味料として市販さ
れているが、酵母菌体そのものは、食用、薬用、飼料用
として生産されている。
Autolysed products of yeast cells have been commercially available as seasonings for a long time, but yeast cells themselves are produced for food, medicine, and feed.

これらは破壊菌体になれば栄養価、消化率などについて
向上が認められるが、細胞壁が強固で十分破壊されない
ため、自己消化以外の方法では生産されていない。
When these cells are destroyed, their nutritional value and digestibility are improved, but because their cell walls are so strong that they cannot be destroyed sufficiently, they cannot be produced by methods other than autolysis.

菌体を凍結して破壊する工業的方法は、従来知られてい
ないが、実験室的規模では−25〜−35℃の温度で菌
体を凍結し、凍結物を加圧して菌体を破壊するHugh
es press、x−press及びこれらに構造、
原理の類似する装置が市販されている。
There is no known industrial method to destroy bacterial cells by freezing them, but on a laboratory scale, it is possible to freeze the bacterial cells at a temperature of -25 to -35°C and pressurize the frozen material to destroy the bacterial cells. Hugh
es press, x-press and their structure,
Devices similar in principle are commercially available.

これらの装置は、5〜25m1の試料液を耐圧性円筒容
器に入れ、容器ごと−25〜−35℃に冷却し、試料を
凍結させた後、ピストンを円筒ホールに差し込み、落下
衝撃装置またはフライプレスにセットして鋭く加圧する
ことにより、試料を凍結状態で円筒本体に設けられた細
孔あるいは円筒接合面の細溝より圧出(通過)させて、
これにより菌体を破砕させる。
In these devices, 5 to 25 ml of sample liquid is placed in a pressure-resistant cylindrical container, the container is cooled to -25 to -35°C, the sample is frozen, and then a piston is inserted into the cylindrical hole. By setting it in a press and applying sharp pressure, the sample is forced out (passed through) in a frozen state through the pores provided in the cylindrical body or the narrow grooves on the cylindrical joint surface.
This crushes the bacterial cells.

これらの装置による菌体破砕作用の機序に関して、Hu
ghesは破砕効果の大部分が、高圧下で引き起こされ
る凍結試料の圧縮及び再凍結の過程での、氷結晶の耐摩
作用によるものと推察している(Hughes、D、E
、:“The Disintegration of
Micro−organisms”、Method i
n microbi−010gy、vol、 5B、1
〜54ページ、1971年、Academic Pre
ss発行)。
Regarding the mechanism of bacterial cell crushing action by these devices, Hu
Hughes surmised that most of the fracture effect was due to the anti-friction effect of ice crystals during the compression and refreezing of the frozen sample under high pressure (Hughes, D., E.
,: “The Disintegration of
Micro-organisms”, Method i
n microbi-010gy, vol, 5B, 1
~54 pages, 1971, Academic Pre
ss issue).

また、EdeboによるX−pressに関する研究に
よれば、破砕作用として主に関与するものは、氷結晶の
形態が高圧下で変化することによって引き起こされると
している(Edebo、L、:Acta Phatho
logica et Bio−1ogica 5can
dinavica、52巻、300ページ、1961年
)。
Furthermore, according to a study on X-press by Edebo, the crushing effect mainly involved is caused by changes in the morphology of ice crystals under high pressure (Edebo, L.: Acta Phatho
logica et Bio-1 logica 5can
dinavica, vol. 52, p. 300, 1961).

このように従来の凍結した菌体の破壊方法は、高い温度
(−25〜−35℃)で凍結した菌体を加圧して破壊す
る極めて小規模なものであった。
As described above, the conventional method for destroying frozen microbial cells has been extremely small-scale, in which microbial cells frozen at high temperatures (-25 to -35° C.) are destroyed by applying pressure.

最近、酵母等の菌体を液化冷媒ガスと接触させて凍結し
、ついで該凍結菌体を冷媒ガス雰囲気中で極低温下に粉
砕する方法が公開された(特開昭53−29983号)
Recently, a method has been published in which bacteria such as yeast are brought into contact with liquefied refrigerant gas to freeze them, and then the frozen bacteria are crushed under extremely low temperatures in an atmosphere of refrigerant gas (Japanese Patent Laid-Open No. 53-29983).
.

この方法は、菌体内に存在する水分を凍結させて菌体を
破壊しようとするものであるが、後述するように本発明
者らの試験によれば菌体内水分の凍結のみでは菌体の破
壊率の低いことが判明した。
This method attempts to destroy the microbial cells by freezing the water present inside the microbial cells, but as described later, according to the tests conducted by the present inventors, freezing the water inside the microbial cells alone does not destroy the microbial cells. It was found that the rate was low.

一方、凍結粉砕の技術は、すでに50年以上も前に、そ
の方法の原理が研究され、1962年H0B、Wist
reichらが香辛料について実施したのが食品への応
用の最初である。
On the other hand, the principle of freeze-grinding technology has been studied for more than 50 years, and in 1962 H0B, Wist
The first application to food was that of spices by Reich et al.

その後広く食品工業において利用され(食品工業技術情
報、第11巻、第5号、1〜15ページ、1979年)
、各種食品あるいは食品原料の粉砕に利用されている。
After that, it was widely used in the food industry (Food Industry Technology Information, Vol. 11, No. 5, pages 1-15, 1979).
It is used for grinding various foods or food ingredients.

この方法の利点は第一に常温で粉砕の困難な物質を容易
に粉砕できるので、ゴムタイヤ、アルミまたはプラスチ
ック容器等が処理されること、第二は常温下での粉砕に
おいて生じる発熱が防止されるため、熱変性されやすい
物質を粉砕できること、及び第三に冷媒として使用した
液体窒素が粉末の空げきを満たすため酸化が防止される
ばかりでなく、粉塵爆発の怖れも少なくなることである
The advantages of this method are: firstly, materials that are difficult to crush can be easily crushed at room temperature, such as rubber tires, aluminum or plastic containers, etc., and secondly, the heat generated during crushing at room temperature is prevented. Therefore, substances that are easily denatured by heat can be pulverized, and thirdly, liquid nitrogen used as a refrigerant fills the voids in the powder, which not only prevents oxidation but also reduces the risk of dust explosion.

凍結粉砕の唯一の欠点は、常温での粉砕よりコスト高に
なることであるが、この欠点は、付加価値の高い製品へ
の利用と前記の利点とによって相殺される場合もあると
いわれている。
The only disadvantage of freeze-grinding is that it is more expensive than grinding at room temperature, but this disadvantage is said to be offset in some cases by its use in high-value-added products and the aforementioned advantages. .

そして、すでに食品については、常温で粉砕しにくいビ
ーナツツ、アーモンドのような豆類、せんい性食品、す
じ肉等が、また常温では温度上昇によって香気または成
分の変化が生じる各種スパイス類、香料、果汁等が、そ
して酸化されやすい成分を含む緑茶、紅茶、コーヒー、
海藻等が処理されている。
As for food products, we have already introduced beans such as peanuts and almonds that are difficult to crush at room temperature, crunchy foods, and meat, as well as various spices, fragrances, and fruit juices whose aromas or ingredients change as the temperature rises at room temperature. However, green tea, black tea, and coffee, which contain ingredients that are easily oxidized,
Seaweed etc. are processed.

更に硬さ、水分含量が大きく異る部分からなっているた
め、常温では粉砕の困難な骨つき魚肉、えびまたはおき
あみ等、コストを吸収できる付加価値の高い製品である
漢方薬、生薬原料、胚芽、クロレラ等も処理されている
In addition, products such as bone-in fish meat, shrimp, or shrimp, which are difficult to crush at room temperature because they are made up of parts that differ greatly in hardness and moisture content, are products with high added value that can absorb costs, such as Chinese herbal medicines, herbal medicine raw materials, and germs. , chlorella, etc. are also processed.

更に、従来廃棄されていたり商品価値のなくなったもの
の再利用として、牛、豚、魚等の骨、大豆、もみがら、
いか屑等が凍結粉砕によって新しい用途が見出されてい
る。
In addition, we are reusing materials that have traditionally been discarded or have lost their commercial value, such as bones of cows, pigs, fish, etc., soybeans, rice husks, etc.
New uses have been found for squid waste by freezing and crushing it.

凍結粉砕装置としては、種々のものが市販されているが
、いずれも原料ホッパー、冷却装置、粉砕装置、冷却原
料の粉砕装置への供給装置、分級装置等から構成されて
いる。
Various types of freeze-grinding equipment are commercially available, and all of them are comprised of a raw material hopper, a cooling device, a crushing device, a device for supplying the cooled raw material to the crushing device, a classification device, and the like.

まず、原料はホッパーに投入され、予めホッパーに供給
されている液体窒素中で凍結される。
First, raw materials are put into a hopper and frozen in liquid nitrogen that has been supplied to the hopper in advance.

次いでスクリュ一式供給機で粉砕機(ミル)に送られ、
所定の温度のもとて粉砕分級されたのち気化した窒素ガ
スで移送され、サイクロンで捕集されて、外部にとり出
される。
Next, it is sent to a crusher (mill) by a screw set feeder,
After being crushed and classified at a predetermined temperature, it is transported using vaporized nitrogen gas, collected by a cyclone, and taken out to the outside.

粉砕には、ハンマーミル、ボールミル、ピンミルのよう
な衝撃式ミルが多く用いられ、試料によってはジェット
ミル、摩砕機なども使用されている。
Impact mills such as hammer mills, ball mills, and pin mills are often used for pulverization, and depending on the sample, jet mills and attritors are also used.

代表的な装置としてはリンレックスミル(商標。A typical device is the Linrex Mill (trademark).

細用鉄工所製)、クライオミル(商標。日本酸素及びタ
ーボ工業製)、コンプレックスミル(商標。
(manufactured by Seiyo Ironworks), Cryomill (trademark. Manufactured by Nippon Sanso and Turbo Kogyo), Complex Mill (trademark).

槙野産業及びアルピネ製)、アトマイザ一式ミル(不ニ
パウダル及び東洋酸素製)等がある。
(manufactured by Makino Sangyo and Alpine), a complete atomizer mill (manufactured by Fuji Paudal and Toyo Sanso), etc.

以上のように、凍結粉砕装置は種々のものが市販され、
また被粉砕物質として食用に供する可視的な大きさのあ
らゆるものが処理されている。
As mentioned above, various cryo-pulverizers are commercially available.
In addition, any material of visible size that is edible is processed as the material to be crushed.

本発明者らは、菌体破壊物の工業的規模による効率的か
つ連続的製造方法について研究を行ない、菌体を5〜2
0%の濃度で水又は生理食塩水等に懸濁した液を凍結し
、これを凍結状態で微粉砕することによって従来公知の
方法よりもすぐれた菌体破壊効果をもたらすという予想
し得ない事実を発見し、本発明を完成した。
The present inventors conducted research on an efficient and continuous production method for bacterial cell destruction products on an industrial scale, and obtained 5 to 2 bacterial cells.
The unexpected fact that freezing a suspension in water or physiological saline at a concentration of 0% and pulverizing it in a frozen state results in a better bacterial cell destruction effect than conventionally known methods. discovered this and completed the present invention.

本発明の方法は、5〜20%の濃度の菌体の懸濁液を、
液体窒素、液体ヘリウム等の超低温液化ガスにより一1
00℃以下の温度に凍結し、凍結物を凍結状態で一40
℃以下の温度で微粉砕し、細胞を破壊し、製造すること
を特徴とする微生物菌体破壊物の製造法である。
In the method of the present invention, a suspension of bacterial cells with a concentration of 5 to 20%,
-11 by ultra-low temperature liquefied gas such as liquid nitrogen or liquid helium
Freeze to a temperature below 00°C, and freeze the frozen material at -40°C in a frozen state.
This is a method for producing a destroyed microbial cell material, which is characterized by pulverizing and destroying cells at a temperature of 0.degree. C. or below.

次に本発明の方法について詳述する。Next, the method of the present invention will be explained in detail.

本発明の方法において使用する菌体は、例えば乳酸菌、
ビフィズス菌、酵母、かび、放線菌等の有用な微生物で
あり、医薬品、食品または飼料工業の分野で広く用いら
れている公知のものである。
The bacterial cells used in the method of the present invention include, for example, lactic acid bacteria,
These are useful microorganisms such as bifidobacteria, yeasts, molds, and actinomycetes, and are well-known microorganisms that are widely used in the pharmaceutical, food, or feed industries.

これらの菌体は、それぞれの菌体に適当した培養条件で
常法により培養される。
These bacterial cells are cultured by conventional methods under culture conditions suitable for each bacterial cell.

そして増殖した菌体を含有する培養液そのものまたは該
培養液から常法により菌体を分離し、5〜20%の濃度
で水、生理食塩水等に懸濁した菌体の懸濁液、あるいは
公知の方法、例えば凍結乾燥法、噴霧乾燥法により乾燥
した菌体の粉末を5〜20%の濃度で水、生理食塩水等
に懸濁した懸濁液を使用する。
Then, the culture solution itself containing the proliferated microbial cells, or a suspension of the microbial cells separated from the culture solution by a conventional method and suspended in water, physiological saline, etc. at a concentration of 5 to 20%, or A suspension of bacterial powder dried by a known method such as freeze-drying or spray-drying is suspended in water, physiological saline, etc. at a concentration of 5 to 20%.

懸濁液に含有される菌体は生菌体であっても死菌体であ
ってもよい。
The microbial cells contained in the suspension may be live microbial cells or dead microbial cells.

また懸濁液中の菌体を予め公知の方法、例えばリゾチー
ム処理等、で処理し、菌体が破壊されやすい状態として
もよい。
Alternatively, the bacterial cells in the suspension may be treated in advance by a known method, such as lysozyme treatment, so that the bacterial cells are easily destroyed.

いずれの種類の懸濁液を用いるかは、破壊された菌体の
利用目的によって適宜決定される。
The type of suspension to be used is appropriately determined depending on the intended use of the destroyed microbial cells.

例えば菌体内酵素を分離する場合には、培養液中の成分
が混入しないよう、培養液から菌体を分離し、集菌した
菌体を洗浄し、水に懸濁して用いる。
For example, when separating intracellular enzymes, the cells are separated from the culture solution to avoid contamination with components in the culture solution, and the collected cells are washed and suspended in water before use.

培養液から分離した菌体あるいは乾燥した菌体を使用す
る場合、菌体を5〜20%、望ましくは5〜10%の割
合で水、生理食塩水等に懸濁して用いる。
When using bacterial cells isolated from a culture solution or dried bacteria, the bacterial cells are suspended in water, physiological saline, etc. at a ratio of 5 to 20%, preferably 5 to 10%.

懸濁液を予備凍結して1cm3程度の大きさに荒砕きす
るかまたは超低温液化ガスを満たしたホッパーに直接懸
濁液を投入して懸濁液を凍結する。
The suspension is pre-frozen and crushed into pieces of about 1 cm3 size, or the suspension is directly poured into a hopper filled with ultra-low temperature liquefied gas to freeze the suspension.

超低温液化ガスとして、液体窒素、液体へりラム、液体
アルゴン、液体酸素または液体空気が用いられるが、費
用が安いこと及び酸化を防止することから液体窒素が特
に望ましい。
As the cryogenic liquefied gas, liquid nitrogen, liquid helium, liquid argon, liquid oxygen or liquid air can be used, with liquid nitrogen being particularly preferred due to its low cost and protection against oxidation.

懸濁液は一100℃以下の温度で凍結される。The suspension is frozen at a temperature below -100°C.

−100℃以下の温度で凍結することにより、懸濁液中
の菌体の脆弱化を促進すること、凍結した懸濁液の粉砕
時の昇温を少なくすること及び凍結した懸濁液のミルへ
の移動性を良好にする。
By freezing at a temperature below -100℃, it is possible to promote the weakening of bacterial cells in the suspension, to reduce the temperature rise during grinding of the frozen suspension, and to mill the frozen suspension. improve mobility to.

微粉砕は市販の装置、例えばリンレックスミル(商品名
Fine pulverization can be carried out using commercially available equipment, such as the Linrex Mill (trade name).

細用鉄工所製。XL−0型)により行なわれる。Made by Seiyo Iron Works. XL-0 type).

装置を超低温液化ガスにより予め一40℃以下に冷却し
、凍結した懸濁液を供給し、微粉砕する。
The apparatus is pre-cooled to below -40°C using ultra-low temperature liquefied gas, and the frozen suspension is supplied and pulverized.

粉砕する部分(ミル)は温度が上昇するので、供給する
超低温液化ガスの量を調整して、昇温を防止する必要が
ある。
Since the temperature of the pulverizing part (mill) rises, it is necessary to prevent the temperature from rising by adjusting the amount of ultra-low temperature liquefied gas supplied.

ミルの温度が一40℃を超えて上昇すれば、ミルに菌体
破壊物が付着すること及び菌体破壊物の装置内の移動が
妨げられることから望ましくない。
If the temperature of the mill rises above 140° C., it is undesirable because the bacteria-destroyed substances will adhere to the mill and the movement of the bacteria-destroyed substances within the apparatus will be hindered.

粉砕時の装置内の温度は、破壊する菌体の種類、出発物
質の菌体濃度、菌体の破壊程度、菌体破壊物の使用目的
によって異なるが、−40〜−120℃が破壊効率等の
点から望ましい。
The temperature inside the device during pulverization varies depending on the type of bacteria to be destroyed, the concentration of bacteria in the starting material, the degree of destruction of bacteria, and the purpose of use of the destroyed bacteria, but -40 to -120°C is the optimum temperature for destruction efficiency. It is desirable from the point of view.

雪状に微粉砕された菌体破壊物は氷結晶とともに、装置
内で気化した超低温液化ガスの圧力で装置内を移動し、
分級器を経て受器に取り出される。
The microorganism-destroyed material, which has been finely ground into snow-like particles, moves through the device together with ice crystals under the pressure of the ultra-low temperature liquefied gas that vaporizes inside the device.
It passes through a classifier and is taken out into a receiver.

このようにして取り出された菌体破壊物を、必要に応じ
て再度破壊処理に付してもよい。
The microbial cell destruction material taken out in this manner may be subjected to destruction treatment again if necessary.

このようにして取り出された菌体破壊物を、直ちに凍結
乾燥して粉末にすることもできる。
The destroyed bacterial cells removed in this manner can also be immediately freeze-dried to form a powder.

またこの菌体破壊物を酵素、ビタミン等の有用物質の製
造に利用することもできる。
Moreover, this microbial cell destruction product can also be used for the production of useful substances such as enzymes and vitamins.

更にこの菌体破壊物を食品または飼料製造のための1成
分としてそのまま利用することもできる。
Furthermore, this microbial cell destruction product can also be used as it is as a component for the production of food or feed.

次に試験例を示して更に本発明の方法を詳述する。Next, the method of the present invention will be further explained in detail by showing test examples.

試験1 パン酵母菌体の破壊 (1)試料 1)本発明の方法による試料:実施例1と同一の方法に
より製造した。
Test 1 Destruction of Baker's Yeast Cells (1) Sample 1) Sample by the method of the present invention: Produced by the same method as Example 1.

2)公知の方法による試料:実施例1と同一の方法によ
り調製したパン酵母菌体の懸濁液100gを実験用超音
波発生装置(久保田製作所製。
2) Sample prepared by a known method: 100 g of a suspension of baker's yeast cells prepared by the same method as in Example 1 was heated using an experimental ultrasonic generator (manufactured by Kubota Seisakusho).

200M型)により、9KHz、200Wの出力で15
℃の温度に保持して60分間処理し、菌体を破壊した。
200M type) with an output of 9KHz and 200W.
The cells were treated for 60 minutes while being maintained at a temperature of 0.degree. C. to destroy the bacterial cells.

(2)試験方法 前記2種類の試料を顕微鏡で観察し、1視野中の全菌体
数に対する破壊された菌体数の百分率を算出し、20視
野の平均値で菌体の破壊率を測定した。
(2) Test method Observe the above two types of samples with a microscope, calculate the percentage of the number of destroyed bacteria to the total number of bacteria in one field of view, and measure the destruction rate of bacteria as the average value of 20 fields of view. did.

前記2種類の試料の一部を28,0OOGで40分間遠
心分離し、上澄液を集め、上澄液10m1中の可溶性固
形分含量及び可溶性蛋白質含量を次の方法で測定した。
Parts of the two types of samples were centrifuged at 28.0 OOG for 40 minutes, the supernatant was collected, and the soluble solid content and soluble protein content in 10 ml of the supernatant were measured by the following method.

そして遠心分離前の試料10m1中の全固形分含量、及
び蛋白質含量に対する遠心分離上澄液10m1中の可溶
性固形分含量及び可溶性蛋白質含量の百分率を算出し、
それぞれの成分の上澄液への移行率を測定した。
Then, calculate the percentage of soluble solid content and soluble protein content in 10 ml of centrifuged supernatant relative to the total solid content and protein content in 10 ml of sample before centrifugation,
The transfer rate of each component to the supernatant liquid was measured.

遠心分離前の試料の全固形分含量及び上澄液の可溶性固
形分含量はそれぞれ100℃±0.5℃における乾燥法
により、遠心分離前の試料の蛋白質含量及び上澄液の可
溶性蛋白質含量は、それぞれケールゾール法により測定
した。
The total solid content of the sample before centrifugation and the soluble solid content of the supernatant were determined by the drying method at 100°C ± 0.5°C, and the protein content of the sample before centrifugation and the soluble protein content of the supernatant were , respectively, were measured by the Kaersol method.

(3)結果 試験結果は表1に示すとおりである。(3) Results The test results are shown in Table 1.

表1から明らかなように、両試料の検鏡による菌体の破
壊率は同一であるにもかかわらず、上澄液への可溶性固
形分及び可溶性蛋白質の移行率は本発明の方法による試
料が従来法によるそれのそれぞれ約1.33倍及び約1
.68倍と高い値を示した。
As is clear from Table 1, although the destruction rate of microbial cells by microscopy for both samples was the same, the transfer rate of soluble solids and soluble proteins to the supernatant was lower in the sample obtained by the method of the present invention. About 1.33 times and about 1 times that by the conventional method, respectively.
.. It showed a high value of 68 times.

この結果は、本発明の方法による菌体の破壊が従来法に
よるそれよりもより完全に行なわれていることを立証し
ている。
This result proves that bacterial cells are more completely destroyed by the method of the present invention than by the conventional method.

即ち、本発明の方法によれば、試料は液体窒素素により
超低温で凍結されるため、容易に菌体内凍結を引き起こ
し、菌体が脆弱化すると共に、凍結状態で共存する菌体
外の氷結晶が耐摩剤としての役割を演じることにより、
菌体のわずかな圧迫、衝撃により極めて容易に菌体が破
砕される。
That is, according to the method of the present invention, since the sample is frozen at an ultra-low temperature using liquid nitrogen, it easily causes freezing inside the bacteria, weakening the bacteria, and causing ice crystals outside the bacteria that coexist in the frozen state. By playing the role of anti-wear agent,
Bacterial cells are easily crushed by slight pressure or impact.

試験2 乳酸菌菌体破壊物からの酵素の抽出 (1)試料 ■)本発明の方法による試料:実施例2と同一の方法に
より製造した。
Test 2 Extraction of enzyme from disrupted lactic acid bacteria cells (1) Sample ■) Sample according to the method of the present invention: Produced by the same method as in Example 2.

2)従来法による試料:実施例2と同一の方法により調
製したり、helveticus菌体の懸濁液150g
を5orval−Ribi refrigera−te
d cell fractionator(Ivan
5orva1 社製0RF−1型)により20,000
psiの圧力で8〜1.5℃の温度に保持して菌体を破
壊した。
2) Sample prepared by conventional method: prepared by the same method as in Example 2, or prepared using 150 g of a suspension of P. helveticus cells.
5orval-Ribi refrigera-te
d cell fractionator (Ivan
20,000 by 0RF-1 type manufactured by 5orva1)
The microbial cells were destroyed by maintaining the temperature at 8 to 1.5° C. under a pressure of psi.

(2)試験方法 前記2種類の試料を28,000gで40分間遠心分離
し、上澄液を集め、上澄液中の β−galactosidase (菌体内酵素の1種
)量をDahlgvistの方法(Analytica
l Biochemistry、7巻、18〜25ペー
ジ、1964年)により測定した。
(2) Test method The above two types of samples were centrifuged at 28,000 g for 40 minutes, the supernatant was collected, and the amount of β-galactosidase (a type of intracellular enzyme) in the supernatant was measured using the Dahlgvist method (Analytica
Biochemistry, Vol. 7, pp. 18-25, 1964).

そして30℃において1分間に乳糖1マイクロモルを加
水分解するのに要する酵素量を1単位として表示した。
The amount of enzyme required to hydrolyze 1 micromole of lactose per minute at 30°C was expressed as one unit.

(3)結果 試験結果は表2に示すとおりである。(3) Results The test results are shown in Table 2.

表2から明らかなように本発明の方法により製造された
菌体破壊物は、従来量も破壊効率が良好であるといわれ
ている前記の方法のそれとほぼ同等のβ−galact
osidase量を有し、菌体がより効果的に破壊され
て菌体内酵素が菌体外に取り出されている。
As is clear from Table 2, the bacterial cell destruction product produced by the method of the present invention contains approximately the same amount of β-galact as the conventional method, which is said to have good destruction efficiency.
osidase, the bacterial cells are more effectively destroyed and intracellular enzymes are taken out of the bacterial cells.

試験3 各種菌体濃度における菌体の破壊 (1)試料 市販の新鮮なパン酵母(水分含量的33%)、このパン
酵母を精製水に懸濁して菌体濃度を3゜5.20,30
、及び50%に調整した6種の試料を各15Kg調製し
た。
Test 3 Destruction of bacterial cells at various bacterial cell concentrations (1) Sample Commercially available fresh baker's yeast (moisture content: 33%). This baker's yeast was suspended in purified water and the bacterial cell concentration was adjusted to 3°5.20, 30.
, and 6 types of samples adjusted to 50%, each weighing 15 kg, were prepared.

各試料を実施例1と同様の方法で処理し、菌体を破壊し
た。
Each sample was treated in the same manner as in Example 1 to destroy bacterial cells.

(2)試験方法 菌体破壊処理した各試料について前記試験1と同様の方
法により菌体破壊率、可溶性固形分移行率及び可溶性蛋
白質移行率を測定し、菌体破壊の状態を試験した。
(2) Test method For each sample subjected to bacterial cell destruction treatment, the bacterial cell destruction rate, soluble solid content transfer rate, and soluble protein transfer rate were measured by the same method as in Test 1, and the state of bacterial cell destruction was tested.

(3)結果 結果は表3に示すとおりである。(3) Results The results are shown in Table 3.

表3から明らかなように、懸濁液の菌体濃度が5〜20
%、特に5%及び10%、の範囲において可溶性固形分
移行率、可溶性蛋白質移行率及び破壊率が高く、菌体が
破壊されていることが認められる。
As is clear from Table 3, the bacterial cell concentration of the suspension is 5 to 20.
%, especially in the range of 5% and 10%, the soluble solid content transfer rate, soluble protein transfer rate, and destruction rate are high, and it is recognized that the bacterial cells are destroyed.

そして最も菌体が破壊されている5%の菌体濃度の測定
値と対照のそれとを比較すれば、前者は可溶性固形分移
行率において2.45倍、可溶性蛋白質移行率において
2.83倍、破壊率において3.17倍である。
Comparing the measured value of the bacterial cell concentration at 5%, where the most bacterial cells are destroyed, with that of the control, the former has a soluble solid content transfer rate of 2.45 times, a soluble protein transfer rate of 2.83 times, The destruction rate is 3.17 times higher.

この試験結果から本発明において懸濁液の菌体濃度を5
〜20%、望ましくは5〜10%に調整することが必要
であることが判明した。
Based on this test result, in the present invention, the bacterial cell concentration of the suspension was
It has been found necessary to adjust it to ~20%, preferably 5-10%.

本発明の方法による効果は次のとおりである。The effects of the method of the present invention are as follows.

(1)菌体を効率よく容易に破壊することができる。(1) Bacterial cells can be efficiently and easily destroyed.

(2)粉砕時の発熱を超低温液化ガスの気化潜熱により
防止することができるので、変性する菌体構成物質、例
えば酵素等の生理活性物質を安定に回収することができ
る。
(2) Since heat generation during pulverization can be prevented by the latent heat of vaporization of the ultra-low temperature liquefied gas, denatured bacterial cell constituent substances, such as physiologically active substances such as enzymes, can be stably recovered.

(3)超低温液化ガスとして液体窒素、液体ヘリウムを
用いるこにより、気化した気体が破壊菌体を覆い、処理
菌体の酸化を防止する。
(3) By using liquid nitrogen or liquid helium as the ultra-low temperature liquefied gas, the vaporized gas covers the destroyed bacterial cells and prevents the treated bacterial cells from being oxidized.

(4)大量の菌体を連続的に破壊することが可能である
(4) It is possible to continuously destroy large amounts of bacterial cells.

(5)従来、技術的にも経費的にも実現が極めて困難と
考えられていた飼料効率の高い酵母飼料の生産あるいは
微生物菌体内酵素の効果的な抽出が安価なランニングコ
ストで可能となる。
(5) The production of yeast feed with high feed efficiency or the effective extraction of enzymes inside microorganisms, which were previously thought to be extremely difficult to achieve both technically and economically, becomes possible at low running costs.

実施例1 市販の新鮮なパン酵母(水分含量約33%)10kgに
精製水20kgを加え、約10%の酵母菌体を含有する
懸濁液30kgを調製した。
Example 1 20 kg of purified water was added to 10 kg of commercially available fresh baker's yeast (water content approximately 33%) to prepare 30 kg of a suspension containing approximately 10% yeast cells.

この懸濁液20kgをリンレックスミル(商標。20 kg of this suspension was mixed with Linrex Mill (trademark).

細用鉄工所製。Made by Seiyo Iron Works.

XL−o型)により、次のようにして処理した。XL-o type) as follows.

液体窒素により装置内を予め一100℃に冷却した。The inside of the apparatus was previously cooled to -100°C with liquid nitrogen.

次に液体窒素を満たしたホッパーに懸濁液を滴下し、粒
径約5〜10mmのペレット状に凍結した。
Next, the suspension was dropped into a hopper filled with liquid nitrogen and frozen into pellets with a particle size of about 5 to 10 mm.

この凍結物を1分間に0.5ゆの割合で連続的に装置に
供給し、菌体を微粉砕した。
This frozen material was continuously supplied to the apparatus at a rate of 0.5 Yu per minute to finely pulverize the bacterial cells.

装置にはハンマーミルが装着され、ローターの周速は毎
秒109mであった。
The apparatus was equipped with a hammer mill, and the peripheral speed of the rotor was 109 m/s.

約40分間連続的に装置を運転し、雪状の凍結微粉状の
パン酵母菌体破壊物的19.5kyを得た。
The apparatus was operated continuously for about 40 minutes, and 19.5 ky of snow-like frozen fine powder of baker's yeast cells was obtained.

得られた菌体破壊物を試験1と同様の方法で検鏡した結
果、菌体の約90%が破壊されていた。
When the obtained bacterial cell destruction product was examined under a microscope in the same manner as in Test 1, approximately 90% of the bacterial cells were destroyed.

実施例2 乳酸菌り、helveticus(ATCC8018)
を、酵母エキス、ペプトン、乳糖、塩類よりなる培地6
001に接種し、37℃で18時間培養し、遠心分離し
て菌体を集め、精製水で菌体を洗浄し、のち生理食塩水
を加えて約12%の菌体懸濁成約10kgを得た。
Example 2 Lactic acid bacteria, helveticus (ATCC8018)
A medium 6 consisting of yeast extract, peptone, lactose, and salts
001, cultured at 37°C for 18 hours, centrifuged to collect the bacterial cells, washed with purified water, and then added with physiological saline to obtain approximately 10 kg of bacterial cell suspension of approximately 12%. Ta.

この懸濁液8kgを一40℃下の冷凍庫で凍結し、凍結
物を約1CM3の大きさに荒砕きし、1分間0.3kg
の割合で実施例1と同一の装置に供給し、以下実施例1
と同様の方法で菌体を破壊し、雪状の凍結微粉状の乳酸
菌菌体破壊物的7.8kgを得た。
Freeze 8 kg of this suspension in a freezer at -40°C, crush the frozen material into pieces of about 1 cm3, and freeze 0.3 kg for 1 minute.
The following Example 1 was supplied to the same equipment as in Example 1 at a ratio of
The bacterial cells were destroyed in the same manner as above to obtain 7.8 kg of crushed lactic acid bacteria cells in the form of snow-like frozen fine powder.

実施例3 ビフィドバクテリウム・ブレーベ(ATCC15700
)を、いずれも市販されている酵母エキス、カシトン、
肉エキス、システィン及び塩類からなる滅菌した液体培
地6001に接種し、炭酸ガスを0.1vvmの割合で
通気しながら37℃で16時間培養した。
Example 3 Bifidobacterium breve (ATCC15700
), yeast extract, kashiton, which are all commercially available.
It was inoculated into a sterilized liquid medium 6001 consisting of meat extract, cysteine, and salts, and cultured at 37° C. for 16 hours while aerating carbon dioxide gas at a rate of 0.1 vvm.

のち遠心分離して菌体を集め、精製水で洗浄し、精製水
を加えて菌体濃度約9%の懸濁成約12kgを得た。
Thereafter, the cells were collected by centrifugation, washed with purified water, and purified water was added to obtain about 12 kg of a suspension with a cell concentration of about 9%.

この懸濁液10kgを直ちに一40℃の冷凍庫内で凍結
し、凍結物を約lCm2の大きさに荒砕きし、1分間0
.3kgの割合で実施例1と同一の装置に供給し、以下
実施例1と同様の方法で菌体を破壊し、雪状の凍結微粉
状のビフィズス菌菌体破壊物的9.5kgを得た。
Immediately freeze 10 kg of this suspension in a freezer at -40°C, crush the frozen material into pieces of approximately 1Cm2, and freeze for 1 minute.
.. 3 kg was supplied to the same apparatus as in Example 1, and the bacterial cells were destroyed in the same manner as in Example 1 to obtain 9.5 kg of broken bifidobacterial cells in the form of snow-like frozen fine powder. .

Claims (1)

【特許請求の範囲】 1 微生物菌体に水又は生理食塩水を加えて該菌体濃度
を5〜20係(重量)に調整した懸濁液を、超低温液化
ガスにより一100℃以下の温度で凍結し、凍結物を一
40℃以下の温度において凍結状態で微粉砕し、微生物
菌体を破壊し、製造することを特徴とする微生物菌体破
壊物の製造法。 2 超低温液化ガスが、液体窒素、液体ヘリウム、液体
アルゴン、液体酸素または液体空気である特許請求の範
囲第1項記載の微生物菌体破壊物の製造法。
[Scope of Claims] 1. A suspension prepared by adding water or physiological saline to microbial cells to adjust the cell concentration to 5 to 20 parts (weight) is heated to a temperature of -100°C or less using ultra-low temperature liquefied gas. 1. A method for producing a microorganism-destroyed product, which comprises freezing and pulverizing the frozen product in a frozen state at a temperature of -40° C. or lower to destroy the microorganisms. 2. The method for producing a microbial cell destroyer according to claim 1, wherein the ultra-low temperature liquefied gas is liquid nitrogen, liquid helium, liquid argon, liquid oxygen or liquid air.
JP55124722A 1980-09-10 1980-09-10 Method for producing microbial cell destruction products Expired JPS58869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55124722A JPS58869B2 (en) 1980-09-10 1980-09-10 Method for producing microbial cell destruction products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55124722A JPS58869B2 (en) 1980-09-10 1980-09-10 Method for producing microbial cell destruction products

Publications (2)

Publication Number Publication Date
JPS5750884A JPS5750884A (en) 1982-03-25
JPS58869B2 true JPS58869B2 (en) 1983-01-08

Family

ID=14892477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55124722A Expired JPS58869B2 (en) 1980-09-10 1980-09-10 Method for producing microbial cell destruction products

Country Status (1)

Country Link
JP (1) JPS58869B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19755960C1 (en) * 1997-12-16 1998-11-26 Hoechst Ag Braking open a structure of e.g. microorganism or cell
EP2674482A1 (en) * 2012-06-15 2013-12-18 Merck Patent GmbH Process for producing cell culture media

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329983A (en) * 1976-08-30 1978-03-20 Ebios Pharma Breaking and milling method of microorganm mycelium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329983A (en) * 1976-08-30 1978-03-20 Ebios Pharma Breaking and milling method of microorganm mycelium

Also Published As

Publication number Publication date
JPS5750884A (en) 1982-03-25

Similar Documents

Publication Publication Date Title
Sheu et al. Improving survival of culture bacteria in frozen desserts by microentrapment
EP2730646A1 (en) Drying lactic acid bacteria and new compositions
CA2329874A1 (en) Dried microorganism cultures and method for producing same
EA028340B1 (en) Treatment and prophylaxis of infections caused by helicobacter pylori in humans and animals using a composition comprising spray-dried lactobacillus cells
ES2773069T5 (en) Procedure for the preparation of lyophilized microorganism composition
CN109007807A (en) A kind of microcapsules fruit ferment powder and preparation method thereof
CN105105144A (en) Probiotics microcapsule and preparation method thereof
EP3287518A1 (en) Method for freeze drying a bacteria-containing concentrate
JPS58869B2 (en) Method for producing microbial cell destruction products
EP2222186B1 (en) Composition derived from a meat source and processes for making and using composition
JPS62111671A (en) Production of natural antioxidant for food from raw coffee bean
KR20150012445A (en) Microorganism additives compositions for fermentation of foods with enhanced survival rate of the microorganism comprising alginate beads galic crush and lactic acid bacteria embedded therein and method of preparing the same
KR101908624B1 (en) Deflected Clams Using Ultrahigh Pressure Included Clams Seasoning Food
KR102364057B1 (en) Method for microorganism cryoprotectant using coffee residue
JPH04330016A (en) Lipoperoxide hypolipidemic agent
JP2003047422A (en) Lactic acid fermented food of whole soybean flour, bean- curd refuse and grifola frondosa, and method for producing the same
JPS63502090A (en) Crushing and extraction method of animal and plant derived materials
Phumsombat et al. Enhancing probiotic encapsulation with konjac glucomannan hydrolysate
JP2002186457A (en) Health food for beauty, containing kale processed product
Ruiz-Capillas et al. Biogenic amines in restructured beef steaks as affected by added walnuts and cold storage
JP3430127B2 (en) Method for increasing the content of gamma-aminobutyric acid in shredded cruciferous plants
RU2054292C1 (en) Method of preparing biologically active substances from velvet antlers
CN111772188A (en) Liver polypeptide for protecting liver and improving liver function and composition thereof
CN108576573A (en) A kind of ultra tiny pulvis and preparation and application for eliminating nitrite and amine substance
JP2002065205A (en) Beauty health food containing material derived from young leaf of wheat