JPS5886760A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5886760A
JPS5886760A JP56185803A JP18580381A JPS5886760A JP S5886760 A JPS5886760 A JP S5886760A JP 56185803 A JP56185803 A JP 56185803A JP 18580381 A JP18580381 A JP 18580381A JP S5886760 A JPS5886760 A JP S5886760A
Authority
JP
Japan
Prior art keywords
conductivity type
impurity region
source
type
drain impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56185803A
Other languages
Japanese (ja)
Inventor
Isami Sakai
勲美 酒井
Osamu Kudo
修 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56185803A priority Critical patent/JPS5886760A/en
Publication of JPS5886760A publication Critical patent/JPS5886760A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the integration of a semiconductor device by forming the same conductive type layers as diffused layers adjacent to the respective diffused layer in a C-MOSFET device, thereby preventing the electrode window from being displaced out of the diffused layers. CONSTITUTION:A P type well 102 is formed on an N type Si substrate 101 by a conventional method, P type and N type source and drains 106, 107 are formed, an interlayer insulating film 8 is superposed, and a window 109 is selectively opened. Polysilicon 110 is covered, a PSG mask 111 is selectively formed, a P type layer 112 is formed by diffusion of B and then an N type layer 113 is formed by heat treatment. The mask 111 is then removed, and an Al electrode 114 is attached. According to this configuration, since the margin can be remarkably reduced upon improvement of the integration due to the presence of the layers 112, 113, even if an electrode window is displaced out of the source and drain layers, a P-N junction is not broken down, and the leakage current of the window can be prevented from increasing, thereby obtaining a semiconductor device having high reliability.

Description

【発明の詳細な説明】 この発明は、半導体装置の製造方法に係り%特に、半導
体集積回路装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor integrated circuit device.

相補型の絶縁ゲート型電界効果トランジスタ(以下CM
O8トランジスタ)は、消費電力が少ない、高速動作す
る、雑音余裕度が太きいなどの特徴管もっていZため、
CMO8)ランジスタを用いた半導体集積回路が近年注
目されている。また集積度の向上に伴い写真蝕刻におけ
る目合せ余裕の減少が著しく、金属配線と接続する友め
の開口が拡散領域の外側にはみだす所請「外抜きコンタ
クト」等の不都合が生じてきた。この問題に対する対策
として通常絶縁膜に開口を形成した後、それぞれの不純
物領域に同導電型の不純物を導入する方法かとられてい
る。しかし、CMO8)ランジスタではN型とP型の2
種類の不純物領域があるため、開口部に不純物領域上す
る際、導入する不純物と逆導電型の不純物領域上の開口
にマスクを使用しなければガらず、2回の写真蝕刻工程
を必要とし、製造工程が増加する等の問題があった。
Complementary insulated gate field effect transistor (CM
O8 transistor) has characteristics such as low power consumption, high speed operation, and high noise margin, so
CMO8) Semiconductor integrated circuits using transistors have been attracting attention in recent years. Furthermore, as the degree of integration increases, the margin for alignment in photoetching has decreased significantly, resulting in inconveniences such as the so-called "external contact" in which the companion opening for connection with the metal wiring protrudes outside the diffusion region. As a countermeasure to this problem, a method is usually used in which an opening is formed in the insulating film and then impurities of the same conductivity type are introduced into each impurity region. However, in CMO8) transistors, there are two types: N type and P type.
Because there are different types of impurity regions, when placing the impurity region in the opening, a mask must be used to create the opening over the impurity region of the opposite conductivity type to the impurity to be introduced, and two photolithography steps are required. , there were problems such as an increase in the manufacturing process.

この発明の目的は%CMO8)9ンジスタを用いて、集
積度の向上が著しい半導体装置の製造方法全提供するこ
とにある。
An object of the present invention is to provide a complete method for manufacturing a semiconductor device using a %CMO8)9 transistor, which significantly improves the degree of integration.

この発明は相補型の絶縁ゲート型電界効果トランジスタ
ケ用いた半導体装置の製造方法において、−導゛−型の
半導体基板に選択的に設けられた逆導電型の不純物ウェ
ル中にさらに設けられた一導電型の第1のソース・ドレ
イン不純物領域と、前記半導体基板に選択的に設けられ
た逆導電型の第2のソース・ドレイン不純物領域とのそ
れぞれに金属配線を接続するために前記第1および第2
のソース・ドレイ/不純物領域上に絶縁膜の開口を形成
した後、前記半導体基板に多結晶シリコンを成長させ、
さらに前記第lのソース・ドレイン不純物領域(又は第
2のソース・ドレイン不純物領域)上に形成された前記
絶縁膜の開口部に一導電型(又は逆導電型)の不純物を
含む酸化膜を選択的に成長させた後、逆導電型(又は−
導電型)の不純物をイオン注入し、前記第2のソース・
ドレイン不純物領域(又は前記第1のソース・ドレイン
不純物領域)上に形成された前記絶縁膜の開口部に逆導
電型(又は−導電型)の不純物領域を形成し、次に熱処
理によって、前記−導電型(又は逆導電型)の不純物を
含む酸化膜から、前記多結晶シリコンを通して前記第1
のソース・ドレイン不純物領域(又は前記第2のソース
・ドレイン不純物領域)上に形成された前記絶縁膜の開
口部に一導電型(又は逆導電型)の不純物を拡散させた
後、前記−導電型(又は逆導電型)の不純物?含む酸化
ffl?除去し、前記第1および第2のソース・ドレイ
ン不純物領域と金属配線を前記絶縁膜の開口を通して接
続することを特徴とする。
The present invention provides a method for manufacturing a semiconductor device using a complementary insulated gate field effect transistor, in which an impurity well of an opposite conductivity type is further provided in an impurity well of an opposite conductivity type selectively provided in a semiconductor substrate of a -conductivity type. The first and Second
After forming an opening in an insulating film on the source/drain/impurity region of the semiconductor substrate, growing polycrystalline silicon on the semiconductor substrate,
Further, an oxide film containing impurities of one conductivity type (or opposite conductivity type) is selected for the opening of the insulating film formed on the first source/drain impurity region (or second source/drain impurity region). After growing the opposite conductivity type (or -
conductivity type) impurity is implanted into the second source.
An impurity region of the opposite conductivity type (or - conductivity type) is formed in the opening of the insulating film formed on the drain impurity region (or the first source/drain impurity region), and then by heat treatment, the - From the oxide film containing impurities of conductivity type (or opposite conductivity type), through the polycrystalline silicon, the first
After diffusing an impurity of one conductivity type (or opposite conductivity type) into the opening of the insulating film formed on the source/drain impurity region (or the second source/drain impurity region), type (or opposite conductivity type) impurity? Contains oxidized ffl? The first and second source/drain impurity regions and the metal wiring are connected through the opening in the insulating film.

この発明によりは、CMO8)ランジスタ管用いた半導
体集積回路において、製造工程のわずかな増加によって
外抜きコンタクトの不都合を解決することかでき、著し
い集積度の向上がはかれる。
According to the present invention, in a semiconductor integrated circuit using a CMO8 transistor tube, the inconvenience of external contacts can be solved with a slight increase in the number of manufacturing steps, and the degree of integration can be significantly improved.

次に図面を参照しながら、この発明の一実施例について
説明する。この実施例はCIV108 )ランジスタを
用いた集積回路装置およびその製造方法に関する。
Next, an embodiment of the present invention will be described with reference to the drawings. This embodiment relates to an integrated circuit device using CIV108) transistors and a method for manufacturing the same.

第1図乃至第5図にこの発明の実施例の断面図會示す。1 to 5 show cross-sectional views of embodiments of the present invention.

第1因二N型シリコン基板101にほう素をtto。Boron is added to the N-type silicon substrate 101.

Cl2O時間拡散し1選択的にPウェル102を形成す
る。次に不活性領域には1μmのフィールド酸化膜10
3會hk長させ、活性領域には1000大のクー11化
膜104 を成長させる。その上にN型不純物を拡散し
た結晶シリコンを成長させ、写真蝕刻法により、ゲート
電極105 を形成する。
Cl2O is diffused for a time to selectively form a P well 102. Next, in the inactive region, there is a field oxide film 10 with a thickness of 1 μm.
A Cu 11-oxide film 104 of 1000 μm is grown in the active region. Crystalline silicon with N-type impurities diffused thereon is grown, and a gate electrode 105 is formed by photolithography.

次にN型シリコン基板101 KP型不純物拡散層10
6を、Pウェルには、N型不純物拡散層107ケ各々接
合深き0.5μmで形成する。
Next, N type silicon substrate 101 KP type impurity diffusion layer 10
6, 107 N-type impurity diffusion layers are formed in the P well, each having a junction depth of 0.5 μm.

椰2二次次にCVD法により層間絶縁M toslfr
o、sμm成長させ、写真蝕刻法により開口109を形
成する。
Coconut 2nd layer insulation M toslfr by CVD method
0, s μm, and an opening 109 is formed by photolithography.

第3図:その上に多結晶シリコン膜110′ft0.2
μm成長させ、さらに、リンガラス(PEG)膜Btを
0.5μm成長させ、写真蝕刻法により、Pチャネル〜
10Sトランジスタ領域上のリンガラス膜1111除去
し、リンガラス膜IllをNチャネルMOSトランジス
タ領域のマスクとして用いほう素をイオン注入し%P型
不純物拡散層112を形成する。
Figure 3: Polycrystalline silicon film 110'ft0.2
A phosphorus glass (PEG) film Bt was grown to a thickness of 0.5 μm, and a P channel ~
The phosphorus glass film 1111 on the 10S transistor region is removed, and boron ions are implanted using the phosphorus glass film Ill as a mask for the N channel MOS transistor region to form a %P type impurity diffusion layer 112.

$4図二次に1000″C,10分の熱処理を行ないリ
ンガラス膜111に含まれるリンe°Pウェル102に
拡散し、N型不純物拡散層113を形成する。
Second, heat treatment is performed at 1000''C for 10 minutes to diffuse phosphorus into the e°P well 102 included in the phosphorus glass film 111, forming an N-type impurity diffusion layer 113.

第5図:次に、リンガラス膜111 e除去し、1,0
μn1のアルミニウムケミ子ビーム蒸着法により被着し
、アルミニウム配線電極114を形成して完成する。
Figure 5: Next, the phosphor glass film 111e is removed and 1,0
The aluminum wiring electrode 114 is formed by depositing the aluminum using a chemical beam evaporation method of μn1.

このようにして得られたCMO8)クンジスタにおいて
外抜きコンタクトになった場合にも、開口109よりP
チャネルMO8)ランジスタ側にはP型不糾物か導入さ
ね、P型不純物拡散層112が形成さ引%Nチャネルk
qO8)ランジスタ側けN4(1!不純物が導入され、
N型不純物拡散層113が形成されるため、外抜きコン
タクトによって不純物拡散l−と基板とのPN接合を破
壊することがない。また多結晶シリコン膜110か開口
部109にあるため、2回のリンガラス膜1111除去
する工程の際にも、開口109が大きくなることがなく
、開口109より導入した不純物拡散層によるPN接合
の破aIヲ防止する効果全減少ζせることかない。した
がって不純物拡散層とアルミニウム配線との接続のため
の開口部におけるリーク電流の増大管防ぎ、信頼性の高
い集積回路装置を得ることができる。
Even when the CMO 8) obtained in this way becomes an external contact, the contact point is removed from the opening 109.
Channel MO8) A P-type impurity is introduced into the transistor side, and a P-type impurity diffusion layer 112 is formed.
qO8) transistor side N4 (1! Impurity is introduced,
Since the N-type impurity diffusion layer 113 is formed, the PN junction between the impurity diffusion l- and the substrate is not destroyed by the external contact. In addition, since the polycrystalline silicon film 110 is located in the opening 109, the opening 109 does not become large even during the process of removing the phosphor glass film 1111 twice, and the PN junction due to the impurity diffusion layer introduced through the opening 109 is The total effect of preventing damage cannot be reduced. Therefore, an increase in leakage current in the opening for connecting the impurity diffusion layer and the aluminum wiring can be prevented, and a highly reliable integrated circuit device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図1/−i、この発明の一実施例の工程
順の断面図である。 なお図において、 101・・・・・・N型ンリコン基
板、102・・・・・・Pウェル、 103・・・・・
・フィールド酸化膜、 104・・・・・・ゲート酸化
膜、  105・・・・・・ゲート′1i!極、 10
6・・・・・・P型不純物拡散層、 107・・・・・
・N型不純物拡散層、 108・・・・・・層間絶縁膜
、109・・・・・・開口、 110・・・・・・多結
晶シリコン膜、 111・・・・・・リンガラス膜、 
 112・・・・・・P型不純物拡散層、113・・・
・・・N型不純物拡散71.114・・・・・・アルミ
ニウム配線を極、である。 区
FIGS. 1 to 5 1/-i are sectional views showing the steps of an embodiment of the present invention. In the figure, 101...N-type silicon substrate, 102...P well, 103...
・Field oxide film, 104...Gate oxide film, 105...Gate '1i! pole, 10
6...P-type impurity diffusion layer, 107...
・N-type impurity diffusion layer, 108... interlayer insulating film, 109... opening, 110... polycrystalline silicon film, 111... phosphorous glass film,
112...P-type impurity diffusion layer, 113...
. . . N-type impurity diffusion 71.114 . . . Aluminum wiring is used as a pole. Ward

Claims (1)

【特許請求の範囲】[Claims] 相補型の絶縁ゲート型電界効果トランジスタ管用いた半
導体装置の製造方法において、−導電型の半導体基板に
選択的に設けられた逆導電型の不純物ウェル中にさらに
設けられた一導電型の第1のソース・ドレイン不純物領
域と、前記半導体基板に選択的に設けられた逆導電型の
第2のソース・ドレイン不純物領域とのそれぞれに金属
配線を接続するたぬに1前記第1及び第2のソース・ド
レイン不純物領域上に絶縁膜の開口を形成した後、前記
半導体基板に多結晶シリコンを成長させ、さらに前記第
1のソース−ドレイン不純物領域(又は紬記第2のソー
ス・ドレイン不純物領域)上に形成された前記絶縁膜の
開口部に一導電型(又は逆導電型)の不純物を含む酸化
膜管選択的に成長ζせた後、逆導電型(又は−導電型)
の不純物分イオン注入し、前記第2のソース・ドレイン
不純物領域(又は前記第1のソース・ドレイン不純物領
域)上に形成これた前記絶縁膜の開口部に逆導電型(又
は−導電型)の不純物領域を形成し5次に熱処理によっ
て、前記−導電型(又は逆導電型)の不純物を含む酸化
膜から前記多結晶シリコンを通して、前記第4のソース
・ドレイン不純物領域(又は前記第2のソース・ドレイ
ン不純物領域)上に形放さ9れた前記絶縁膜の開口部に
一導電型(又は、逆導t’型)の不純物を拡散させるこ
とを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device using a complementary insulated gate field effect transistor tube, a first impurity well of one conductivity type further provided in an opposite conductivity type impurity well selectively provided in a -conductivity type semiconductor substrate; 1 said first and second sources connecting metal wiring to each of said source/drain impurity region and a second source/drain impurity region of opposite conductivity type selectively provided on said semiconductor substrate; - After forming an opening in the insulating film on the drain impurity region, growing polycrystalline silicon on the semiconductor substrate, and then growing polycrystalline silicon on the first source-drain impurity region (or Tsumugi second source-drain impurity region). After selectively growing an oxide film tube containing impurities of one conductivity type (or opposite conductivity type) in the opening of the insulating film formed in
of the opposite conductivity type (or -conductivity type) is implanted into the opening of the insulating film formed on the second source/drain impurity region (or the first source/drain impurity region). An impurity region is formed, and then heat treatment is performed to form the fourth source/drain impurity region (or the second source/drain impurity region) through the polycrystalline silicon from the oxide film containing impurities of the − conductivity type (or opposite conductivity type). - A method for manufacturing a semiconductor device, characterized in that an impurity of one conductivity type (or reverse conductivity t' type) is diffused into the opening of the insulating film which is left open on the drain impurity region.
JP56185803A 1981-11-19 1981-11-19 Manufacture of semiconductor device Pending JPS5886760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56185803A JPS5886760A (en) 1981-11-19 1981-11-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56185803A JPS5886760A (en) 1981-11-19 1981-11-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5886760A true JPS5886760A (en) 1983-05-24

Family

ID=16177155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56185803A Pending JPS5886760A (en) 1981-11-19 1981-11-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5886760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219165A (en) * 1985-03-25 1986-09-29 Nec Corp Manufacture of complementary semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219165A (en) * 1985-03-25 1986-09-29 Nec Corp Manufacture of complementary semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US4927776A (en) Method of producing semiconductor integrated circuit device including bipolar transistor and insulated gate field effect transistor
JPH0245327B2 (en)
JPH0348457A (en) Semiconductor device and manufacture thereof
JPH0193159A (en) Manufacture of bicmos element
JPS5886760A (en) Manufacture of semiconductor device
JPS59168675A (en) Manufacture of semiconductor device
JPS643065B2 (en)
JPH09321233A (en) Manufacturing semiconductor device
JPS628950B2 (en)
JPH0481336B2 (en)
JPS61251163A (en) Manufacture of bi-mis integrated circuit
JPS5821859A (en) Manufacture of semiconductor device
JPS63244666A (en) Manufacture of semiconductor device
JPS5975653A (en) Manufacture of semiconductor integrated circuit device
JPS58124269A (en) Complementary type insulated gate field effect semiconductor device
JP2830089B2 (en) Method for manufacturing semiconductor integrated circuit
JPS61131476A (en) Semiconductor device
JPS61125165A (en) Manufacture of semiconductor device
JPS60211867A (en) Semiconductor device and manufacture thereof
JP2596405B2 (en) Method for manufacturing semiconductor integrated circuit device
KR100381015B1 (en) Method for fabricating semiconductor device
KR930006851B1 (en) Manufacturing method of bicmos with poly-locos
JPS6158263A (en) Manufacture of semiconductor device
JPS6292359A (en) Manufacture of semiconductor device
JPH0312473B2 (en)