JPS588330B2 - Continuous mixing method and device - Google Patents

Continuous mixing method and device

Info

Publication number
JPS588330B2
JPS588330B2 JP54115410A JP11541079A JPS588330B2 JP S588330 B2 JPS588330 B2 JP S588330B2 JP 54115410 A JP54115410 A JP 54115410A JP 11541079 A JP11541079 A JP 11541079A JP S588330 B2 JPS588330 B2 JP S588330B2
Authority
JP
Japan
Prior art keywords
mixing
added
water
mixing process
elastic membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54115410A
Other languages
Japanese (ja)
Other versions
JPS5640425A (en
Inventor
伊東靖郎
山本康弘
樋口芳朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP54115410A priority Critical patent/JPS588330B2/en
Priority to DE19803009332 priority patent/DE3009332A1/en
Priority to FR8005558A priority patent/FR2457165B1/fr
Priority to CH199480A priority patent/CH649225A5/en
Priority to GB8008468A priority patent/GB2048446B/en
Priority to CA000349232A priority patent/CA1168523A/en
Priority to FR8017901A priority patent/FR2457166B1/en
Publication of JPS5640425A publication Critical patent/JPS5640425A/en
Priority to GB08230550A priority patent/GB2111659B/en
Publication of JPS588330B2 publication Critical patent/JPS588330B2/en
Priority to CA000449087A priority patent/CA1185541A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D43/00Separating particles from liquids, or liquids from solids, otherwise than by sedimentation or filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/16Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with particles being subjected to vibrations or pulsations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/08Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions using driven mechanical means affecting the mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/08Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions using driven mechanical means affecting the mixing
    • B28C5/10Mixing in containers not actuated to effect the mixing
    • B28C5/12Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers
    • B28C5/14Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers the stirrers having motion about a horizontal or substantially horizontal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/0007Pretreatment of the ingredients, e.g. by heating, sorting, grading, drying, disintegrating; Preventing generation of dust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/04Supplying or proportioning the ingredients
    • B28C7/12Supplying or proportioning liquid ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/006Aspects relating to the mixing step of the mortar preparation involving the elimination of excess water from the mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/24Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by shooting or throwing the materials, e.g. after which the materials are subject to impact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Accessories For Mixers (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Description

【発明の詳細な説明】 本発明は連続混合方法及びその装置の創案に係り、砂の
ような細骨材とセメントのような水硬性物質粉末を連続
的に有効に攪拌せしめ、特に粉末や細骨材のみならず水
その他の液体について多段の夫々の添加条件下における
混合状態を順次且つ連続的に形成せしめ、新規な混合調
整物を能率的且つ連続生産方式に適した状態で製造する
ことのできる方法及び装置を提供しようとするものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the invention of a continuous mixing method and device for continuously mixing fine aggregate such as sand and powder of a hydraulic substance such as cement. To produce a new mixed preparation efficiently and in a state suitable for a continuous production system by sequentially and continuously forming a mixed state of not only aggregates but also water and other liquids under the respective addition conditions in multiple stages. The aim is to provide a method and device that can.

各種の混合物を得るための技術手法については従来から
種々に検討され且つ実施されて来たところであるが、こ
れら混合物において多段に混合することが単純に混合す
る場合に比し有利な混合物を得しめることがある。
Various technical methods for obtaining various mixtures have been studied and implemented in the past, and it has been found that mixing these mixtures in multiple stages is more advantageous than simply mixing them. Sometimes.

例えは本発明者等がセメントのような水硬性物質混練物
の調製について提案した造殼混練技術(特願昭54−1
2164:特開昭55−104958)においては、第
1段混合によって砂のような細骨材に特定の表面附着水
量状態を形成し、この状態のものに第2段以下において
別の資料を添加した混合が加えられることによりそれら
の全体を単純に混合操作したものとは異質の生混線物が
得られることが解明され、同一材料によって特段の生混
線物を得ることができる。
For example, the shell-forming kneading technology proposed by the present inventors for preparing a mixture of hydraulic substances such as cement (Japanese Patent Application No. 54-1
2164: Japanese Unexamined Patent Publication No. 55-104958), a specific amount of water adhering to the surface of fine aggregate such as sand is formed by mixing in the first stage, and another material is added to this state in the second and subsequent stages. It has been revealed that by adding such a mixture, a raw mixture different from that obtained by simply mixing the entire mixture can be obtained, and it is possible to obtain a special raw mixture using the same materials.

ところでこのような多段混合をバッチ方式で実施するに
は単にそれらの混合ないし混練資料を多段に添加するこ
とによって目的を達し得るが、このバッチ方式では今日
における工業設備の連続的な作業方式に適しないし、一
般的に土木建築作業として大量に準備されることを必要
とする前記生混練物を適切に得ることができない。
By the way, in order to perform such multi-stage mixing in a batch method, the purpose can be achieved simply by adding the mixed or kneaded materials in multiple stages, but this batch method is not suitable for the continuous working methods of today's industrial equipment. Otherwise, the green kneaded material, which generally needs to be prepared in large quantities for civil engineering and construction work, cannot be obtained appropriately.

即ち連続的に上記のような多段混合を実施することが好
ましいが、上記のような多段混合、特に水その他の流動
性に優れた液体などの関与する条件下で好ましい前記の
混線物をこの連続混合方式によって適切に実施すること
のできる技術は殆んど見当らない。
That is, it is preferable to carry out the above multi-stage mixing continuously, but under the conditions where water or other highly fluid liquids are involved, this continuous mixing is preferred. Few techniques are found that can be properly implemented by mixed methods.

本発明は上記したような実情に鑑み検討を重ねて創案さ
れたものであって、特定の手法と設備を採用することに
より、前記したような条件下において適切な連続混合を
円滑に実施することに成功した。
The present invention was devised after repeated studies in view of the above-mentioned circumstances, and it is possible to smoothly carry out appropriate continuous mixing under the above-mentioned conditions by adopting a specific method and equipment. succeeded in.

即ちこの本発明によるものは、砂のような粒子分を投入
すると共に最終的に添加混合すべき水分の一部を添加し
て前記粒子分に附着せしめられるべき水分量を一定状態
とする第1の混合過程と、この第1の混合過程を経たも
のに対してセメントのような粉末分を添加し混合を継続
する第2の混合過程およびこの第2混合過程を経た混合
物に対し添加すべき残余の水分を添加し更に混合を継続
する第3の混合過程より成り、収容部体の張設された弾
性膜片の機構内部方向に附勢された弾性作用とスクリュ
機構周縁との接摺により少なくとも第3混合過程におい
て添加された水分が第1又は第2混合過程部分に進入す
ることを実質的に阻止しながら上記各混合処理を行わし
めることを特徴とするもので、前記した第2混合過程に
おいて弾性膜片と回転するスクリュ機構の周縁との間で
得られる立体的空気流動作用により粒子分に対し添加さ
れた過剰な粉状分を風別させ、又前記第3混合過程にお
いて砂利その他の粗粒分を添加し、或いは分散剤、急結
剤、遅延剤などの混合物における反応条件又は混合条件
を調整すべき添加剤の1種又は2種以上を添加するもの
である。
That is, in the first method according to the present invention, the amount of water to be attached to the particles is kept constant by adding particles such as sand and adding a part of the water to be finally added and mixed. A second mixing process in which a powder such as cement is added to the mixture that has gone through the first mixing process and mixing is continued, and the remainder that should be added to the mixture that has gone through the second mixing process. The third mixing process consists of adding moisture and continuing mixing, and the elastic action of the tensioned elastic membrane piece of the housing body is urged inward of the mechanism and the sliding contact with the periphery of the screw mechanism causes at least Each of the above mixing processes is performed while substantially preventing the water added in the third mixing process from entering the first or second mixing process, and the second mixing process described above In the third mixing process, the excess powder added to the particles is dispersed by the three-dimensional air flow effect obtained between the elastic membrane piece and the periphery of the rotating screw mechanism. Coarse particles are added, or one or more types of additives such as a dispersant, an accelerating agent, a retarder, etc., which are used to adjust the reaction conditions or mixing conditions in the mixture, are added.

上記のような本発明方法を具体的に実施する装置を添付
図面に示すものについて具体的に説明すると、第1、第
2図に示すようにスクリュ機構4を横設した混合室10
は第3図において別に示されるように断面U字状をなし
、その底面に弾性膜片5が設けられ、該弾性膜片5の外
側に加圧機構室6を形成してこの弾性膜片5を混合室1
0内方向に圧出するように作用せしめ、然して上記した
ような混合室10の上方には前記したU字状構成よりし
て一連の開放部7を形成し、斯様な開放部7に対して上
記混合室10の一側からコンベア11を有する第1の資
料投入機構1、定量切出機構12を有する第2の資料投
入機構2ともう一つの間じく定量切出機構13を有する
第3の資量投入機構3が夫々所定の間隔を採って配設さ
れ、又これらとは別に設けられたタンク14からの配管
15は前記した第1投入機構1の後方に設けられていて
投入された資料に対しそのバルブ15Vを介して調整さ
れた所定量の水を添加せしめ、又この配管15からの分
岐管16は第3投入機構3の後方に導かれてバルブ16
Vの調整設定を得た所定の水が定常供給される。
To specifically explain the apparatus shown in the accompanying drawings for carrying out the method of the present invention as described above, as shown in FIGS. 1 and 2, a mixing chamber 10 with a screw mechanism 4 installed horizontally
has a U-shaped cross section as shown separately in FIG. 3, and an elastic membrane piece 5 is provided on the bottom surface of the elastic membrane piece 5. The mixing chamber 1
However, above the mixing chamber 10 as described above, a series of openings 7 are formed in the above-described U-shape configuration, and the openings 7 are From one side of the mixing chamber 10, a first material inputting mechanism 1 having a conveyor 11, a second material inputting mechanism 2 having a quantitative cutting mechanism 12, and another material feeding mechanism 2 having a quantitative cutting mechanism 13 are introduced. No. 3 resource input mechanisms 3 are arranged at predetermined intervals, and a pipe 15 from a tank 14 provided separately from these is provided behind the first input mechanism 1 and is used for inputting. A regulated predetermined amount of water is added to the sample through the valve 15V, and a branch pipe 16 from the pipe 15 is led to the rear of the third input mechanism 3 and is connected to the valve 16.
A predetermined amount of water with an adjusted setting of V is constantly supplied.

又これらとは別に混和剤タンク17から垂下した配管1
8は上記分岐管16と共に第3投入機構3の後方に位置
して分散剤、遅延剤,急結剤などの混和剤の1種又は2
種以上を定常的に供給するように成っている(複数の混
和剤が予め混合して投入されることが好ましくない場合
には上記タンク17及び配管18が夫夫複数となる)。
In addition to these, there is a pipe 1 hanging down from the admixture tank 17.
Reference numeral 8 is located at the rear of the third feeding mechanism 3 together with the branch pipe 16, and is filled with one or two types of admixtures such as a dispersant, a retarder, and an accelerating agent.
(If it is not preferable to mix a plurality of admixtures in advance, the tank 17 and piping 18 will be provided in plural numbers.)

混合室10の後端下方には排出口9が形成され、該排出
口9の下方に受器20又はコンベアを設けることにより
混合された調整物を連続的に受けて搬出させる。
A discharge port 9 is formed below the rear end of the mixing chamber 10, and a receiver 20 or a conveyor is provided below the discharge port 9 to continuously receive and carry out the mixed preparation.

なお上記した加圧機構室6においてその弾性膜片5を混
合室10内に向けて圧出させるためには加圧機構室6を
密封しその内部に空気又は水のような流体を圧入する。
In order to force out the elastic membrane piece 5 into the mixing chamber 10 in the pressurizing mechanism chamber 6 described above, the pressurizing mechanism chamber 6 is sealed and a fluid such as air or water is pressurized into the inside thereof.

即ちこのような加圧流体の封入によって膜片5を混合室
10の内側に圧出することは明かであるが又斯様な加王
流体に脈動を与えることにより膜片5に対する混合資料
の附着除去を容易にする。
That is, it is clear that the membrane piece 5 is forced out into the mixing chamber 10 by filling the pressurized fluid in this way, but the adhesion of the mixed material to the membrane piece 5 can also be achieved by applying pulsation to such a fluid. Facilitates removal.

然し本発明によるものは場合によってはスポンジ状ゴム
材又はヘヤロツク(人毛、豚毛、ヤシ繊維などを捲毛状
緩解不規則な状態、即ち一般的に単に混合した状態とし
てラテックス、合成樹脂結着剤などで結着させることに
よりその組織を締結し又所要の弾性を附与するようにし
たもの)その他のクッション材19を第3図に示すよう
に充填しても上記加圧流体封入の場合と同様な作用を得
しめることができる。
However, according to the present invention, in some cases, a sponge-like rubber material or hairlock (human hair, pig hair, coconut fiber, etc.) is formed into a curly, loose and irregular state, that is, generally simply mixed with latex, synthetic resin binding. Even if other cushioning material 19 is filled as shown in FIG. 3, the above-mentioned pressurized fluid-filled case A similar effect can be obtained.

更に上記膜片5および加圧機構室6は混合室10の底面
全般に一連に形成してもよいことは明かであるが、特に
上記したような加圧流体を圧入する場合においては適当
な長さ単位毎に分割して複数個の膜片5を採用すること
が好ましく、このようにすることによって該膜片5が極
端に混合室10内へ膨出することを避けしめ、即ち平均
的に圧出されてスクリュ機構4の回転上支障となること
がないようにできる。
Furthermore, it is clear that the membrane piece 5 and the pressurizing mechanism chamber 6 may be formed in series on the entire bottom surface of the mixing chamber 10, but in particular when pressurizing fluid as described above, an appropriate length is required. It is preferable to adopt a plurality of membrane pieces 5 by dividing them into units of 100 mm.By doing this, it is possible to prevent the membrane pieces 5 from protruding excessively into the mixing chamber 10, that is, on average. It can be prevented from being forced out and causing a problem in the rotation of the screw mechanism 4.

本発明による前記装置が前記のような混練に際しては前
記したような第1投入機構1が砂のような細骨材の投入
に供されることは明らかであるが、この砂のような細骨
材においてはその附着含有水分が種々に変動することは
周知の通りであり、しかも本発明者等の嚢に提案した技
術によればこの砂の附着含有水量を特定状態とし,これ
にセメント粉を添加することにより好ましい造殼作用を
得しめて強度的に優れ、又バラツキのない製品を得しめ
る。
It is clear that when the device according to the present invention performs the above-described kneading, the first feeding mechanism 1 as described above is used for feeding fine aggregate such as sand. It is well known that the moisture content of sand varies in various ways, and according to the technology proposed by the present inventors, the moisture content of sand is set to a specific state, and cement powder is added to this. By adding it, a favorable shell-forming effect can be obtained, and a product with excellent strength and consistency can be obtained.

即ちこのような場合において上記したように投入された
砂自体の附着含有水分が変動したならば所期する特定状
態の附着含有水量を得ることができず、必然的に上記し
たような特質性のある効果を期待し得ない。
That is, in such a case, if the adhering water content of the sand itself changes as described above, it will not be possible to obtain the adhering water content in the desired specific state, and inevitably the above-mentioned characteristics will change. You can't expect certain effects.

本発明にあってはこのような場合にも即応すべく、前記
第1投入機構1に対して第1図に示すようにサンプリン
グ機構31と水分測定機構32とを設け、コンベア11
から連続的に流下する資料の流れの中にシリンダーによ
りサンプリング機構31を進入せしめ所定量のサンプル
を採取し、このサンプルに対して上記測定機構32を挿
入し通電条件や高周波条件などにより含水量を適宜に測
定させるようになっている。
In the present invention, in order to respond immediately to such a case, a sampling mechanism 31 and a moisture measuring mechanism 32 are provided for the first feeding mechanism 1 as shown in FIG.
The sampling mechanism 31 is inserted into the flow of material continuously flowing down from the cylinder to collect a predetermined amount of sample, and the measuring mechanism 32 is inserted into this sample to measure the moisture content under energization conditions, high frequency conditions, etc. Measurements are made as appropriate.

このような測定値によりバルブ15V、16Vを調整す
ることにより合理的に上記したような技術を採用せしめ
得ることは明らかである。
It is clear that by adjusting the valves 15V and 16V based on such measured values, the technique described above can be rationally adopted.

勿論コンベア11で導入される砂などに遠心力条件や通
風条件などを利用してその含有水分を均一化する処理を
加えてよい。
Of course, the sand or the like introduced by the conveyor 11 may be subjected to a process to equalize its water content by using centrifugal force conditions, ventilation conditions, or the like.

上記したような装置において第1投入機構1より第2投
入機構2に到る間は前記第1混合過程■を形成するもの
であり、又この第2投入機構2と第3投入機構3との間
は前記第2混合過程■を形成し、第3投入機構3と排出
口9との間が前記した第3混合過程■を形成することは
第1図に示す通りである。
In the above-mentioned device, the first mixing process (2) is formed between the first feeding mechanism 1 and the second feeding mechanism 2, and the time between the second feeding mechanism 2 and the third feeding mechanism 3 is As shown in FIG. 1, the space between the third feeding mechanism 3 and the discharge port 9 forms the second mixing process (2), and the third mixing process (2) forms the space between the third input mechanism 3 and the discharge port 9.

即ちこれを上記したモルタル又はコンクリートのような
セメント系混練物調整の場合について説明すると第1混
合過程■においては投入された砂のような資料に対して
最終混練物として必要な水分の一部が配管15から添加
され、スクリュ機構4による混合でその水分が均一状態
とされる。
That is, to explain this in the case of preparing a cement-based mixture such as mortar or concrete as described above, in the first mixing process (■), a part of the water necessary for the final mixture is absorbed from the input material such as sand. It is added through the pipe 15 and mixed by the screw mechanism 4 to make the water uniform.

斯うして附着水分値を一定状態としたものに対して第2
投入機構2からセメント粉が定量的に添加され同様にス
クリュ機構4による混合を受けることにより砂粒表面に
セメント粉が均等状に附着される第2混合過程を形成す
る。
In this way, the second
Cement powder is quantitatively added from the feeding mechanism 2 and mixed by the screw mechanism 4 in the same manner, thereby forming a second mixing process in which the cement powder is evenly deposited on the surface of the sand grains.

第3混合過程においてはモルタル調整の場合は単に残部
水量を添加して混合すればよいが、生コンクリートを得
る場合には更に第3投入機構3から砂利などの粗骨材を
定量的に切出機構12を介して装入される。
In the third mixing process, in the case of mortar adjustment, it is sufficient to simply add and mix the remaining amount of water, but in the case of obtaining ready-mixed concrete, coarse aggregate such as gravel is further quantitatively cut out from the third feeding mechanism 3. It is loaded via mechanism 12.

但しこのような粗骨材の添加に関しては別に第5図に示
すようにホッパ−1aからの細骨材と共にホッパー3a
からコンベア11上で添加してよく、この場合において
は単に分岐管16から水を添加するだけでよい。
However, regarding the addition of such coarse aggregate, as shown in Fig. 5, it is added to hopper 3a together with fine aggregate from hopper 1a.
The water may be added on the conveyor 11, and in this case, it is sufficient to simply add water from the branch pipe 16.

なおこの第3混合過程では混和剤タンク17から分散剤
、急結剤、遅延剤などの混合物における反応条件又は混
合条件を調整すべき添加剤の1種又は2種以上を添加す
る。
In this third mixing step, one or more additives to adjust the reaction conditions or mixing conditions in the mixture, such as a dispersant, quick setting agent, and retarder, are added from the admixture tank 17.

このような添加剤の添加に関しても第1図のように添加
される水と併行して添加剤を添加し或いは第5図に示す
ように添加される水の中に添加してから混合物中に添加
することができ、この第5図のものは添加剤が比較的大
量の水の中に分散されてから混入されるだけにそれなり
に粘度の高いものでも均等に添加することができる。
Regarding the addition of such additives, the additives can be added at the same time as the water is added as shown in Figure 1, or they can be added into the water and then added to the mixture as shown in Figure 5. In the case of the additive shown in Fig. 5, even a substance with a relatively high viscosity can be added evenly because the additive is dispersed in a relatively large amount of water and then mixed.

前記した第5図においては上記したような加圧機構室6
における加圧手段として更にチューブ8を用いる手法が
示されている。
In FIG. 5 described above, the pressurizing mechanism chamber 6 as described above is shown.
A method is shown in which a tube 8 is further used as a pressurizing means.

このチューブ8は第6図に示すように加圧機構室6に1
個でもよいが、又第7図に示すように複数個並列して内
装することができる。
This tube 8 is inserted into the pressurizing mechanism chamber 6 as shown in FIG.
However, as shown in FIG. 7, a plurality of them can be installed in parallel.

このようにチューブ8を用いるならば加圧機構室6自体
に充分な気密性を保持する必要のないことは明らかであ
り、又スクリュ機構4との間の摩擦によっても気密性を
必要とするチューブ8が損傷されることはない。
If the tube 8 is used in this way, it is clear that there is no need to maintain sufficient airtightness in the pressurizing mechanism chamber 6 itself, and the tube that requires airtightness due to friction with the screw mechanism 4 is also obvious. 8 will not be damaged.

勿論このチューブ8内に気体の外に液体、例えば水を封
入することができ、その圧力についてもこのチューブ8
に連結された導管に対する水供給源(例えばタンク又は
水槽)の高さ位置を変更するだけで容易に調整すること
ができる。
Of course, in addition to gas, a liquid such as water can be sealed in this tube 8, and the pressure of this liquid also varies depending on the pressure of this tube 8.
This can be easily adjusted by simply changing the height position of the water supply source (e.g. tank or cistern) relative to the conduit connected to it.

1例として上記導管としてゴムパイプ又は合成樹脂パイ
プを採用し、これをバケツ様の容器である水供給源とし
て連結せしめ、このバケツ様容器の設定高さを混合機構
部分から1.5〜2mの高さ位置にセットしてヘッド差
による圧力をチューブ8内に作用させる程度で後述する
実施例のようなモルタル又はコンクリートの混合過程を
円滑に実施できる。
As an example, a rubber pipe or a synthetic resin pipe is adopted as the above-mentioned conduit, and this is connected to a bucket-like container as a water supply source, and the set height of this bucket-like container is set at a height of 1.5 to 2 m from the mixing mechanism part. By setting the tube in this position and applying pressure due to the head difference to the inside of the tube 8, the process of mixing mortar or concrete as in the embodiment described later can be carried out smoothly.

上記したようなチューブは又第6図に示すように弾性膜
片5をスクリュ機構4より上部まで一連に設け、このス
クリュ機構4より上部相当部分において形成された加圧
機構室26に対してもチューブ28として内装すること
ができ、このような加圧機構室26内のチューブ28は
前記したような底部における作用を補強する。
The tube as described above is also provided with an elastic membrane piece 5 in series from the screw mechanism 4 to the upper part as shown in FIG. The tube 28 inside the pressurizing mechanism chamber 26 can be installed as a tube 28, and the tube 28 in the pressurizing mechanism chamber 26 reinforces the action at the bottom as described above.

しかもこのようなチューブ28は上記のようにしてU字
状に装架された弾性膜片5の全般に対して作用し、特に
弾性膜片5が若干老化し或いは伸びたような条件におい
てもこれを補正してスクリュ機構4の周縁部との間に好
ましいシール関係を形成することができる。
Moreover, such a tube 28 acts on the entire elastic membrane piece 5 mounted in a U-shape as described above, and especially under conditions where the elastic membrane piece 5 is slightly aged or stretched. can be corrected to form a preferable sealing relationship with the peripheral edge of the screw mechanism 4.

なお混合室10の一端に形成される放出口9は第5図に
示すように混合室10の側方に形成してよい。
Note that the outlet 9 formed at one end of the mixing chamber 10 may be formed on the side of the mixing chamber 10, as shown in FIG.

このように側方に形成された放出口9は混合室10の端
部部分まで混合資料を湛え、相当に流動性を有する混合
資料の場合においても混合室の全般を有効な混合域とし
て利用することを可能にする。
The outlet 9 formed on the side in this way fills the mixed material up to the end portion of the mixing chamber 10, and even in the case of a mixed material with considerable fluidity, the entire mixing chamber can be used as an effective mixing area. make it possible.

斯く混合室の側面に放出口を形成しても受器20での混
合物受入れに殆んど支障がない。
Even if the discharge port is formed on the side surface of the mixing chamber, there is almost no problem in receiving the mixture in the receiver 20.

第8図と第9図には本発明による更に別の機構が示され
ており、即ち上記した第7図までのものにおいては収容
部体10として一体のものが用いられたものであるが、
本発明は場合によってはこの第8,9図に示すように複
数の収容部体を用いて実施することができる。
FIGS. 8 and 9 show still another mechanism according to the present invention, that is, in the above-mentioned structures up to FIG. 7, an integrated structure is used as the housing body 10.
The present invention may be practiced using a plurality of housing bodies as shown in FIGS. 8 and 9, depending on the case.

蓋し第8図のものにおいては収容部体10a,10b,
10cが多段に配設され、第1の収容部体10aにおい
ては前記した第1の投入手段1と給水手段21が設けら
れ,又この第1投入手段1には水分測定手段22を取付
け、細粒材の水分を測定し、その測定結果によって給水
手段21からの給水量を制御するように成っている。
In the case of the lid shown in FIG. 8, the housing parts 10a, 10b,
10c are arranged in multiple stages, and the first accommodating body 10a is provided with the above-mentioned first charging means 1 and water supply means 21, and the first charging means 1 is equipped with a moisture measuring means 22. The water content of the granular material is measured, and the amount of water supplied from the water supply means 21 is controlled based on the measurement result.

又第2の収容部体10bは上記第1収容部体1の出口か
ら放出された資料を受けるホッパ−10b′を一端に備
え、しかも該ホッパ−10b′に対して第2の投入手段
2からの資料が投入される。
The second storage body 10b is provided with a hopper 10b' at one end for receiving the material discharged from the outlet of the first storage body 1, and furthermore, the second storage body 10b is provided with a hopper 10b' for receiving the material discharged from the outlet of the first storage body 1. Materials will be input.

この第2収容部体10bの他端側出口の下方には第3収
容部体10cのホッパ−10c’が設けられるが、この
ようなホッパ−10c’に対しては別に給水手段23が
設けられて2次給水が行われることは図示の通りであり
、該第3収容部体10cの他端側下方に設けられた排出
管24は受器20に混合物を放出するように成っている
A hopper 10c' of the third accommodating body 10c is provided below the outlet on the other end side of the second accommodating body 10b, and a water supply means 23 is separately provided for such hopper 10c'. As shown in the figure, a discharge pipe 24 provided below the other end of the third accommodating body 10c discharges the mixture into the receiver 20.

然して上記したような構成のものにおいて、第1収容部
体10aにはスクリュ機構4が設けられ該スクリュ機構
4はモータM1によって駆動されるが、第2収容部体1
0bにはスクリュ機構4aがその内面に固定され、しか
も該第2収容部体10bは前記ホッパ−10b′及び支
持座に対して回転自在に設けられ且つその外周一部にギ
ヤ34を取付けてモータM2で収容部体10b自体を回
転させる。
However, in the structure as described above, the first accommodating body 10a is provided with a screw mechanism 4 and the screw mechanism 4 is driven by the motor M1, but the second accommodating body 1
A screw mechanism 4a is fixed to the inner surface of 0b, and the second accommodating body 10b is rotatably provided with respect to the hopper 10b' and the support seat, and a gear 34 is attached to a part of its outer periphery to drive a motor. Rotate the accommodating body 10b itself with M2.

第3収容部体10cにあってはモータM3で駆動される
回転軸35が横架され、該回転軸35に配設された攪拌
板36による攪拌混合が行われ、このような攪拌板の設
定角度を適宜に選ぶことによって該収容部体10c内で
立体攪拌が行われるように成っている。
In the third accommodating body 10c, a rotating shaft 35 driven by a motor M3 is horizontally mounted, and a stirring plate 36 disposed on the rotating shaft 35 performs stirring and mixing. By appropriately selecting the angle, three-dimensional stirring is performed within the housing body 10c.

上記した第8図のものに対し第9図のものでは既述した
ように分割された各収容部体10a,10b,10cは
同軸上に設けられ共通軸40に取付けられたスクリュ機
構4a,4b,4cが一端側のモータM4で駆動される
が、第2、第3の各収容部体10b,10cに関しては
夫々にモータM2、M3による駆動がこれらの収容部体
10b10cにも与えられ、上記スクリュ機構4b、4
cとは反対方向の駆動を図って効率的な混合を得しめる
ように成っている。
In contrast to the one shown in FIG. 8 described above, in the one shown in FIG. , 4c are driven by a motor M4 at one end, but the second and third housing bodies 10b and 10c are also driven by motors M2 and M3, respectively, and the above-mentioned Screw mechanism 4b, 4
It is designed to drive in the opposite direction to c to achieve efficient mixing.

又このように第2、第3の収容部体10b,10cを回
転させる条件下でも第8図に示したものにおける2次給
水手段23によると同様の給水を同じ位置で行わしめる
ために少なくとも第3収容部体10cに相当した回転軸
を筒状とし、その他端部に設けた給水手段33からの給
水をこのような筒状回転軸内を介し第3収容部体の一端
部における給水穿孔33aから行うようにされているも
のである。
Furthermore, even under such conditions that the second and third accommodating bodies 10b and 10c are rotated, at least the secondary water supply means 23 in the one shown in FIG. The rotating shaft corresponding to the third accommodating body 10c is cylindrical, and water is supplied from the water supply means 33 provided at the other end through the cylindrical rotating shaft to the water supply hole 33a at one end of the third accommodating body. This is something that has been done since then.

然してこれら第8,9図に示すように収容部体を複数個
とすることは図示上構造が複雑化することとなるが前記
したように多段に資料を添加して混合することにより各
段階における資料の容積が変化することは明らかであり
、又夫々の段階における水分量如何によっても見掛容積
が変動することとなるものであって、このように容積の
変化する一連の混合過程において夫々の過程の容積に即
応した収容部体10a,10b,10cを採用すること
ができる。
However, as shown in FIGS. 8 and 9, having a plurality of accommodating bodies complicates the structure in terms of illustration, but as mentioned above, by adding and mixing materials in multiple stages, it is possible to It is clear that the volume of the material changes, and the apparent volume also changes depending on the amount of water at each stage. It is possible to employ housing bodies 10a, 10b, and 10c that correspond to the volume of the process.

又それらの混合過程において具体的に好ましい混合手段
を採用することができることは1例として第8図の攪拌
板36の如くであり、それらによって何れにしても攪拌
混合効率を高め得る。
Further, in the mixing process, it is possible to employ specifically preferable mixing means, such as the stirring plate 36 shown in FIG. 8, as an example, and the stirring and mixing efficiency can be improved in any case.

本発明方法によるものの具体的実施例について説明する
こと以下の如くである。
Specific embodiments of the method of the present invention will be described below.

実施例1 第1〜4図に示したような装置として混合室内径350
mmとされ、長さ4000mmとしたものにおいてその
スクリュ機構4の回転速度を70rpmとして運転し、
その第3投入機構3からの砂利装入を行わないでモルタ
ルを調整した。
Example 1 As an apparatus as shown in Figs. 1 to 4, the mixing chamber diameter is 350 mm.
mm, and the length is 4000 mm, and the screw mechanism 4 is operated at a rotational speed of 70 rpm,
The mortar was adjusted without charging gravel from the third charging mechanism 3.

一方第1投入機構1に対してはそのコンベア11に先行
させて本発明者等が嚢に提案した昭和54年特願昭第2
8266号の「砂などの細粒材に関する水分調整方法及
びその装置」による砂の表面附着水調整処理を機械的に
行い、その附着水を3.8〜4.2%として調整された
川砂を60Kg/minの割合で装入し、これに散水管
15により平均7.02l/minの散水をなすと共に
混合して表面水を15.9〜16.5%の範囲に調整し
、次いでこのものに第2投入機構2からポルトランドセ
メントを40Kg/minの割合で添加して連続混合し
、造殼させ、この砂粒表面に層着された造殼層のW/C
を24%程度とした。
On the other hand, for the first input mechanism 1, prior to the conveyor 11, the present inventors proposed the first patent application for the bag in 1982.
8266 "Moisture adjustment method and device for fine-grained materials such as sand" mechanically performs water adhesion adjustment treatment on the surface of sand, and river sand is adjusted to have an adhesion water content of 3.8 to 4.2%. The water was charged at a rate of 60 kg/min, and water was sprinkled at an average rate of 7.02 l/min from the water sprinkler pipe 15, and mixed to adjust the surface water to a range of 15.9 to 16.5%. Portland cement is added from the second charging mechanism 2 at a rate of 40 kg/min to form a shell by continuously mixing it.
was set at around 24%.

斯うして一旦造殼させてから更に分岐管16により6l
/minの散水をなすと共にリグニンスルフオン酸系混
和剤を0.35l/minの割合で添加混合して目的の
モルタルとして水セメント比W/Cが39%、セメント
砂比C/Sが1:1.5のものを毎時3m3の速度で連
続的に得た。
Once the shell is formed in this way, 6 liters of water is added through the branch pipe 16.
/min while adding and mixing a lignin sulfonic acid admixture at a rate of 0.35 l/min to prepare the desired mortar with a water-cement ratio W/C of 39% and a cement-sand ratio C/S of 1: 1.5 were obtained continuously at a rate of 3 m3/h.

このモルタル流動性はFoが0.65g/cm3、λが
0.32g・sec/cm4、ΔFoが0.0035g
/cm4のものであって、分離、ブリージングの全く認
められない好ましいものであり、このモルタルによる造
形物の3日強度は412Kg/m2、7日強度は483
Kg/cm2、28日圧縮強度は736Kg/cm2で
、曲げ強度は94Kg/cm2であった。
This mortar fluidity is 0.65g/cm3 for Fo, 0.32g・sec/cm4 for λ, and 0.0035g for ΔFo.
/cm4, with no separation or breathing observed at all, and the 3-day strength of the molded object made from this mortar is 412 Kg/m2, and the 7-day strength is 483.
Kg/cm2, 28-day compressive strength was 736 Kg/cm2, and bending strength was 94 Kg/cm2.

なお上記実施例の場合においては混合処理量が比較的少
ない場合であって、混合室の底部から10〜12cm程
度の高さ範囲において前記のような混合がなされたもの
である。
In the case of the above embodiment, the mixing amount was relatively small, and the above-mentioned mixing was performed within a height range of about 10 to 12 cm from the bottom of the mixing chamber.

実施例2 第5図に示す装置として混合室内径及び長さを何れも実
施例1におけると同じとし、そのスクリュ機構回転速度
も70rpmとして運転し、ホツパー1aから実施例1
におけると同じに附着水を調整された川砂を232Kg
/minの割合で装入すると共にホッパー3aから41
2Kg/minの砂利を装入し、このものに散水管15
から11.25l/minで水を散水し、骨材表面水を
11.6〜12.6%としたものを調整し、このように
表面水の調整された骨材に対して第2投入機構2からセ
メントを115Kg/minで添加して混合し、W/C
が24%程度とされた造殼層を形成させた。
Example 2 The mixing chamber diameter and length of the apparatus shown in FIG. 5 were the same as in Example 1, and the screw mechanism was operated at a rotational speed of 70 rpm.
232Kg of river sand with adjusted water landing in the same way as in
/min at the same time as charging from hoppers 3a to 41.
Charge 2Kg/min of gravel and install water pipe 15 into this thing.
Water was sprinkled at a rate of 11.25 l/min to adjust the aggregate surface water to 11.6 to 12.6%, and the second feeding mechanism Add cement from 2 at 115Kg/min and mix, W/C
A shell layer with a content of about 24% was formed.

上記のものに対しては更に分岐管16から18.6l/
minの水と実施例1におけると同じ分散剤1.13l
/minの割合で添加して引続き混合せしめ、W/Cが
42%程度でC/Sが1:2、砂と砂利の比S/Gが1
:1.78の配合比を有する生コンクリート20m3/
hrの速度で連続的に得た。
For the above, further branch pipe 16 to 18.6 l/
min of water and 1.13 l of the same dispersant as in Example 1.
/min and continued mixing, W/C is about 42%, C/S is 1:2, and the ratio of sand and gravel S/G is 1.
:20m3 of fresh concrete with a mixing ratio of 1.78/
It was obtained continuously at a rate of hr.

この生コンクリートのスランプ値は12cmで分離、ブ
リージングのないものであり、この生コンクリートで得
られた成形体の3日後圧縮強度は254Kg/m2、7
日後で348Kg/cm2、28日後で442Kg/m
2であって好ましいコンクリートを得ることができた。
The slump value of this fresh concrete is 12 cm without separation or breathing, and the compressive strength after 3 days of the molded body obtained from this fresh concrete is 254 kg/m2, 7
348Kg/cm2 after 2 days, 442Kg/m2 after 28 days
2, a preferable concrete could be obtained.

実施例3 前記した第8図に示す装置により実施した。Example 3 The experiment was carried out using the apparatus shown in FIG. 8 described above.

即ち表面水率を約8%とされた人工軽量細骨材(比重1
.4)および表面水率約1%の径15mm程度である人
工軽量粗骨材(比重1.6)を準備し、前記細骨材を1
59Kg/minの速度でホッパ−1に投入すると共に
粗骨材を181Kg/minの速度で同じくホッパ−1
に装入し、これらのものにタンク21から11l/mi
nの割合で水を散布添加し、上記細骨材の表面水率を1
5%となるように附着させた。
In other words, artificial lightweight fine aggregate with a surface water content of approximately 8% (specific gravity 1
.. 4) and artificial lightweight coarse aggregate (specific gravity 1.6) with a diameter of about 15 mm and a surface water content of about 1%, and the fine aggregate
Coarse aggregate is fed into hopper 1 at a rate of 59 kg/min, and coarse aggregate is fed into hopper 1 at a rate of 181 kg/min.
and 11 l/mi from tank 21 to these items.
Sprinkle and add water at a ratio of n to bring the surface water content of the fine aggregate to 1.
It was attached so that it was 5%.

このものに対してはホッパ−2よりセメント粉を117
Kg/minの割合で添加混合して骨材(細骨材および
粗骨材)表面にセメント分による皮殼を形成した後タン
ク23から31l/minの水および6l/minのナ
フタリンスルホン酸塩系減水剤を添加して混練した。
For this item, add 117% cement powder from hopper 2.
After adding and mixing at a rate of Kg/min to form a shell of cement on the surface of the aggregate (fine aggregate and coarse aggregate), 31 l/min of water and 6 l/min of naphthalene sulfonate system were added from tank 23. A water reducing agent was added and kneaded.

得られたコンクリートはスランプが15cmで流動性が
良好であり、しかも分離、ブリージングが殆んどなく、
又その配合はセメントが350Kg/m3、砂が480
Kg/m3、砂利が545Kg/m3、水が162l/
m3、減水剤が18l/m3程度のもので、W/Cは4
6%、粗骨材率が約50%のものであり、このコンクリ
ートで得られた成形体の強度は7日で216Kg/cm
2、28日386Kg/cm2であり、これらの値は従
来法に従いこれと同じ配合とされた比較例の場合の7日
で173Kg/cm2、28日で331Kg/cm2に
比すれば充分に高強度のものであることが確認された。
The resulting concrete had a slump of 15 cm and good fluidity, with almost no separation or breathing.
The composition is 350Kg/m3 of cement and 480Kg/m3 of sand.
Kg/m3, gravel 545Kg/m3, water 162L/
m3, water reducing agent is about 18l/m3, W/C is 4
6%, and the coarse aggregate ratio is approximately 50%, and the strength of the molded body obtained with this concrete is 216 kg/cm in 7 days.
2 and 28 days, 386 Kg/cm2, and these values are sufficiently high strength when compared to 173 Kg/cm2 at 7 days and 331 Kg/cm2 at 28 days in the case of a comparative example with the same composition according to the conventional method. It was confirmed that it was.

実施例4 第9図の装置によって実施した。Example 4 This was carried out using the apparatus shown in FIG.

即ち表面水率を6%とされた5mm以下の砂および表面
水率1%で25mmの砂利を用意し、これらを砂が26
0Kg/min、砂利が348Kg/minの割合でホ
ッパー1から混合室に投入し、然してタンク21から8
l/minで水を添加して砂の表面水率が9%となるよ
うに調整した後ホッパー2よりセメント粉を117Kg
/minの割合で添加混合して砂および砂利の表面にセ
メント分の皮殼を形成した。
That is, prepare sand of 5 mm or less with a surface water content of 6% and gravel of 25 mm with a surface water content of 1%, and
0Kg/min, gravel is charged into the mixing chamber from hopper 1 at a rate of 348Kg/min, and then from tanks 21 to 8.
After adding water at a rate of l/min to adjust the surface water content of the sand to 9%, 117 kg of cement powder was added from hopper 2.
A cement shell was formed on the surface of the sand and gravel by adding and mixing at a rate of /min.

このものは次いでホッパ−33が供給孔33aを介して
水が31l/minと6l/minのリグニンスルホン
酸系減水剤を添加して混練した。
Next, the hopper 33 added water at a rate of 31 l/min and a ligninsulfonic acid water reducing agent at a rate of 6 l/min through the supply hole 33a, and kneaded the mixture.

受槽20で得られたコンクリートはスランプが17cm
で、又分離、ブリージングの全く認められない、しかも
流動性の好ましいものであることが確認され、このコン
クリートにおける配合割合はセメントが350Kg/m
3、砂が780Kg/m3、砂利が1043Kg/m3
、水が162l/m3、減水剤が18l/m3であって
水セメント比が約46%のものであった。
The concrete obtained in receiving tank 20 has a slump of 17 cm.
It was also confirmed that no separation or breathing was observed, and the concrete had good fluidity, and the mixing ratio of cement in this concrete was 350 kg/m2.
3. Sand is 780Kg/m3, gravel is 1043Kg/m3
The water content was 162 l/m3, the water reducing agent was 18 l/m3, and the water-cement ratio was approximately 46%.

然してこのコンクリートにより造形した成形体の7日後
における圧縮強度は224Kg/cm2、28日後で4
03Kg/cm2であり、これを比較例として前記した
配合組成と全く同じになるように従来法に従って混線調
整されたコンクリートによる成形体の7日後強度183
Kg/cm2、28日後強度348Kg/cm2に比較
すると7日後および28日後の何れにおいても相当に高
められたものであることが確認された。
However, the compressive strength of the molded body made from this concrete after 7 days was 224 kg/cm2, and after 28 days it was 4 kg/cm2.
03Kg/cm2, and using this as a comparative example, the strength after 7 days of a concrete molded body adjusted for crosstalk according to the conventional method so that it has exactly the same composition as the above-mentioned mixture composition is 183Kg/cm2.
Kg/cm2, and the strength after 28 days was 348 Kg/cm2, and it was confirmed that the strength was significantly increased both after 7 days and after 28 days.

以上説明したような本発明の方法によるときは、砂のよ
うな粒子分を投入すると共に最終的に添加混合すべき水
分の一部を添加して前記粒子分に附着せしめられるべき
水分量を一定状態とする第1の混合過程と、この第1の
混合過程を経たものに対してセメントのような粉末分を
添加し混合を継続する第2の混合過程およびこの第2混
合過程を経た混合物に対し添加すべき残余の水分を添加
し更に混合を継続する第3の混合過程より成るものであ
るから、第1混合過程において砂のような細骨材に特定
量の水分を均一状態に附着せしめ、このように特定量の
水分を均一状態に附着したものに対して第2混合過程で
セメントのような粉末分を添加混合することにより強固
且つ安定な造殼被膜が形成されることとなってその後の
第3混合過程における加水や混練操作で該造殼被膜が剥
離することがないと共経この第3混合過程を経て得られ
る混練物において分離ブリージングが皆無化されたよう
な漸新な混練物を得しめ、更には該混練物によって優れ
た強度特性その他を有する有利な製品を得しめるもので
あり、又これらの混合に当って収容部体に張設された弾
性膜片の機構内部方向に附勢された弾性作用とスクリュ
機構周縁との接摺により少くとも第3混合過程において
添加された水分が第1又は第2混合過程部分に進入する
ことを実質的に阻止しながら上記各混合処理を行わしめ
るものであるから添加された液体分が連続混合であるに
拘わらず、先行又は後続過程に進入することなしに前記
したような各過程を的確に経しめることができ、更には
混練処理後の清掃などを簡易且つ有効に行わしめ得る等
の作用効果を有している。
When using the method of the present invention as explained above, particles such as sand are added and a portion of the water to be added and mixed finally is added to maintain a constant amount of water to be attached to the particles. A first mixing process in which a powder such as cement is added to the mixture that has gone through this first mixing process and mixing is continued; Since this process consists of a third mixing process in which the remaining water to be added is added and mixing is continued, a specific amount of water is uniformly attached to fine aggregate such as sand in the first mixing process. In this way, a strong and stable shell coating is formed by adding and mixing powder such as cement in the second mixing process to the material with a specific amount of water uniformly attached. If the shell-forming film does not peel off during the water addition and kneading operations in the subsequent third mixing process, the resulting kneaded product through the third mixing process will have a progressively new kneading process in which separation breathing is completely eliminated. Furthermore, the kneaded product can be used to obtain an advantageous product having excellent strength properties and other properties, and when mixing these, the elastic membrane piece stretched over the housing body is Each of the above mixing steps is performed while substantially preventing the moisture added in at least the third mixing step from entering the first or second mixing step portion due to the elastic action energized by the screw mechanism and the sliding contact with the periphery of the screw mechanism. Because the process is carried out, even if the added liquid is continuously mixed, each process described above can be carried out accurately without entering the preceding or subsequent process, and furthermore, it is possible to carry out the kneading process. It has effects such as being able to perform post-treatment cleaning easily and effectively.

又本発明の装置によるときは前記したような本発明の方
法を的確に実施せしめ、しかも弾性膜片の外面に該弾性
膜片を混合室内に圧出するための加圧室を形成したので
上記したような各混合過程間においてのシール作用を有
効に図ることができ、それによって前記したような特質
をもった混練物を適切に得しめるものであって、何れも
工業的にその効果の大きい発明である。
Further, when using the apparatus of the present invention, the method of the present invention as described above can be carried out accurately, and a pressurizing chamber for pressurizing the elastic membrane piece into the mixing chamber is formed on the outer surface of the elastic membrane piece. It is possible to effectively achieve a sealing effect between each mixing process, thereby appropriately obtaining a kneaded material having the above-mentioned characteristics, and both of them have great industrial effects. It is an invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を示すものであって、第1図は
本発明による装置の1実施形態についての縦断面図、第
2図はその部分切欠側面図、第3図はその横断側面図、
第4図はその加圧機構室部分の斜面図、第5図は本発明
による別の実施形態についての第1図と同様な縦断側面
図、第6図はその横断側面図、第7図はその底部につい
ての部分的な変形例を示す横断側面図、第8図は更に別
の多段式に形成した本発明実施形態の縦断面図、第9図
はもう1つの実施形態についての縦断面図である。 然してこれらの図面において、1,2.3は夫夫第1〜
第3の資料投入機構、4,4aはスクリュ機構、5は弾
性膜片、6は加圧機構室、7は収容部体の開放部、8は
チューブ、9は排出口、10は収容部体、10a,10
b,10cは分割された収容部体、11はコンベア、1
2,13は定量切出機構、14はタンク、15は配管、
16は分岐管、17は混和剤タンク、19はクッション
材、20は受器、21は給水手段、22は水分測定手段
、26はスクリュ機構部分の上部に形成された加圧機構
室、28はそのチ斗一ブ、31はサンプリング機構、3
2はその水分測定機構、34はギヤ、35は回転軸、3
6は攪拌板、M,M1、M2,M3及びM4は夫々モー
タを示すものである。
The drawings show embodiments of the present invention; FIG. 1 is a longitudinal sectional view of one embodiment of the device according to the invention, FIG. 2 is a partially cutaway side view thereof, and FIG. 3 is a cross-sectional side view thereof. ,
FIG. 4 is a perspective view of the pressurizing mechanism chamber portion, FIG. 5 is a vertical cross-sectional side view similar to FIG. 1 of another embodiment of the present invention, FIG. 6 is a cross-sectional side view thereof, and FIG. A cross-sectional side view showing a partial modification of the bottom part, FIG. 8 is a vertical cross-sectional view of yet another multi-stage embodiment of the present invention, and FIG. 9 is a vertical cross-sectional view of another embodiment. It is. However, in these drawings, 1, 2.3 are husband's first to
3rd material input mechanism, 4 and 4a are screw mechanisms, 5 is an elastic membrane piece, 6 is a pressurizing mechanism chamber, 7 is an open part of the housing body, 8 is a tube, 9 is an outlet, 10 is a housing body , 10a, 10
b, 10c are divided storage parts, 11 is a conveyor, 1
2 and 13 are quantitative cutting mechanisms, 14 are tanks, 15 are piping,
16 is a branch pipe, 17 is an admixture tank, 19 is a cushioning material, 20 is a receiver, 21 is a water supply means, 22 is a moisture measuring means, 26 is a pressurizing mechanism chamber formed in the upper part of the screw mechanism part, 28 is a The chip, 31, is the sampling mechanism, 3
2 is its moisture measuring mechanism, 34 is a gear, 35 is a rotating shaft, 3
6 is a stirring plate, and M, M1, M2, M3 and M4 are motors, respectively.

Claims (1)

【特許請求の範囲】 1 砂のような粒子分を投入すると共に最終的に添加混
合すべき水分の一部を添加して前記粒子分に附着せしめ
られるべき水分量を一定状態とする第1の混合過程と、
この第1の混合過程を経たものに対してセメントのよう
な粉末分を添加し混合を継続する第2の混合過程および
この第2混合過程を経た混合物に対し添加すべき残余の
水分を添加し更に混合を継続する第3の混合過程より成
り、収容部体の張設された弾性膜片の機構内部方向に附
勢された弾性作用とスクリュ機構周縁との接摺により少
なくとも第3混合過程において添加された水分が第1又
は第2混合過程部分に進入することを実質的に阻止しな
がら上記各混合処理を行わしめることを特徴とする連続
混合方法。 2 第2混合過程において弾性膜片と回転するスクリュ
機構の周縁との間で得られる立体的空気流動作用により
粒子分に対し添加された過剰な粉状分を風別させる特許
請求の範囲第1項に記載の連続混合方法。 3 第3混合過程において砂利その他の粗粒分を添加す
る特許請求の範囲第1項に記載の連続混合方法。 4 第3混合過程において分散剤、急結剤、遅延剤など
の混合物における反応条件又は混合条件を調整すべき添
加剤の1種又は2種以上を添加する特許請求の範囲第1
項に記載の連続混合方法。 5 スクリュ機構が横設された筒形収容部体における底
面に弾性膜片を設け、この弾性膜片の外面に該弾性膜片
を混合室内に圧出するための加圧機構室を形成し、上記
収容部体の頂面に開放部を形成すると共に該収容部体の
一端側から他端側に向けて第1〜第3の混合過程を形成
すると共にそれらの各混合過程において混合すべき複数
の資料を順次に添加するための添加機構を段設し、これ
らの添加機構には定量供給手段を夫々配設し、上記収容
部体の他端側に排出口を形成したことを特徴とする連続
混合装置。 6 弾性膜片及び加圧機構室を夫々複数個に分割して形
成した特許請求の範囲第5項に記載の連続混合装置。 7 加圧機構室に気体又は液体の何れか一方又は双方よ
り成る流体を作用せしめる特許請求の範囲第5項に記載
の連続混合装置。 8 加圧機構室の一部又は全部にスポンジゴム又はこれ
に準じたクッション材を充填した特許請求の範囲第5項
に記載の連続混合装置。 9 加圧機構室の一部又は全部にチューブを内装し、該
チューブ内に気体又は液体の何れか一方又は双方より成
る流体を封入する特許請求の範囲第5項に記載の連続混
合装置。 10 各収容部体を段設し.前段収容部体の排出口に対
し後段収容部体の装入口を位置せしめ、前記各収容部体
毎に各別の収容部体又は混合機構に対する駆動機構を設
けた特許請求の範囲第5項に記載の連続混合装置。
[Claims] 1. A first method in which particles such as sand are introduced and a part of the moisture to be finally added and mixed is added to keep the amount of moisture to be attached to the particles constant. a mixing process;
A second mixing process is performed in which a powder such as cement is added to the mixture that has gone through the first mixing process and mixing is continued, and the remaining water that is to be added is added to the mixture that has gone through the second mixing process. Furthermore, it consists of a third mixing process in which mixing is continued, and at least in the third mixing process, due to the elastic action of the tensioned elastic membrane piece of the housing body that is urged in the direction inside the mechanism and the sliding contact with the periphery of the screw mechanism. A continuous mixing method characterized in that each of the above mixing processes is performed while substantially preventing added water from entering the first or second mixing process section. 2. Claim 1: In the second mixing process, the excess powder added to the particles is separated by the three-dimensional air flow effect obtained between the elastic membrane piece and the periphery of the rotating screw mechanism. Continuous mixing method as described in Section. 3. The continuous mixing method according to claim 1, wherein gravel and other coarse particles are added in the third mixing step. 4 Claim 1 in which one or more additives to adjust the reaction conditions or mixing conditions in the mixture, such as a dispersant, an accelerating agent, and a retarder, are added in the third mixing process.
Continuous mixing method as described in Section. 5. An elastic membrane piece is provided on the bottom surface of the cylindrical accommodating body in which the screw mechanism is installed horizontally, and a pressurizing mechanism chamber is formed on the outer surface of the elastic membrane piece for pressurizing the elastic membrane piece into the mixing chamber, An open part is formed on the top surface of the accommodating body, and first to third mixing processes are formed from one end side to the other end of the accommodating body, and a plurality of mixtures to be mixed in each of the mixing processes are formed. Addition mechanisms for sequentially adding the materials are provided in stages, each of these addition mechanisms is provided with fixed quantity supply means, and a discharge port is formed at the other end of the storage body. Continuous mixing equipment. 6. The continuous mixing device according to claim 5, wherein the elastic membrane piece and the pressurizing mechanism chamber are each divided into a plurality of parts. 7. The continuous mixing device according to claim 5, wherein a fluid consisting of either gas or liquid or both is applied to the pressurizing mechanism chamber. 8. The continuous mixing device according to claim 5, wherein a part or all of the pressurizing mechanism chamber is filled with sponge rubber or a cushioning material similar thereto. 9. The continuous mixing device according to claim 5, wherein a tube is installed in part or all of the pressurizing mechanism chamber, and a fluid consisting of either gas or liquid or both is sealed in the tube. 10 Lay out each housing body in stages. Claim 5, wherein the charging port of the rear storage body is located with respect to the discharge port of the front storage body, and a drive mechanism for each of the storage bodies or the mixing mechanism is provided for each of the storage bodies. Continuous mixing equipment as described.
JP54115410A 1979-03-13 1979-09-08 Continuous mixing method and device Expired JPS588330B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP54115410A JPS588330B2 (en) 1979-09-08 1979-09-08 Continuous mixing method and device
DE19803009332 DE3009332A1 (en) 1979-03-13 1980-03-11 METHOD AND DEVICE FOR ADJUSTING THE QUANTITY OF LIQUID DEPOSED ON FINE AGENT, AND METHOD FOR PRODUCING MORTAR OR CONCRETE
FR8005558A FR2457165B1 (en) 1979-03-13 1980-03-12
CH199480A CH649225A5 (en) 1979-03-13 1980-03-13 METHOD AND DEVICE FOR ADJUSTING A QUANTITY OF LIQUID SEPARATED ON PARTICLES, AND USE OF THE METHOD.
GB8008468A GB2048446B (en) 1979-03-13 1980-03-13 Drying fine granularmaterial particularly in the preparation of mortar or concrete
CA000349232A CA1168523A (en) 1979-06-28 1980-04-03 Method and apparatus for adjusting the quantity of liquid deposited on fine granular materials and method of preparing mortar and concrete
FR8017901A FR2457166B1 (en) 1979-03-13 1980-08-13 APPARATUS FOR ADJUSTING THE QUANTITY OF WATER DEPOSITED ON FINE PARTICLES, IN PARTICULAR ON SAND PARTICLES FOR THE PREPARATION OF CEMENT OR CONCRETE
GB08230550A GB2111659B (en) 1979-03-13 1982-10-26 Adjusting the quantity of liquid deposited on fine granular material
CA000449087A CA1185541A (en) 1979-06-28 1984-03-07 Method and apparatus for adjusting the quantity of liquid deposited on fine granular materials and method of preparing mortar or concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54115410A JPS588330B2 (en) 1979-09-08 1979-09-08 Continuous mixing method and device

Publications (2)

Publication Number Publication Date
JPS5640425A JPS5640425A (en) 1981-04-16
JPS588330B2 true JPS588330B2 (en) 1983-02-15

Family

ID=14661871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54115410A Expired JPS588330B2 (en) 1979-03-13 1979-09-08 Continuous mixing method and device

Country Status (1)

Country Link
JP (1) JPS588330B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710529B2 (en) * 1985-05-09 1995-02-08 電気化学工業株式会社 Mortar continuous kneading and feeding device
JPH0662897B2 (en) * 1987-09-21 1994-08-17 富士写真フイルム株式会社 Method for manufacturing magnetic paint
JPH01165211U (en) * 1988-05-11 1989-11-17
AU2003304039A1 (en) * 2003-04-16 2004-11-04 Naganobu Hayabusa Method of mixing powder raw material and liquid raw material.
US7478944B2 (en) * 2006-07-19 2009-01-20 Chuck Hull Soil mixing apparatus with auger and chemical injection
FR2969505B1 (en) * 2010-12-27 2013-01-25 Famatec INSTALLATION AND METHOD FOR THE CONTINUOUS PRODUCTION OF HYDRAULIC MIXTURES
CN105196416B (en) * 2015-10-21 2017-08-22 南京汪海混凝土有限公司 A kind of steel slag concrete agitating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5095317A (en) * 1973-12-14 1975-07-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5095317A (en) * 1973-12-14 1975-07-29

Also Published As

Publication number Publication date
JPS5640425A (en) 1981-04-16

Similar Documents

Publication Publication Date Title
JP7018051B2 (en) Continuous mixer, and how to mix reinforced fiber and cement material
US4383862A (en) Concrete
JP7038103B2 (en) Method for manufacturing fiber-reinforced cementum slurry using a multi-stage continuous mixer
CN109496180A (en) Head box and forming station for the production of fiber-reinforced cement plate
US4492478A (en) Method and apparatus for applying mortar or concrete
US2887275A (en) Apparatus for producing aerated cementitious material
CN110997262A (en) System for coating building materials
JPS588330B2 (en) Continuous mixing method and device
JP3448634B2 (en) Construction method and construction equipment for shotcrete
US5433519A (en) Method and apparatus for the application of mortar or concrete by spraying
JPS6333895B2 (en)
US4190373A (en) Method and apparatus for mixing pulverulent drying substances and/or fluent media with one or more liquids
US3912838A (en) Pneumatic application of lightweight cementitious compositions
JPS622962B2 (en)
DE2130257A1 (en) Method and device for the pneumatic application of a viscous material
US4004782A (en) Machine for mixing aggregate and resin
JPS621772B2 (en)
US3669418A (en) Method of spraying concrete
US1670677A (en) Process of and apparatus for mixing and applying mortar
US3754683A (en) Apparatus for pneumatically placing semi-fluid materials
JPH07151583A (en) Register of solid
JPH0343205A (en) Controlling method of mixture and apparatus therefor
JPS6023229B2 (en) Spraying method
US3758034A (en) Method for pneumatically placing semi-fluid materials
JPS6313956B2 (en)