JPS5883223A - Contactless type surface temperature detector - Google Patents

Contactless type surface temperature detector

Info

Publication number
JPS5883223A
JPS5883223A JP18211881A JP18211881A JPS5883223A JP S5883223 A JPS5883223 A JP S5883223A JP 18211881 A JP18211881 A JP 18211881A JP 18211881 A JP18211881 A JP 18211881A JP S5883223 A JPS5883223 A JP S5883223A
Authority
JP
Japan
Prior art keywords
thermocouple
temperature
receiving element
case
heat receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18211881A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takahashi
潔 高橋
Norihiko Kasahara
笠原 紀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RKC Instrument Inc
Original Assignee
Rika Kogyo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rika Kogyo Inc filed Critical Rika Kogyo Inc
Priority to JP18211881A priority Critical patent/JPS5883223A/en
Publication of JPS5883223A publication Critical patent/JPS5883223A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/04Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • G01K1/18Special arrangements for conducting heat from the object to the sensitive element for reducing thermal inertia

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To obtain a detector which has excellent responsiveness and is adaptable to both flat plate-like and wire-like objects to be measured by providing the 3rd thermocouple in the space in a reflecting mirror having a semispherical inside surface, connecting the 2nd and the 3rd thermocouples differentially and providing a heater for heating of heating elements. CONSTITUTION:A controller 15 which controls electric power supply to a heater 6 so as to eliminate temp. differences in the detection temps. of the 3rd thermocouple 13 and the 2nd thermocouple 12 is connected to each negative terminal of the thermocouple 13 and the thermocouple 12. The thermocouple 13 and the thermocouple 12 are differentially connected. According to such connections, the temp. difference T18-T12 between the temps. T18 and T12 detected by the temp. measuring contacts of the respective thermocouples can be detected. The 1st thermocouple 11 is further differentially connected to the 3rd thermocouple 13. Thus if the temp. detected by the thermocouple 11 is defined as T11, a composite detected temp. Tm is displayed on an indicator 17. Since a heat receiving element 8 and a surface 16 to be measured are of an equal temp. under a thermal equil. state, Tm=T11=T16 and the temp. T16 of the surface 16 is displayed on the indicator 17.

Description

【発明の詳細な説明】 本発明は非接触方式にて、回転中あるいは運動中の物体
の表面の温度を測定する表面温度検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface temperature detector that measures the temperature of the surface of a rotating or moving object in a non-contact manner.

従来いわゆる熱流補償型温度計と称し、運動物体の被測
定面に接近し、然し非接触−受熱素子と、この受熱素子
の外側に位置する加熱素子とを有し、加熱素子を積極的
に加熱することにより、被測定面から受熱素子へ、さら
にこの受熱素子からその外側の加熱素子へと至る熱勾配
のない、熱平衡状態を保たせ、この状態の下に受熱素子
の温度、従って被測定面の温度を測定する測定法が既に
提供されている。
Conventionally known as a heat flow compensation type thermometer, it has a non-contact heat-receiving element that approaches the measured surface of a moving object and a heating element located outside of this heat-receiving element, and actively heats the heating element. By doing so, a thermal equilibrium state is maintained with no thermal gradient from the surface to be measured to the heat receiving element, and from this heat receiving element to the heating element outside of it, and under this state, the temperature of the heat receiving element, and therefore the surface to be measured. Measurements have already been provided to measure the temperature of .

上記従来の測定においては、受熱素子の有する熱容量の
影響として検出器の応答性を劣化させる傾向があった。
In the conventional measurement described above, the responsiveness of the detector tends to deteriorate as a result of the heat capacity of the heat receiving element.

この応答性劣化を避けるために、受熱素子を備えない形
式も提供されている。運動体が線状物であるならば、こ
のように受熱素子を省略しても、その代りに加熱素子を
線状物を囲繞する形状に構成することにより、上記の応
答性劣化防止の目的を達することもできる。然し運動体
が平板状、あるいは回転ローラ状等である場合にはこれ
を囲繞するような形状を加熱素子に与えることが不可能
であ゛る。この場合もし受熱素子なしの構成を無理に採
用すれば、被測定面の運動により誘発される随伴気流が
検出器の測定箇所に直接影響して測定が不安定となり誤
差を招くことになる。
In order to avoid this deterioration in response, a type without a heat receiving element is also provided. If the moving object is a linear object, even if the heat-receiving element is omitted in this way, the above objective of preventing the response deterioration can be achieved by configuring the heating element in a shape that surrounds the linear object. It can also be reached. However, if the moving body is in the shape of a flat plate or a rotating roller, it is impossible to give the heating element a shape that surrounds it. In this case, if a configuration without a heat receiving element is forcibly adopted, the accompanying airflow induced by the movement of the surface to be measured will directly affect the measurement location of the detector, making the measurement unstable and causing errors.

そこで本発明の目的とするところは、受熱素子を有しな
がらも、熱応答性の劣化を免れ得るとともに、付加装置
、即ちアタッチメントの使用によっては、線状運動体を
囲む構成も可能となり、従って平板状、ローラ状の被測
定物のほか線状物も、その運動中に非接触で高応答性を
もって温度検出可能な表面温度検出器を提供するにある
Therefore, an object of the present invention is to avoid deterioration of thermal response even though it has a heat receiving element, and also to enable a configuration that surrounds a linear moving body by using an additional device, that is, an attachment. It is an object of the present invention to provide a surface temperature detector capable of detecting the temperature of a linear object in addition to a flat plate-like or roller-like object in a non-contact manner and with high responsiveness during its movement.

上記の目的を達するため、本発明は、内面を反射面とし
た半球状の反射鏡加熱素子と、この反射鏡を閉塞する状
態に設けられた平板状の受熱素子、及びその受熱素子の
外側を包囲するように着脱自在に設けられたカバー即ち
アタッチメンlf備え、受熱素子の円面に第1及び第2
の2熱電対を設け、また上記反射鏡内の空間内に第30
熱電対を設け、第2と第3の同熱電対を差動結線し、こ
の結線に第1の熱電対を加算結線し、上記反射鏡の外周
をケースで覆い、かつ加熱素子加熱用ヒータを備えたも
のである。
In order to achieve the above object, the present invention includes a hemispherical reflecting mirror heating element whose inner surface is a reflective surface, a flat plate-shaped heat receiving element provided to close this reflecting mirror, and an outer side of the heat receiving element. A cover or attachment lf is detachably provided to surround the heat receiving element, and first and second attachments are provided on the circular surface of the heat receiving element.
2 thermocouples are installed, and a 30th thermocouple is installed in the space inside the reflector.
A thermocouple is provided, the second and third thermocouples are differentially connected, the first thermocouple is additionally connected to this connection, the outer periphery of the reflecting mirror is covered with a case, and a heater for heating the heating element is installed. It is prepared.

第1図において(1)は円筒状のケースであって耐熱性
の材料、例えばスティンレスチールで作られる。(2)
は同様な材料で作られるキャップあって、同じく円筒状
をなしセット用のねじ(3)によシケース(1)に固着
される。キャップ(2)の中には端子板(4)がねじ(
5)にょ゛シ取シ付けられている。
In FIG. 1, (1) is a cylindrical case made of a heat-resistant material, such as stainless steel. (2)
There is also a cap made of a similar material, which also has a cylindrical shape and is fixed to the case (1) by a set screw (3). Inside the cap (2) is a terminal plate (4) with a screw (
5) It is properly installed.

(6)はリード線の取出口を示す。(6) indicates the lead wire outlet.

ケース(1)は下端の内周縁に薄いつげ(7)を突出し
ている。つげ(7)にはケース内方から薄い費イカ板製
の円板状受熱素子(8)を゛当接して支える。
The case (1) has thin lashes (7) protruding from the inner peripheral edge of the lower end. A disc-shaped heat-receiving element (8) made of a thin, cost-effective plate is brought into contact with and supported by the boxwood (7) from inside the case.

受熱素子(8)の周縁上には、半球状の加熱素子(9)
の周縁を当接し、加熱素子(9)の外周面とケース(1
)の内周面とのすきまにはリングαqを挾み、これによ
って受熱素子(8)と加熱素子(9)とがケース(1)
内に固定される。加熱素子(9)は熱容量の小さい、か
つ熱伝導性のよい薄いアルミニウム板製とする。(ll
a )は第1熱電対(117(第2図)のリード線、(
12a)は第2熱電対α2のリード線、(13a)は第
3熱電対03のリード線をそれぞれ示す。これら各熱電
対のリード線は図示のように上方の端子板(4)に、各
端子(llb) (12b) (13b)によって支え
られ互いに結線され、さらに図示しないリード線によシ
、リード線取出口(6)から後述の各装置に導かれる。
A hemispherical heating element (9) is placed on the periphery of the heat receiving element (8).
and the outer peripheral surface of the heating element (9) and the case (1).
) is sandwiched between the ring αq and the inner circumferential surface of the case (1).
fixed inside. The heating element (9) is made of a thin aluminum plate with low heat capacity and good thermal conductivity. (ll
a) is the lead wire of the first thermocouple (117 (Fig. 2),
12a) shows the lead wire of the second thermocouple α2, and (13a) shows the lead wire of the third thermocouple 03. The lead wires of these thermocouples are connected to each other on the upper terminal board (4) as shown in the figure, supported by respective terminals (llb) (12b) (13b), and further connected to lead wires (not shown). It is guided from the outlet (6) to each device described below.

なおケース(1)の外周を囲むようにヒータα瘤が取付
けられている。
Note that a heater α knob is attached so as to surround the outer periphery of the case (1).

第2図に示すように受熱素子(8)には第1熱電対(I
ll、及び第2熱電対Q2+を、その各熱接点が受熱素
子(8)の中心部に位置するように取付けられている。
As shown in Fig. 2, the heat receiving element (8) has a first thermocouple (I
ll, and a second thermocouple Q2+ are attached so that their respective thermal junctions are located at the center of the heat receiving element (8).

この取付けには例えば粘着テープにて、リード線の部分
を、受熱素子(8)の周縁部に粘着する。
For this attachment, the lead wire portion is adhered to the peripheral edge of the heat receiving element (8) using, for example, adhesive tape.

第1図に戻り、第3の熱電対(+31は加熱素子(9)
の頂部の孔を貫通して、加熱素子内に熱接点を位置させ
る。
Returning to Figure 1, add the third thermocouple (+31 is the heating element (9)
A hot junction is positioned within the heating element through the hole in the top of the heating element.

次に各熱電対の結線を説明する、第3図においてα力は
本発明に使用する熱電対の種類に応じた熱電対用温度指
示計であって、第1熱電対0υの子種、及び第2熱電対
azの一極と図示のように連結される。(151は後述
するように、零位温度調節計であって第3熱電対αJと
第2熱電対02)の検出温度に温度差がなくなるように
ヒータ(6)への電力供給を制御する。この調節計C1
51は第3熱電対03及び第2熱電対Q7Jの各−極と
図示の実線で示すように連結される。第3熱電対α3と
第2熱電対(121とは図示実線のように差動結線であ
る。
Next, the connection of each thermocouple will be explained. In FIG. 3, α force is a thermocouple temperature indicator according to the type of thermocouple used in the present invention, and It is connected to one pole of the second thermocouple az as shown. (As will be described later, 151 is a zero temperature controller that controls the power supply to the heater (6) so that there is no difference in temperature detected by the third thermocouple αJ and the second thermocouple 02. This controller C1
51 is connected to each negative pole of the third thermocouple 03 and the second thermocouple Q7J as shown by solid lines in the figure. The third thermocouple α3 and the second thermocouple (121) are differentially connected as shown by solid lines in the figure.

この結線により、それぞれの熱電対の測温接点による検
出温度Ttaと’l’ttとの温度差T18−T12が
検出できる。この差動結線の第3熱電対α3に第1熱電
対Ouが図示の実線のように更に差動結線されている。
With this connection, the temperature difference T18-T12 between the temperatures Tta and 'l'tt detected by the temperature measuring junctions of the respective thermocouples can be detected. A first thermocouple Ou is further differentially connected to this differentially connected third thermocouple α3 as shown by the solid line in the figure.

従って第1熱電対0υの検出温度fT11とすると、指
示計ll)には合成検出温度−が、Tm = Tll 
’−(T18− Ttz ) = ’pt1+T12−
T18となって表示される。
Therefore, if the detected temperature of the first thermocouple 0υ is fT11, the composite detected temperature - on the indicator ll) is Tm = Tll
'-(T18- Ttz) = 'pt1+T12-
T18 is displayed.

そこで被測定物体Oeの被測定面に対して受熱溝、熱対
流、熱放射が充分、損失なくなされるように保持する。
Therefore, the object to be measured Oe is held so that heat receiving grooves, heat convection, and heat radiation are sufficiently generated on the surface to be measured without any loss.

この時、第2・熱電対(121は被測定面(161から
の受熱により受熱素子(8)の温度Txwを検出する。
At this time, the second thermocouple (121) detects the temperature Txw of the heat receiving element (8) by receiving heat from the surface to be measured (161).

また第3熱電対03は加勢素子(9)lE3の空間内温
度T1Bを検出する。第3熱電対Q3]と第2熱電対(
121は差動結線であるから、各熱電対の検出温度’l
’ta トTI2 (D温度差Tts−T12に相当す
る起電力が零位調節計09に入力される。零位調節計0
9の作動は第3熱電対0で検出される加熱素子(9)内
の温度T1mが第2熱電対0zで検出される受熱素子温
度’f1zより低い場合にヒータα滲に電力を供給して
加熱素子(9)を加熱することによってこの温度差T1
8−Txgを零にするよう制御する作動である。従って
受熱素子(8)が被測定面(1oと加熱素子(9)内の
空間での熱の授受に関して極めて損失を少なく設定され
ている本発明の検出器においては、被測定面aeから受
熱素子(8)へ、更に受熱素子(8)から加熱素子(9
)内の空間に至るそれまでの温度勾配が消滅し、熱平衡
状態へとなる。
Further, the third thermocouple 03 detects the internal temperature T1B of the auxiliary element (9) lE3. 3rd thermocouple Q3] and 2nd thermocouple (
Since 121 is a differential connection, the detected temperature of each thermocouple is
'ta TI2 (D An electromotive force corresponding to the temperature difference Tts - T12 is input to the zero level controller 09.
9 operates by supplying power to the heater α when the temperature T1m inside the heating element (9) detected by the third thermocouple 0 is lower than the heat receiving element temperature 'f1z detected by the second thermocouple 0z. This temperature difference T1 is reduced by heating the heating element (9)
This is an operation to control 8-Txg to zero. Therefore, in the detector of the present invention in which the heat receiving element (8) is set to have extremely low loss in terms of heat exchange between the surface to be measured (1o) and the space within the heating element (9), the heat receiving element (8) is (8), and further from the heat receiving element (8) to the heating element (9).
) The temperature gradient up to that point disappears and a state of thermal equilibrium is reached.

換言すると、被測定面aeo混度T16と受熱素子(8
)の温度TI2と加熱素子(9)付近の空間内温度T1
gとがT16 = T12 = ’l’taの関係にな
る。この関係の下では上述した三対の熱電対の結線によ
る合成検出温度TXOはTm == Tll +T12
−T1a=T11となる。従って指示計αηには温度T
llが表示される。ところで第1熱電対αυで検出され
る温度Tllは第2熱電対G?Jで検出される受熱素子
の温度T12であシ、上述の熱平衡状態の下では受熱素
子(8)も被測定面αeも等温であるがらTm=TIl
=T16となって、指示計αつには被測定面Hの温度7
1gが表示されるととKなる。
In other words, the measured surface aeo mixture T16 and the heat receiving element (8
) temperature TI2 and the temperature T1 in the space near the heating element (9)
g has the relationship T16 = T12 = 'l'ta. Under this relationship, the composite detected temperature TXO by connecting the three pairs of thermocouples described above is Tm == Tll +T12
-T1a=T11. Therefore, the temperature T on the indicator αη
ll is displayed. By the way, is the temperature Tll detected by the first thermocouple αυ the same as the temperature Tll detected by the second thermocouple G? The temperature of the heat receiving element detected at J is T12, and under the above-mentioned thermal equilibrium state, both the heat receiving element (8) and the surface to be measured αe are at the same temperature, but Tm = TIl.
= T16, and the indicator α shows the temperature 7 of the surface to be measured H.
When 1g is displayed, it becomes K.

次に熱平衡状態でない場合につき以下説明する。Next, the case where the thermal equilibrium state is not established will be explained below.

受熱素子は比較的熱伝導がよく熱容量の小さなマイカの
薄片であり、またその受熱素子の周縁がケースの同じく
薄いつげ(7)上に支持されており、しかもケース−の
っげ(7)はケースに装着されたヒーターによる熱で受
熱素子温度に近い温度になっているのでマイカよシっば
(7)への熱の放散は極めて少ない。更に受熱素子(8
)と加熱素子(9)で囲まれていることに加え3対の熱
電対素線は熱容量が小さいがら熱損失が小さく従って熱
電対による温度測定は正確である。そこで被測定面に受
熱素子を近接させて測定中に被測定面061の温度が急
激に変化した場合、つまり熱平衡状態が消滅して被測定
面と受熱素子及び受熱素子(8)と加熱素子(9)とで
囲まれた空間に温度勾配が生じる場合に新たに熱平衡状
態に回復するまでの本発明検出器の3対の熱電対結線の
合成測温温度Tmを考える。受熱素子(8)は被測定面
Q61および加熱素子(9)との空間での熱の授受に極
めて損失が少ない。従って被測定面αeと受熱素子(8
ン間の温度勾配の大きさおよび高低の方向の変化が受熱
素子(8)と加熱素子(9)付近の空間との間のそれと
ほぼ同程度に追従変化する。換言すれば被測定面061
の温度がT16第1及び第2熱電対で?111瀉される
受熱素子(8)の温度がTll又はT12(Tll :
 T12 ) 、第3熱電対で測温される加熱素子(9
)付近の空間の温度がTl11のとき、Tlg>T11
(又はT12)の場合T12〉T18逆にTlg (T
ll(又はT12 )の場合Tl−2< Ttaの温度
勾配の向きを示し、その大きさは両方ともT16−To
 = Tl 2− Tl 8の関係となっている。上式
を変形してT16 = Tll + Ttz −Tta
となる。ところで第1.第2及び第3の各熱電対による
合成検出温度霜はTm = Tll −(’][’ts
 −T12 ) =’let + T12− T18で
あるのでT16zTm  となる。
The heat-receiving element is a thin piece of mica that has relatively good thermal conductivity and small heat capacity, and the periphery of the heat-receiving element is supported on the same thin boxwood (7) of the case. Since the temperature is close to that of the heat-receiving element due to the heat generated by the heater attached to the case, there is extremely little heat dissipation to the mica fiber (7). Furthermore, a heat receiving element (8
) and the heating element (9), the three pairs of thermocouple wires have a small heat capacity but a small heat loss, so that temperature measurement by the thermocouple is accurate. Therefore, if the temperature of the surface to be measured 061 suddenly changes during measurement by bringing the heat receiving element close to the surface to be measured, that is, the thermal equilibrium state disappears and the surface to be measured and the heat receiving element (8) and the heating element (8) change. 9) When a temperature gradient occurs in the space surrounded by , the composite temperature Tm of the three pairs of thermocouple connections of the detector of the present invention until a new state of thermal equilibrium is restored will be considered. The heat-receiving element (8) has extremely little loss in heat transfer in the space between the surface to be measured Q61 and the heating element (9). Therefore, the surface to be measured αe and the heat receiving element (8
The magnitude of the temperature gradient between the elements and the change in the height direction change to the same extent as that between the heat receiving element (8) and the space near the heating element (9). In other words, the surface to be measured 061
temperature at T16 first and second thermocouple? The temperature of the heat-receiving element (8) to be evacuated by 111 is Tll or T12 (Tll:
T12), heating element (9) whose temperature is measured by the third thermocouple
), when the temperature of the space near Tl11, Tlg>T11
(or T12), T12>T18 Conversely, Tlg (T
In the case of ll (or T12), the direction of the temperature gradient is Tl-2<Tta, and both of its magnitudes are T16-To
= Tl 2 - Tl 8. Transforming the above formula, T16 = Tll + Ttz - Tta
becomes. By the way, number one. The combined detected temperature frost by each of the second and third thermocouples is Tm = Tll - (']['ts
-T12)='let+T12-T18, so T16zTm is obtained.

ここでT16 >Tll (又はTtg)のときT12
>T18であるのでT12− Ti1l ) Q 、 
Ti6 (Ttt (又はTl2)のときT12 (’
l’tsであるのでT12−T18〈0である。
Here, when T16 > Tll (or Ttg), T12
>T18, so T12-Ti1l) Q,
When Ti6 (Ttt (or Tl2)), T12 ('
l'ts, so T12-T18<0.

結局、第1熱電対0υで測温される受熱素子(8)の温
度Tllに第2熱電対O3で測温される受熱素子(8)
の温度’l’12から第3熱電対(131で測温される
加熱素子(9)付近の空間の温度T1g ’6差し引い
た温度TI2−T1gをT16>Tllのときは加算し
、T16<Tllのときは減算すると、被測定面Oeと
受熱素子(8)間の温度勾配を向きを含めてその大きさ
を補償したことKなる。従って合成検出温度Tmは被測
定面Beの温度T16の間にTm−:T16の関係を得
る。以上よシ熱平衡状態でない場合における本発明の検
出器の被測定面温度測定は正確で応答性がよく、従って
運動体の非接触表面温度測定において随伴気流に起因す
る測定不安定防止用受熱素子設置形検出器の欠点であっ
た熱平衡状態になるまでの応答性の不良を解消し得るも
のである。
In the end, the temperature of the heat receiving element (8) whose temperature is measured by the second thermocouple O3 is equal to the temperature Tll of the heat receiving element (8) whose temperature is measured by the first thermocouple 0υ.
Temperature T1g '6 of the space near the heating element (9) measured by the third thermocouple (131) is subtracted from the temperature 'l'12, and the temperature TI2-T1g is added when T16>Tll, and T16<Tll When subtracted, K means that the temperature gradient between the surface to be measured Oe and the heat receiving element (8), including its direction, has been compensated for.Therefore, the combined detected temperature Tm is between the temperature T16 of the surface to be measured Be. The relationship Tm-:T16 is obtained for Tm-:T16.As described above, the temperature measurement of the surface to be measured by the detector of the present invention is accurate and responsive when the temperature is not in thermal equilibrium. This can solve the problem of poor responsiveness until a thermal equilibrium state is reached, which is a drawback of heat-receiving element-equipped detectors for preventing measurement instability.

以上のように本発明の検出器は、被測定物(161の温
度を検出して前述の本発明の目的を達し得るものである
が、さらに零位調節計09は単に第3熱電対(13b)
と第2熱電対(12“1−)よりの出力のゼロ位置を調
節するだけの簡単な構造のもので充分であるという利点
を有するものである。
As described above, the detector of the present invention can achieve the above-mentioned object of the present invention by detecting the temperature of the object to be measured (161). )
This has the advantage that a simple structure that only adjusts the zero position of the output from the second thermocouple (12"1-) is sufficient.

次に以下、本発明のさらに一つの特徴を説明する。Next, one further feature of the present invention will be explained below.

第4図には本発明の装置のアタッチメント03を示す。FIG. 4 shows the attachment 03 of the device of the invention.

図において■はケース(υから突出するアングル状のア
ームである。アーム■の遊端には、ねじCυによりカバ
ー(イ)の突片(ハ)が着脱自在に装着される。カバー
(イ)内には点線で示すように反射鏡c!41を収容し
ている。反射鏡@は点線図示の加熱素子(9)と同様な
半球状をなし、内面を熱反射面として加熱素子(9)と
図示のように対設される。
In the figure, ■ is an angled arm protruding from the case (υ). The protruding piece (C) of the cover (A) is removably attached to the free end of the arm ■ with a screw Cυ. The cover (A) Inside, a reflecting mirror c!41 is housed as shown by the dotted line.The reflecting mirror @ has a hemispherical shape similar to the heating element (9) shown by the dotted line, and the inner surface is used as a heat reflecting surface to form the heating element (9). and are placed opposite each other as shown.

ケース(1)とカバー(社)との間には若干の間げきc
!81をおいて、アタッチメント(1!Jがケース(υ
に対し装着される。この間げき内を線状物を移行させる
ことにより、運動中の線状物の温度を測定する。アタッ
チメントα優のカバー@とケース(υとにより、線状物
に随伴する気流を防止し、測定条件の乱れを防ぎ、正確
な温度検出ができる。
There is a slight gap between the case (1) and the cover (sha).
! 81 and the attachment (1!J is the case (υ
It is attached to the By moving the linear object within this gap, the temperature of the moving linear object is measured. The cover @ and case (υ) of the attachment α prevent airflow accompanying the linear object, prevent disturbances in measurement conditions, and enable accurate temperature detection.

以上説明のように本発明の検出器は応答性の優れた、然
も平板状、線状例れの被測定物にも適応可能な検出器を
提供し得るとともに、付随の調節計、指示計等を簡単化
できる利点を有するものである。
As explained above, the detector of the present invention has excellent responsiveness and can be applied to objects to be measured such as flat or linear objects. This has the advantage of simplifying the process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明検出器の縦断面図、第2図はその一部の
平面図、第3図は同検出器の熱電対の結線図、第4図は
アタッチメントを装着した場合を示す同検出器の正面図
である。 l・・・ケース、2・・・キャップ、3.5・・・ねじ
、4・・・端子板、6・・・リード線取出口、7・・・
つば、8・・・受熱素子、9・−加熱素子、iib・・
・第1熱電対、12b・・・第2熱電対、13b・・・
第3熱電対、14 ・+:−タ、11a、 l 2a、
 13a・・・リード線、1 lbm 、 12bff
i 、 13bl ”・端子、15 ・・・零位調節計
、16・・・被測定物、17・・・指示計。 特許出願人  理化工業株式会社 代理人弁理士   五 味  九 十 二第1図 16 ′M2図 1 第3図 7 第4図
Fig. 1 is a longitudinal sectional view of the detector of the present invention, Fig. 2 is a plan view of a part thereof, Fig. 3 is a wiring diagram of the thermocouple of the detector, and Fig. 4 is the same with an attachment attached. FIG. 3 is a front view of the detector. l...Case, 2...Cap, 3.5...Screw, 4...Terminal board, 6...Lead wire outlet, 7...
Brim, 8... Heat receiving element, 9... Heating element, iib...
・First thermocouple, 12b... Second thermocouple, 13b...
Third thermocouple, 14 ・+:-ta, 11a, l 2a,
13a...Lead wire, 1 lbm, 12bff
i, 13bl''・Terminal, 15... Zero position controller, 16... Measured object, 17... Indicator. Patent applicant: Rika Kogyo Co., Ltd. Representative Patent Attorney K. Gomi Figure 1 16 'M2 Figure 1 Figure 3 7 Figure 4

Claims (1)

【特許請求の範囲】 (υ 一方が閉塞し、他方が突縁をイする開口した円筒
状のケース、ケース内に収容され、ケースの開口部にて
同じく開口する半球状にして、内面を熱反射面とした加
熱素子、この加熱素子の開口及びケースの開口と共通に
閉塞するようケースの実線上に支持される平板状の受熱
素子。 この受熱素子と被測定面に近接させ、ケース内の受熱素
子内面に付設させ、測温接点を受熱素子の中心部分に位
置させた、互いに電気的絶縁された、第1及び第20熱
電対誹受熱素子及び加熱素子で囲まれた空間内にて、加
熱素子に近接して、受熱素子と加熱素子との中心線上位
置に測温接点を付設させた第3の熱電対、第3の熱電対
で測温される加熱素子付近の空間の温度が第2の熱電対
で測温される受熱素子の温度より低い場合に、ケースに
装着させたヒータに電力を供、給して加熱素子を加熱す
ることによりこの2つの熱電対によ・つて測温される温
度差を零になるよう制御させるヒータ供給装置を内蔵し
た零位温度調節計の入力となるよう第3及び第2の熱電
対を差動結線し、更に同結線の第3の熱電対に第1の熱
電対を差動結線し、第1.第2及び第3の熱電対の直列
合成起電力により被測定面の温度を連続的に指示させる
指示計を設けたことを特徴とする嚢−電sem値電兼出
器。 (2)  ケース(υと外径及び内径の一致する円筒状
にしてケースに開口部にて互に着脱自在のアタッチメン
ト、同アタッチメント内に収容されアタッチメントの開
口と同方向に開口する半球状にして内面を熱反射面とし
た反射鏡、この反射鏡及びアタッチメントの開口縁にて
、十→蓋検出器。
[Scope of Claims] (υ A cylindrical case with one side closed and the other side open with a protruding edge, housed in the case, having a hemispherical shape that also opens at the opening of the case, and heating the inner surface. A heating element with a reflective surface, a flat heat receiving element supported on the solid line of the case so as to close the opening of this heating element and the opening of the case in common. In a space surrounded by the heat receiving element and the heating element, the first and twentieth thermocouples are attached to the inner surface of the heat receiving element, and the temperature measuring contact is located at the center of the heat receiving element, and are electrically insulated from each other. A third thermocouple is provided in close proximity to the heating element and has a temperature measuring junction located on the center line between the heat receiving element and the heating element.The third thermocouple measures the temperature of the space near the heating element. When the temperature is lower than the temperature of the heat receiving element measured by the second thermocouple, the temperature is measured by these two thermocouples by supplying power to the heater attached to the case and heating the heating element. The third and second thermocouples are connected differentially so as to serve as inputs to a zero-level temperature controller that has a built-in heater supply device that controls the temperature difference between A first thermocouple is differentially connected to the thermocouple, and an indicator is provided that continuously indicates the temperature of the surface to be measured by the series combined electromotive force of the first, second, and third thermocouples. (2) Case (a cylindrical shape with outer and inner diameters that match υ; attachments that can be attached and detached from each other at the opening in the case; housed in the attachment and attached to the opening of the attachment; A hemispherical reflector with a heat-reflecting surface on its inner surface opens in the same direction, and a lid detector is located at the opening edge of this reflector and attachment.
JP18211881A 1981-11-12 1981-11-12 Contactless type surface temperature detector Pending JPS5883223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18211881A JPS5883223A (en) 1981-11-12 1981-11-12 Contactless type surface temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18211881A JPS5883223A (en) 1981-11-12 1981-11-12 Contactless type surface temperature detector

Publications (1)

Publication Number Publication Date
JPS5883223A true JPS5883223A (en) 1983-05-19

Family

ID=16112642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18211881A Pending JPS5883223A (en) 1981-11-12 1981-11-12 Contactless type surface temperature detector

Country Status (1)

Country Link
JP (1) JPS5883223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120076170A1 (en) * 2010-09-28 2012-03-29 Lee Yeu Yong Multiposition temperature measuring cable

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151231A (en) * 1979-05-15 1980-11-25 Rika Kogyo Kk Noncontacting type surface temperature detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151231A (en) * 1979-05-15 1980-11-25 Rika Kogyo Kk Noncontacting type surface temperature detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120076170A1 (en) * 2010-09-28 2012-03-29 Lee Yeu Yong Multiposition temperature measuring cable
US8444317B2 (en) * 2010-09-28 2013-05-21 Chang Sung Ace Co., Ltd. Multiposition temperature measuring cable

Similar Documents

Publication Publication Date Title
US6129673A (en) Infrared thermometer
US6203194B1 (en) Thermopile sensor for radiation thermometer or motion detector
JP4619499B2 (en) Infrared sensor capable of stabilizing temperature and infrared thermometer having this type of sensor
US6220750B1 (en) Non-invasive temperature measurement method and apparatus
US6152595A (en) Measuring tip for a radiation thermometer
US6043493A (en) Infrared sensor and method for compensating temperature thereof
US3321974A (en) Surface temperature measuring device
JPH06502487A (en) Radiation detector with remote temperature reference
US4178800A (en) Method of and apparatus for the measuring of quantities of heat
US4063095A (en) Balancing radiometer
EP2307865A1 (en) System and method for a temperature sensor using temperature balance
US3354720A (en) Temperature sensing probe
JPS5883223A (en) Contactless type surface temperature detector
JPH0348127A (en) Noncontact temperature measuring method and temperature sensor
US3427882A (en) Contact-free temperature-sensing device
US3164021A (en) Compensation radiation pyrometer
USRE23615E (en) Compensated thermopile
JP2686878B2 (en) Combined sensor device
JP2567968Y2 (en) High sensitivity temperature detector
JPH0537231Y2 (en)
Xia et al. Temperature Detection
JP2008026179A (en) Radiant heat sensor and method of measuring radiant heat
SU609981A1 (en) Differential microcalorimeter
JPS5922501Y2 (en) radiation thermometer
RU1904U1 (en) Optical Pyrometer