JPS588315B2 - Biological treatment method for wastewater containing dithionic acid and polythionic acid - Google Patents

Biological treatment method for wastewater containing dithionic acid and polythionic acid

Info

Publication number
JPS588315B2
JPS588315B2 JP54036235A JP3623579A JPS588315B2 JP S588315 B2 JPS588315 B2 JP S588315B2 JP 54036235 A JP54036235 A JP 54036235A JP 3623579 A JP3623579 A JP 3623579A JP S588315 B2 JPS588315 B2 JP S588315B2
Authority
JP
Japan
Prior art keywords
acid
dithionic
polythionic
treatment
dithionic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54036235A
Other languages
Japanese (ja)
Other versions
JPS55129191A (en
Inventor
山内徹
植田良平
福永和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP54036235A priority Critical patent/JPS588315B2/en
Publication of JPS55129191A publication Critical patent/JPS55129191A/en
Publication of JPS588315B2 publication Critical patent/JPS588315B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】 本発明は、ジチオン酸およびポリチオン酸含有廃水の生
物学的処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for the biological treatment of wastewater containing dithionic and polythionic acids.

ジチオン酸およびポリチオン酸含有廃水の代表的なもの
としては、湿式排煙脱硫廃水があげられ該廃水には、ジ
チオン酸を主体として、その他三チオン酸、四チオン酸
、五チオン酸、六チオン酸等のポリチオン酸や重金属類
が含まれる。
A typical example of wastewater containing dithionic acid and polythionic acid is wet flue gas desulfurization wastewater, which contains dithionic acid as the main ingredient, as well as trithionic acid, tetrathionic acid, pentathionic acid, and hexathionic acid. Contains polythionic acids such as and heavy metals.

従来、上記湿式排煙脱硫廃水の処理方法として、凝集沈
澱法、活性炭吸着法、イオン交換樹脂法等が検討された
が、凝集沈澱法や活性炭吸着法では上記チオン酸類はほ
とんど除去されず、またイオン交換樹脂法では後処理が
必要でありコストが非常に高くつく欠点があった。
Conventionally, coagulation-sedimentation methods, activated carbon adsorption methods, ion-exchange resin methods, etc. have been investigated as methods for treating the above-mentioned wet flue gas desulfurization wastewater. The ion exchange resin method requires post-treatment and has the drawback of being extremely expensive.

これに対し、本発明者らは、すでに特願昭52−799
37号にて「ポリチオン酸含有廃水の生物学的処理方法
」を見出し、物理化学処理に比べ安価で効果的な方法で
あることを示した。
On the other hand, the present inventors have already filed a patent application in 1983-799.
No. 37, he discovered a ``biological treatment method for wastewater containing polythionic acid'' and showed that it was a cheaper and more effective method than physical-chemical treatment.

上記発明は、ポリチオン酸を活性汚泥により生物酸化す
るものであり、活性汚泥の主栄養源としてチオシアン酸
塩またはチオ硫酸塩を用いたが、全処理コストの内、該
チオシアン酸塩またはチオ硫酸塩が占める割合がかなり
大であることが欠点であった。
The above invention biooxidizes polythionic acid using activated sludge, and uses thiocyanate or thiosulfate as the main nutrient source of activated sludge. The disadvantage was that it accounted for a fairly large proportion.

また上記発明において、ジチオン酸およびポリチオン酸
の生物学的処理に使われる硫黄細菌群(チオバチルス
チオパラス、チオバチルスノベラス、チオバチルス ネ
アポリタニウスなど)を優先種とする活性汚泥は、沈降
性のよい汚泥フロックを形成しにくい性質を有すること
から処理水とともに流出しやすく、生物反応槽内の汚泥
の保持が困難となり、安定な運転性能を得ることが困難
となる場合があるという欠点があった。
Furthermore, in the above invention, a group of sulfur bacteria (Thiobacillus spp.
Activated sludge containing priority species such as Thioparas, Thiobacillus novellas, Thiobacillus neapolitanius, etc. has a property that makes it difficult to form sludge flocs with good sedimentation properties, so it is easy to flow out with treated water, making it difficult to retain sludge in the biological reaction tank. This has the disadvantage that it may be difficult to obtain stable operating performance.

そこで本発明者らは,すでに提案した特願昭52−14
2273号「ジチオン酸含有廃水の生物学的処理方法」
にて、処理性能の安定化をはかるとともに、処理性能の
向上も同時に行うことができる方法を見出し、また特願
昭53−116114号で、チオシアン酸塩、チオ硫酸
塩に代り安価な硫黄粒子(公害防徐プロセスからの副生
物のこと、以下S°と記す)の利用可能なことを提案し
た。
Therefore, the inventors of the present invention have proposed
No. 2273 “Biological treatment method for wastewater containing dithionic acid”
discovered a method that could both stabilize and improve processing performance, and in Japanese Patent Application No. 116114/1989, inexpensive sulfur particles ( We proposed that by-products from pollution control processes (hereinafter referred to as S°) could be used.

以上をまとめると、湿式排煙脱硫プロセスの排水処理(
凝集沈澱処理が主体)において、処理水中のCODが高
くなり、処理性が不安定となる場合があった。
To summarize the above, the wastewater treatment of wet flue gas desulfurization process (
(mainly coagulation and sedimentation treatment), the COD in the treated water sometimes became high and the processability became unstable.

この原因を究明したところ、排水中に含まれるポリチオ
ン酸が殆んど除去されていないことを知った。
When we investigated the cause of this, we found that the polythionic acid contained in the wastewater was hardly removed.

そこでポリチオン酸を安定に処理する方法について検討
し、その成果として上記の特願昭52−79937号方
法および特願昭52−142273号方法を得、更に低
コスト化をはかった上記の特願昭53−116114号
方法を得たものである。
Therefore, we investigated a method for stably treating polythionic acid, and as a result, we obtained the above-mentioned Japanese Patent Application No. 52-79937 method and Japanese Patent Application No. 52-142273 method, and we also developed the above-mentioned Japanese Patent Application No. 1987-142273, which aims to further reduce costs. This method was obtained using the method No. 53-116114.

本発明は、これら先願の処理方法をより完全なものとす
るために、装置のコンパクト化、処理の低コスト化およ
び汚泥の安定保持化を目的としてなされたものである。
The present invention has been made for the purpose of making the equipment more compact, reducing the cost of treatment, and stably retaining sludge, in order to make the treatment methods of these earlier applications more complete.

ところで、上記先願の明細書にも記載した通り、本発明
者らは、ジチオン酸およびポリチオン酸を処理するため
の生物処理試験を重ねるうち、チオシアン(SCN−)
、チオ硫酸(S2O32−)のような硫黄化合物や硫黄
(S°)を分解する活性汚泥中に優れたジチオン酸およ
びポリチオン酸分解菌が存在することを見出し、更には
、この活性汚泥中には、チオバチルス・チオパラス(T
hiobaci−llus thioparus)、チ
オバチルス・ネアポリタニウス(Thiobacill
us neapolitanus)、チオバチルス・ノ
ベラス(Thiobacillus・novellus
)などの硫黄酸化細菌群が優先種を占めているという知
見を得ている。
By the way, as described in the specification of the above-mentioned earlier application, the present inventors conducted repeated biological treatment tests for treating dithionic acid and polythionic acid, and discovered that thiocyanine (SCN-)
found that excellent dithionic acid and polythionic acid degrading bacteria exist in activated sludge that decomposes sulfur compounds such as thiosulfuric acid (S2O32-) and sulfur (S°), and furthermore, they found that bacteria that degrade sulfur compounds such as thiosulfuric acid (S2O32-) and sulfur (S°) exist. , Thiobacillus thiopalas (T
hiobacillus thioparus), Thiobacillus neapolitanius
us neapolitanus), Thiobacillus novellus (Thiobacillus novellus)
) and other groups of sulfur-oxidizing bacteria account for the priority species.

そこで本発明者らは、更に、チオシアン、チオ硫酸など
一連の硫黄化合物のうち、より安価で、かつ装置のコン
パクト化の可能性も考えられる粒子状の硫化鉄(以下F
eSと記す)に着目し、FeSを分解する活性汚泥中に
も優れたポリチオン酸分解菌が存在すると考え、次のよ
うな実験を行った。
Therefore, the present inventors further investigated particulate iron sulfide (hereinafter F
We conducted the following experiment, focusing on polythionic acid (denoted as eS) and believing that there are excellent polythionic acid-degrading bacteria even in activated sludge that decomposes FeS.

実験1 実験装置は第1図に示すものを4台(A,B,C,D)
用いた。
Experiment 1 The experimental equipment was four (A, B, C, D) as shown in Figure 1.
Using.

第1図において、1はジチオン酸タンク(20l)、2
は酸素供給カラム(1l)、3は生物反応カラム(0.
5l)、4は栄養源タンク(5l)(但し、装置A,C
にはなし)、5は充填濾材(0.3l)、6はジチオン
酸供給ポンプ、7は酸素供給ブロワー、8は栄養源供給
ポンプ(但し、装置A,Cにはなし)である。
In Figure 1, 1 is a dithionic acid tank (20l), 2
is an oxygen supply column (1l), 3 is a biological reaction column (0.
5l), 4 is a nutrient source tank (5l) (However, equipment A, C
5 is a packed filter medium (0.3 l), 6 is a dithionic acid supply pump, 7 is an oxygen supply blower, and 8 is a nutrient source supply pump (however, none is provided in apparatuses A and C).

なお、4台の装置A,B,C,Dにおいて、装置A,B
には充填濾材5として粒径1mmφの砂を用い、装置C
,Dには充填濾材5として栄養源を兼ねた粒径2mmφ
のFeSを用いた。
In addition, in the four devices A, B, C, and D, devices A, B
In this case, sand with a particle size of 1 mmφ was used as the filling filter medium 5, and the apparatus C
, D has a particle diameter of 2 mmφ that also serves as a nutrient source as a packed filter medium 5.
of FeS was used.

また装置B,Dの栄養源タンク4にはチオシアンを50
ppmに調整して投入した。
In addition, 50 thiocyanine was added to the nutrient tank 4 of devices B and D.
It was adjusted to ppm and added.

更に、4台の装置A,B,C,Dにおいて、生物反応カ
ラム3内には、充填濾材5の他に、あらかじめコークス
廃水処理活性汚泥を濃度が3000〜4000ppmM
LSSになるよう種汚泥として投入し、そして該生物反
応カラム3内のpHは7〜8、水温は25℃に制御した
Furthermore, in the four apparatuses A, B, C, and D, in addition to the packed filter medium 5, coke wastewater treatment activated sludge was preliminarily placed in the biological reaction column 3 at a concentration of 3000 to 4000 ppmM.
The sludge was introduced as a seed sludge to obtain LSS, and the pH in the biological reaction column 3 was controlled to 7 to 8 and the water temperature to 25°C.

酸素の供給は、ブロワー7から酸素供給カラム2内へ空
気又は空気+純酸素がデイフユーザーを通して送られ、
ここでジチオン酸タンク1から下向してくる原水と接触
することにより原水の溶存酸素がほぼ飽和点まで到達し
、これをジチオン酸供給ポンプ6により生物反応力ラム
3内へ送ることにより行なった。
To supply oxygen, air or air + pure oxygen is sent from the blower 7 into the oxygen supply column 2 through a differential user.
By coming into contact with the raw water flowing downward from the dithionic acid tank 1, the dissolved oxygen in the raw water reached almost the saturation point, and this was carried out by sending this to the biological reaction force ram 3 using the dithionic acid supply pump 6. .

生物反応カラム3への原水供給方法は4台の各装置別に
変え、次のとおりとした。
The method of supplying raw water to the biological reaction column 3 was changed for each of the four devices as follows.

装置A:濃度100ppmのジチオン酸を1l/日の流
量で生物反応力ラム3へ供給した。
Apparatus A: Dithionic acid with a concentration of 100 ppm was fed to the bioreaction force ram 3 at a flow rate of 1 l/day.

装置B:濃度100ppmのジチオン酸を1l/日、濃
度50ppmのチオシアンを0.2l/日の各流量で同
時に生物反応カラム 3に供給した。
Apparatus B: Dithionic acid at a concentration of 100 ppm was simultaneously supplied to the biological reaction column 3 at a flow rate of 1 l/day, and thiocyanate at a concentration of 50 ppm was supplied at a flow rate of 0.2 l/day.

装置C:供給方法は装置Aと同じとした。Apparatus C: The feeding method was the same as apparatus A.

装置D:濃度100ppmのジチオン酸を1l/日、濃
度50ppmのチオシアンを0.2l/日の各流量で同
時に生物反応カラム 3に供給した。
Apparatus D: Dithionic acid at a concentration of 100 ppm was simultaneously supplied to the biological reaction column 3 at a flow rate of 1 l/day and thiocyanate at a concentration of 50 ppm at a flow rate of 0.2 l/day.

該ジチオン酸の処理が確認された後、チオシアンの供給
を止め、 濃度100ppmのジチオン酸のみを1 l/日の流量で生物反応カラム3に供給 した。
After the treatment of the dithionic acid was confirmed, the supply of thiocyanate was stopped, and only dithionic acid with a concentration of 100 ppm was supplied to the biological reaction column 3 at a flow rate of 1 l/day.

上記の実験結果をまとめると次の通りであった。The above experimental results were summarized as follows.

以上の結果から、ジチオン酸のみ通水しても処理できず
、チオシアンまたはFeSを供給した場合に処理可能で
あり、FeSを分解する活性汚泥中にはチオシアンを分
解する活性汚泥と同様にジチオン酸分解菌が存在するこ
とが確められた。
From the above results, treatment cannot be achieved by passing water through only dithionic acid, but treatment is possible when thiocyanide or FeS is supplied, and activated sludge that decomposes FeS contains dithionic acid as well as activated sludge that decomposes thiocyanide. The presence of degrading bacteria was confirmed.

装置B,Cにおいて、Sの物質収支より、ジチオン酸(
S2O62−)、チオシアン(SCN−)、FeSは次
のように生物酸化されていることがわかった。
In devices B and C, dithionic acid (
It was found that S2O62-), thiocyanine (SCN-), and FeS were biooxidized as follows.

S2O62−+O2→2SO42− SCN−+3O2→SO42−+NH4++CO2Fe
S+2O2→Fe2++SO42− これらの反応は先に示したチオバチルス・チオパルス、
チオバチルス・ネアポリタニウス,チオバチルス・ノベ
ラスなどの硫黄酸化菌に特有の反応である。
S2O62-+O2→2SO42- SCN-+3O2→SO42-+NH4++CO2Fe
S+2O2→Fe2++SO42− These reactions are carried out in the Thiobacillus thioparus shown above.
This reaction is unique to sulfur-oxidizing bacteria such as Thiobacillus neapolitanius and Thiobacillus novellas.

ジチオン酸にFeSを供給した場合(装置C)は、チオ
シアンを供給した場合(装置B)に比べて、ジチオン酸
除去率95%以上を達成するのに30日ほど長く要した
が、これはこのチオシアンが水に容易に溶けやすいのに
対し、FeSはほとんど溶けないため、反応が遅く、上
記の硫黄酸化菌の生育が遅れたためと思われる。
When FeS was supplied to dithionic acid (apparatus C), it took about 30 days longer to achieve a dithionic acid removal rate of 95% or more compared to when thiocyanate was supplied (apparatus B). While thiocyanide easily dissolves in water, FeS hardly dissolves in water, so the reaction was slow and the growth of the sulfur-oxidizing bacteria was delayed.

また、あらかじめFeSを充填した反応容器中に、ジチ
オン酸とチオシアンを供給し、十分に上記硫黄酸化菌を
生育させた後、ジチオン酸のみを供給した場合(装置D
)には、ジチオン酸の処理は引き続き安定して行なわれ
、上記のジチオン酸にFeSのみを供給した場合(装置
C)に比べ、ジチオン酸除去率95%以上を達成するの
に30日ほど期間が短縮された。
In addition, when dithionic acid and thiocyanate were supplied into a reaction vessel filled with FeS in advance, and the sulfur-oxidizing bacteria were sufficiently grown, only dithionic acid was supplied (apparatus D
), the treatment of dithionic acid continues to be stable, and it takes about 30 days to achieve a dithionic acid removal rate of 95% or more compared to the case where only FeS is supplied to the dithionic acid described above (apparatus C). was shortened.

除去率が一度95%以上になると、チオシアン、FeS
いずれを供給した場合も、以後、同様に処理性は安定し
ていた。
Once the removal rate exceeds 95%, thiocyanide, FeS
No matter which one was supplied, the processability was similarly stable thereafter.

処理水の清澄度については、浮遊物濃度が10ppm以
下と、きわめて清澄な処理水が得られた。
Regarding the clarity of the treated water, extremely clear treated water was obtained with a suspended solids concentration of 10 ppm or less.

本発明者らは、上記の実験により、ジチオン酸の生物学
的処理において、FeSを同時に供給することにより処
理可能となることを確認し、本発明の第1発明に到達し
たものである。
Through the above experiment, the present inventors confirmed that the biological treatment of dithionic acid can be performed by simultaneously supplying FeS, and thus arrived at the first aspect of the present invention.

すなわち、本発明の第1発明は、FeSを主栄養源とし
て微生物を好気的条件下で生育させた後、該微生物とF
eSとを保持する容器内に、ジチオン酸の少なくとも一
種を含む廃水を流入させ、好気的条件下で前記ジチオン
酸および/またはポリチオン酸を硫酸にまで生物酸化処
理することを特徴とするジチオン酸およびポリチオン酸
含有廃水の生物学的処理方法に関するものである。
That is, in the first aspect of the present invention, after growing microorganisms under aerobic conditions using FeS as a main nutrient source, the microorganisms and F
wastewater containing at least one type of dithionic acid is introduced into a container holding eS, and the dithionic acid and/or polythionic acid is biooxidized to sulfuric acid under aerobic conditions. and a biological treatment method for wastewater containing polythionic acid.

そして、上記第1発明をより効果的に行なう方法として
以下に述べる本発明の第2発明を提供するものである。
A second aspect of the present invention described below is provided as a method for more effectively carrying out the first aspect.

すなわち、本発明の第2発明は、FeSを主栄養源とし
、チオ硫酸塩、チオシアン酸塩、S°の少なくとも一種
を補助栄養源として微生物を好気的条件下で生育させた
後、該微生物とFeSを保持する容器内に、ジチオン酸
、ポリチオン酸の少なくとも一種を含む廃水を流入させ
、かつチオ硫酸塩、チオシアン酸塩、S°の少なくとも
一種を補助栄養源として加えながら、好気的条件下で上
記ジチオン酸および/またはポリチオン酸を硫酸にまで
生物酸化処理し、該ジチオン酸および/またはポリチオ
ン酸の処理が確認された後、前記補助栄養源の供給量を
段階的に減少させることを特徴とするジチオン酸および
ポリチオン酸含有廃水の生物学的処理方法に関するもの
である。
That is, the second aspect of the present invention is to grow microorganisms under aerobic conditions using FeS as a main nutrient source and at least one of thiosulfate, thiocyanate, and S° as an auxiliary nutrient source, and then grow the microorganisms under aerobic conditions. A wastewater containing at least one of dithionic acid and polythionic acid is introduced into a container holding FeS and FeS, and at least one of thiosulfate, thiocyanate, and S° is added as a supplementary nutrient source while maintaining aerobic conditions. After the dithionic acid and/or polythionic acid is biooxidized to sulfuric acid and the treatment of the dithionic acid and/or polythionic acid is confirmed, the supply amount of the supplementary nutrient source is gradually reduced. The present invention relates to a biological treatment method for wastewater containing dithionic acid and polythionic acid.

なお、上記第2発明をプロセスを追って説明すると次の
通りである。
The process of the second invention will be explained as follows.

1)はじめにFeSの他にチオ硫酸塩、チオシアン酸塩
、S°の少なくとも1種類を加え、これを補助栄養源と
して、活性汚泥の馴致を行っておく。
1) First, in addition to FeS, at least one of thiosulfate, thiocyanate, and S° is added, and activated sludge is acclimatized using this as a supplementary nutrient source.

(この時期にジチオン酸を分解する硫黄酸化菌を十分生
育、増加させる。
(During this period, sulfur-oxidizing bacteria that decompose dithionic acid are sufficiently grown and increased.

)2)上記1)により、硫黄酸化菌が十分生育増加した
ところで、ジチオン酸、ポリチオン酸の少くとも一種を
含む原水の供給を開始する。
)2) When the growth of sulfur-oxidizing bacteria has increased sufficiently according to 1) above, supply of raw water containing at least one of dithionic acid and polythionic acid is started.

(この時点では、硫黄酸化菌が活性汚泥中の優先種をし
めており、ジチオン酸および/またはポリチオン酸の処
理は速やかに行なわれることが期待できる。
(At this point, sulfur-oxidizing bacteria are the dominant species in the activated sludge, and it can be expected that the treatment of dithionic acid and/or polythionic acid will be carried out quickly.

)3)ジチオン酸および/またはポリチオン酸の処理が
確認されたら、補助栄養源としてのチオ硫酸塩、チオシ
アン酸塩、S°の一種または2種以上の供給を減らして
ゆき、最終的には、該補助栄養源の供給を停止し、Fe
Sの補助のみ行なう。
)3) Once treatment with dithionic and/or polythionic acids is confirmed, the supply of one or more of thiosulfate, thiocyanate and S° as supplementary nutritional sources can be reduced until finally: The supply of the supplementary nutrient source is stopped and the Fe
Only support S.

本発明の第1、第2発明は、前記した第1図のフローに
沿って実施することができる。
The first and second aspects of the present invention can be implemented along the flow shown in FIG. 1 described above.

なお、第1図の装置C,Dにおける生物反応カラム3は
、FeSを主栄養源としての作用のみでなく、付着生物
膜方式の充填物5の作用をも兼備させた生物涙過方式の
ものであるが、このほかに第2図に示す没水濾床型廃水
処理装置を用いることもできる。
The biological reaction columns 3 in apparatuses C and D in FIG. 1 are of a biological filtration type, which not only uses FeS as a main nutrient source but also has the function of an attached biofilm type packing 5. However, in addition to this, a submerged filter type wastewater treatment apparatus shown in FIG. 2 can also be used.

第2図において、1は没水濾床型廃水処理装置本体、2
は充填部(10l)、3はエアリフト循環部、4は曝気
用ブロワー、5は原水供給ライン,6は処理水抜出しラ
インである。
In Fig. 2, 1 is the main body of the submerged filter type wastewater treatment equipment, 2
3 is a filling part (10 l), 3 is an air lift circulation part, 4 is an aeration blower, 5 is a raw water supply line, and 6 is a treated water extraction line.

第2図に示す装置を用いて次の実験を行なった。The following experiment was conducted using the apparatus shown in FIG.

実験2 第2図の充填部2に2〜3cm口程度に破砕したFeS
と少量のS°と少量の土壌を充填し、該充填部2のpH
を7〜8、水温を25℃に制御した。
Experiment 2 FeS crushed into a 2 to 3 cm opening was placed in the filling part 2 shown in Figure 2.
Filled with a small amount of S° and a small amount of soil, and the pH of the filled part 2 was
The water temperature was controlled at 7-8 and the water temperature at 25°C.

ブロワー4からは空気5l/分を供給した。Air was supplied from blower 4 at 5 l/min.

原水は、ライン5からジチオン酸含有廃水を10l/d
の流量で通水した。
The raw water is 10 l/d of dithionic acid-containing wastewater from line 5.
Water was passed at a flow rate of .

この結果、通水後約30日でジチオン酸の処理が可能と
なり、以後ジチオン酸の除去率は良好で、安定した処理
性が得られた。
As a result, it became possible to treat dithionic acid about 30 days after water flow, and thereafter the removal rate of dithionic acid was good and stable treatment performance was obtained.

上記実験2および前記の実験1より、本発明の第1、第
2発明は、FeSを充填物とし、該充填物にジチオン酸
および/またはポリチオン酸分解菌を主体とする生物膜
を付着、生育させ、この付着生物膜方式によってジチオ
ン酸および/またはポリチオン酸の生物処理を行なうこ
とができることがわかる。
From the above Experiment 2 and the above Experiment 1, the first and second inventions of the present invention use FeS as a filler, and a biofilm mainly consisting of dithionic acid and/or polythionate degrading bacteria is attached to and grows on the filler. It can be seen that biological treatment of dithionic acid and/or polythionic acid can be performed by this attached biofilm method.

前記の実験1、実験2は、ジチオン酸を用いたものであ
るが、ポリチオン酸について同様の実験を試みたところ
、いずれも95%以上の除去率が得られた。
Experiments 1 and 2 described above used dithionic acid, but when similar experiments were attempted using polythionic acid, a removal rate of 95% or more was obtained in both cases.

ポリチオン酸は、いずれも下記のように硫酸にまで生物
酸化されていることがわかった。
It was found that all polythionic acids were biooxidized to sulfuric acid as shown below.

三チオン酸の場合 S3O52−+3O2→3SO42− 四チオン酸の場合 S4O62−+5O2→4SO42− 五チオン酸の場合 S5O62−+7O2→5SO42− 六チオン酸の場合 S6O62−+9O2→&6SO42− なお、本発明の第1、第2発明は、例えば原水中にジチ
オン酸およびポリチオン酸以外にアンモニアやアミンが
含まれている場合においても、ジチオン酸酸化菌も硝化
菌も共に好気性自栄養菌であることから、硝化菌を前記
第1,2図に示した装置の充填部に加えることにより、
ジチオン酸の酸化のみならず、アンモニアやアミンの酸
化も同時に同一槽内で行うことができる。
In the case of trithionic acid, S3O52-+3O2→3SO42- In the case of tetrathionic acid, S4O62-+5O2→4SO42- In the case of pentathionic acid, S5O62-+7O2→5SO42- In the case of hexathionic acid, S6O62-+9O2→&6SO42- 1. The second invention is that even if the raw water contains ammonia or amines in addition to dithionic acid and polythionic acid, nitrification is not possible because both dithionate oxidizing bacteria and nitrifying bacteria are aerobic autotrophic bacteria. By adding bacteria to the filling part of the device shown in FIGS. 1 and 2,
Not only dithionic acid oxidation but also ammonia and amine oxidation can be performed simultaneously in the same tank.

この時の生物酸化は例えば次のように推測できる。Biological oxidation at this time can be estimated as follows, for example.

NH4+硝化菌とO2NO3 生成したNO3−は、後処理として、生物学的脱窒法を
用いることにより、N2ガスまで還元され、除去される
NH4+ nitrifying bacteria and O2NO3 The generated NO3- is reduced to N2 gas and removed by using a biological denitrification method as a post-treatment.

以上説明した本発明の第1、第2発明による効果をまと
めると次の通りである。
The effects of the first and second aspects of the present invention explained above are summarized as follows.

1)従来、物理化学的処理が非常に困難とされていたジ
チオン酸およびポリチオン酸の処理を、生物学的処理に
より可能となり、処理性も安定している。
1) The treatment of dithionic acid and polythionic acid, which was conventionally considered to be extremely difficult to perform physicochemical treatment, is now possible through biological treatment, and the processability is also stable.

2)ジチオン酸およびポリチオン酸が完全に硫酸まで酸
化されてしまうため、イオン交換樹脂法のような後処理
が不要。
2) Since dithionic acid and polythionic acid are completely oxidized to sulfuric acid, post-treatment like the ion exchange resin method is not necessary.

3)本発明者らによる特願昭52−79937号におい
て用いた活性汚泥の主栄養源であるチオシアン、チオ硫
酸の代りに、やはり本発明者らによる特願昭53−11
6114において用いた該チオシアン、チオ硫酸と同等
の処理ができ、かつきわめて安価に入手できる硫黄粒子
と、同等またはそれ以下のコストで入手できる粒子状に
した硫化鉄を用いるため、処理コストが更に低減できる
(推定1/5〜1/10)。
3) Instead of thiocyanide and thiosulfuric acid, which are the main nutritional sources of activated sludge, which were used in Japanese Patent Application No. 1982-79937, also filed by the present inventors,
Processing costs are further reduced by using sulfur particles that can be treated in the same way as the thiocyanide and thiosulfuric acid used in 6114 and can be obtained at an extremely low cost, and iron sulfide in the form of particles that can be obtained at the same or lower cost. It is possible (estimated 1/5 to 1/10).

4)粒子状の硫化鉄を、活性汚泥の主栄養源としての役
割のみでなく、生物膜付着方式の充填物としての役割も
兼備させることができるので、装置のコンパクト化、塔
型式化、汚泥の安定保持化ができる。
4) Particulate iron sulfide can be used not only as the main nutrient source for activated sludge, but also as a filler for biofilm attachment, making the equipment more compact, tower-type, and sludge can be stably maintained.

5)付着生物膜方式、浮遊式活性汚泥法等各種型態の装
置を用いることができる。
5) Various types of equipment can be used, such as the attached biofilm method and the floating activated sludge method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実験1で使用した装置の概略フローを
、第2図は本発明の実験2で使用した装置の概略フロー
を示す図である。
FIG. 1 is a diagram showing a schematic flow of the apparatus used in Experiment 1 of the present invention, and FIG. 2 is a diagram showing a schematic flow of the apparatus used in Experiment 2 of the present invention.

Claims (1)

【特許請求の範囲】 1 粒子状にした硫化鉄を主栄養源として微生物を好気
的条件下で生育させた後、該微生物と粒子状の硫化鉄と
を保持する容器内に、ジチオン酸、ポリチオン酸の少な
くとも一種を含む廃水を流入させ、好気的条件下で前記
ジチオン酸および/またはポリチオン酸を硫酸にまで生
物酸化処理することを特徴とするジチオン酸およびポリ
チオン酸含有廃水の生物学的処理方法。 2 粒子状にした硫化鉄を主栄養源とし、チオ硫酸塩、
チオシアン酸塩、粒子状硫黄の少なくとも一種を補助栄
養源として微生物を好気的条件下で生育させた後、該微
生物と粒子状の硫化鉄を保持する容器内に、ジチオン酸
、ポリチオン酸の少なくとも一種を含む廃水を流入させ
、かつチオ硫酸塩、チオシアン酸塩、粒子状硫黄の少な
くとも一種を補助栄養源として加えながら、好気的条件
下で上記ジチオン酸および/またはポリチオン酸を硫酸
にまで生物酸化処理し、該ジチオン酸および/またはポ
リチオン酸の処理が確認された後、前記補助栄養源の供
給量を段階的に減少させることを特徴とするジチオン酸
およびポリチオン酸含有廃水の生物学的処理方法。
[Claims] 1. After microorganisms are grown under aerobic conditions using particulate iron sulfide as a main nutrient source, dithionic acid, dithionic acid, Biological treatment of dithionic acid- and polythionic acid-containing wastewater, characterized in that wastewater containing at least one type of polythionic acid is introduced, and the dithionic acid and/or polythionic acid is biooxidized to sulfuric acid under aerobic conditions. Processing method. 2 Particulate iron sulfide is the main nutritional source, thiosulfate,
After microorganisms are grown under aerobic conditions using at least one of thiocyanate and particulate sulfur as supplementary nutritional sources, at least one of dithionic acid and polythionic acid is grown in a container holding the microorganism and particulate iron sulfide. The dithionic acids and/or polythionic acids are biologically purified to sulfuric acid under aerobic conditions, with at least one of thiosulfate, thiocyanate and particulate sulfur added as a supplementary nutrient source. Biological treatment of wastewater containing dithionic acid and polythionic acid, characterized in that after oxidation treatment and treatment of the dithionic acid and/or polythionic acid is confirmed, the supply amount of the supplementary nutrient source is reduced in stages. Method.
JP54036235A 1979-03-29 1979-03-29 Biological treatment method for wastewater containing dithionic acid and polythionic acid Expired JPS588315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54036235A JPS588315B2 (en) 1979-03-29 1979-03-29 Biological treatment method for wastewater containing dithionic acid and polythionic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54036235A JPS588315B2 (en) 1979-03-29 1979-03-29 Biological treatment method for wastewater containing dithionic acid and polythionic acid

Publications (2)

Publication Number Publication Date
JPS55129191A JPS55129191A (en) 1980-10-06
JPS588315B2 true JPS588315B2 (en) 1983-02-15

Family

ID=12464103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54036235A Expired JPS588315B2 (en) 1979-03-29 1979-03-29 Biological treatment method for wastewater containing dithionic acid and polythionic acid

Country Status (1)

Country Link
JP (1) JPS588315B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540728Y2 (en) * 1987-03-30 1993-10-15

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9301000A (en) * 1993-06-10 1995-01-02 Pacques Bv Method for the purification of waste water containing sulphide.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540728Y2 (en) * 1987-03-30 1993-10-15

Also Published As

Publication number Publication date
JPS55129191A (en) 1980-10-06

Similar Documents

Publication Publication Date Title
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
JP4104845B2 (en) Method and apparatus for treatment of water containing phosphorus / ammonia
JP4106203B2 (en) How to remove nitrogen from water
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP2005211832A (en) Method for removing ammonia nitrogen from waste water
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
KR100248874B1 (en) Sewage purifying method and the same equipment
JP3202510B2 (en) Equipment for treating wastewater containing nitrogen and fluorine
JP4104311B2 (en) How to remove nitrogen from wastewater
JPS588315B2 (en) Biological treatment method for wastewater containing dithionic acid and polythionic acid
JP2002018479A (en) Method for removing nitrogen from water
JP3358388B2 (en) Treatment method for selenium-containing water
JP3837757B2 (en) Method for treating selenium-containing water
KR102225883B1 (en) Partial Nitritation Methods of Sewage Using Autotrophic microorganism immobilized in Bead
JPS6344036B2 (en)
US11802067B2 (en) Nitrogen sparging assisted anoxic biological water treatment system
JPS62225294A (en) Biological denitrification device
JP2001212591A (en) Method for removing nitrogen from wastewater
KR830002326B1 (en) Wastewater Treatment Method
JPS586558B2 (en) Sewage treatment method
JPH0871591A (en) Biological treatment of waste water containing ammonia nitrogen
JP2509099B2 (en) Method for acclimatizing and growing microorganisms that oxidatively decompose reducing sulfur compounds, and method for biological treatment of wastewater containing reducing sulfur compounds
JPH0131958B2 (en)
JPH05154491A (en) Treatment of waste water containing high-concentration nitrogen
JPH07222993A (en) Method and apparatus for treating steel pickling drainage containing nitrate nitrogen