JPH05154491A - Treatment of waste water containing high-concentration nitrogen - Google Patents

Treatment of waste water containing high-concentration nitrogen

Info

Publication number
JPH05154491A
JPH05154491A JP3347702A JP34770291A JPH05154491A JP H05154491 A JPH05154491 A JP H05154491A JP 3347702 A JP3347702 A JP 3347702A JP 34770291 A JP34770291 A JP 34770291A JP H05154491 A JPH05154491 A JP H05154491A
Authority
JP
Japan
Prior art keywords
nitrogen
bed reactor
wastewater
treatment
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3347702A
Other languages
Japanese (ja)
Inventor
Osamu Miki
理 三木
Masahiro Fujii
正博 藤井
Yasushi Kamori
裕史 嘉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3347702A priority Critical patent/JPH05154491A/en
Publication of JPH05154491A publication Critical patent/JPH05154491A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To biologically remove water pollutants (BOD) shown as biological oxygen demand, water pollutants (COD) shown as chemical oxygen demand and ammonia compound being reductive nitrogen compound from waste water containing high-concentration nitrogen. CONSTITUTION:Two-stage treatment is performed for waste water containing high-concentration nitrogen by both a fluidized bed type reactor 3 and a fixed bed type reactor 11 in which a microorganism immobilization carrier is used. Thereby organic substance and reductive nitrogen compound contained in waste water are simultaneously removed. Treatment efficiency and nitrogen removal performance are made excellent by the subject method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市下水、有機性産業
廃水、汚泥処理水等の廃水に含まれる生物学的酸素要求
量で表示される汚濁物質(BOD)、化学的酸素要求量
で表示される汚濁物質(COD)、および、還元性窒素
化合物であるアンモニア化合物等を生物学的に除去する
方法に関するものである。
TECHNICAL FIELD The present invention relates to pollutants (BOD) and chemical oxygen demands expressed as biological oxygen demands contained in wastewaters such as municipal sewage, organic industrial wastewater, and sludge treated water. The present invention relates to a method for biologically removing displayed pollutants (COD) and ammonia compounds which are reducing nitrogen compounds.

【0002】[0002]

【従来の技術】従来、都市下水などに含まれるBODと
アンモニア化合物を同時に生物学的に除去する方法とし
て、バーデンフォー(Bardenpho)法(J.
L.Barnard,Water Wastes En
gg.,33,1974)、あるいは特開昭54−24
774号公報記載のA/O法、A2 /O法がある。さら
に、特開昭61−17558号公報記載のA2 /O法の
変法として、硝化槽の微生物を固定化するため回転円板
を組み込んだ方法などが知られている。これらの方法に
おいては、BODは主に好気性微生物の酸化分解によ
り、アンモニア化合物は硝化細菌によって硝酸性窒素ま
で酸化することにより除去されている。
2. Description of the Related Art Conventionally, as a method for biologically removing BOD and ammonia compounds contained in municipal sewage at the same time, the Bardenpho method (J.
L. Barnard, Water Wastes En
gg. 33, 1974), or JP-A-54-24.
There are an A / O method and an A 2 / O method described in Japanese Patent No. 774. Furthermore, as a variant of A 2 / O method Sho 61-17558 JP, methods and the like are known incorporating a rotating disc for immobilizing microbial nitrification tank. In these methods, BOD is removed mainly by oxidative degradation of aerobic microorganisms, and ammonia compounds are oxidized by nitrifying bacteria to oxidize nitrate nitrogen.

【0003】さらに、特開昭54−24774号公報に
は、活性汚泥が存在するリアクターを嫌気1槽、好気1
槽、嫌気2槽、および好気2槽と4分割し、各種の好気
度、嫌気度を酸化還元電位(ORP)を指標にして制御
し、また、活性汚泥の固定化担体として高炉水砕スラ
グ、カーボンの微粉などを用いて、廃水のBOD、アン
モニア化合物、リン化合物の除去を行う生物学的方法が
記載されている。ORPは、それまでの指標とされてい
た溶存酸素濃度(DO)や窒素化合物濃度に比較する
と、好気度、嫌気度の尺度として優れており、窒素化合
物を効率的に除去することができる。
Further, Japanese Patent Laid-Open No. 54-24774 discloses a reactor in which activated sludge is present in one anaerobic tank and one aerobic tank.
Tank, anaerobic 2 tanks, and aerobic 2 tanks are divided into 4 parts, and various aerobic and anaerobic levels are controlled using the redox potential (ORP) as an index, and blast furnace water granulation as a carrier for immobilizing activated sludge. A biological method for removing BOD, ammonia compounds and phosphorus compounds of wastewater by using slag, fine powder of carbon, etc. is described. Compared to the dissolved oxygen concentration (DO) and nitrogen compound concentration, which have been used as indicators until then, ORP is superior as a measure of aerobic and anaerobic levels, and nitrogen compounds can be efficiently removed.

【0004】この他に、下水や有機性廃水の処理には、
生物学的処理プロセスの他に、生物学的難分解性有機物
や窒素化合物の濃度が高く、生物学的処理では除去困難
と考えられる場合に、生物学的処理を行った後、化学的
酸化処理を施すプロセスが適用されている。化学酸化処
理に用いられる主要な酸化剤としては、オゾン、塩素、
過酸化水素などがある。特に、過酸化水素と硫酸第一鉄
等の鉄塩を併用する方法はフェントン法と呼ばれ、生成
する水酸基ラジカルが強い酸化力を有しているため、生
物学的難分解性有機物や窒素化合物の濃度が高い産業廃
水の処理方法として広く知られている(例えば「愛公セ
所報」、No.17、1989)。
In addition to this, in the treatment of sewage and organic wastewater,
In addition to the biological treatment process, if the concentration of biologically persistent organic substances and nitrogen compounds is high and it is considered to be difficult to remove by biological treatment, after biological treatment, chemical oxidation treatment is performed. The process of applying is applied. The main oxidizers used in chemical oxidation treatment are ozone, chlorine,
There is hydrogen peroxide. In particular, the method of using hydrogen peroxide and an iron salt such as ferrous sulfate together is called the Fenton method, and since the generated hydroxyl radical has a strong oxidizing power, it is difficult to biologically decompose organic compounds or nitrogen compounds. It is widely known as a method for treating industrial wastewater having a high concentration of water (for example, "Aikon Sesho", No. 17, 1989).

【0005】[0005]

【発明が解決しようとする課題】A2 /O法等に代表さ
れる従来の都市下水などの生物学的な窒素除去プロセス
は、アンモニア化合物の濃度が20〜50mg/l程度
であるため、比較的容易にアンモニア化合物を硝酸性窒
素(NO3 −N)まで生物学的に酸化することが可能で
ある。しかし、BOD、COD濃度が高く、しかも、ア
ンモニア化合物が50〜100mg/l以上含まれてい
る産業廃水や産業廃水が大量に流入している都市下水お
よび汚泥処理水などには、そのまま適用することがかな
り困難である。すなわち、廃水中に有機物とアンモニア
化合物が高濃度に含有されている場合には、リアクター
で亜硝酸(NO2 −N)型酸化が進行、蓄積する傾向が
強く、NO2 −N1mgがCODとして1.14mgと
して計測されるため、処理水中のCODが上昇する懸念
がある。さらに、この亜硝酸型酸化を防止するために
は、有機物負荷やリアクターの好気度のコントロールが
非常に重要な課題であり、従来からある方法で亜硝酸型
酸化を防止するのはかなり難しい。以上のことは、例え
ば「Wat.Res.」1990年、Vol.24、N
o.3、pp.303〜312に指摘されている。すな
わち、アンモニア化合物を80mg/l含有した人工廃
水を、DOを0.5mg/lに維持した流動床型リアク
ターで、処理時間4日の条件で処理した場合、NO2
Nが60mg/l蓄積したと報告し、亜硝酸型酸化はD
Oが低くても進行してしまうと結論づけている。さら
に、流入水のCODを変動させた実験を行い、有機物負
荷が亜硝酸型酸化に影響すると報告している。このよう
に、従来の生物学的窒素除去プロセスは、アンモニア化
合物が50〜100mg/l以上含まれている高濃度含
窒素廃水を処理する場合には処理時間が非常に長くな
り、設備費が膨大となる。また、硝化反応に及ぼす有機
物負荷の影響や好気度の制御方法についても明らかにさ
れていない。
Problems to be Solved by the Invention Conventional biological biological nitrogen removal processes such as municipal sewage represented by the A 2 / O method and the like are compared because the concentration of ammonia compounds is about 20 to 50 mg / l. It is possible to biologically oxidize ammonia compounds to nitrate nitrogen (NO 3 —N). However, it should be applied as it is to industrial wastewater containing BOD and COD at high concentrations and containing 50-100 mg / l or more of ammonia compounds, and municipal wastewater and sludge treated water into which a large amount of industrial wastewater is flowing. Is quite difficult. That is, when the wastewater contains a high concentration of organic substances and ammonia compounds, there is a strong tendency for nitrite (NO 2 —N) type oxidation to proceed and accumulate in the reactor, and 1 mg of NO 2 —N as COD Since it is measured as 0.14 mg, there is a concern that COD in the treated water will increase. Further, in order to prevent this nitrite type oxidation, controlling the organic matter load and the aerobic degree of the reactor are very important subjects, and it is quite difficult to prevent the nitrite type oxidation by the conventional method. The above is described in, for example, “Wat. Res.” 1990, Vol. 24, N
o. 3, pp. No. 303-312. That is, when an artificial wastewater containing 80 mg / l of an ammonia compound was treated in a fluidized bed reactor in which DO was maintained at 0.5 mg / l under the treatment time of 4 days, NO 2
N was reported to have accumulated 60 mg / l, and nitrite-type oxidation was D
We conclude that even if O is low, it will progress. Furthermore, an experiment was conducted in which the COD of the inflow water was changed, and it was reported that the organic matter load affects the nitrite type oxidation. As described above, in the conventional biological nitrogen removal process, the treatment time becomes very long when treating high-concentration nitrogen-containing wastewater containing 50 to 100 mg / l or more of ammonia compounds, and the equipment cost is enormous. Becomes Further, the influence of the organic matter load on the nitrification reaction and the method of controlling the aerobic level have not been clarified.

【0006】また、都市下水中の還元性窒素化合物を効
率的にNO3 −Nまで酸化するためには、活性汚泥が存
在するリアクターをORPを指標にして制御し、さら
に、活性汚泥の固定化担体として高炉水砕スラグ、カー
ボンの微粉などを用いた流動床型リアクターによるプロ
セスが効率的であると考えられる。これは、DOと比較
してORPは硝化反応のコントロールが容易であり、ま
た、固定化担体を用いるため、硝化細菌をリアクター内
に高濃度に維持できるためである。この流動床型リアク
ターの単独処理プロセスによって、都市下水中の還元性
窒素化合物を効率的に安定して除去することができる。
しかし、この流動床型リアクターの単独処理プロセス
も、有機物とアンモニア化合物を高濃度に含む廃水処理
に適用した場合、廃水の有機物によってアンモニア化合
物のNO3−Nまでの生物学的酸化が阻害される場合が
ある。
Further, in order to efficiently oxidize reducing nitrogen compounds in municipal wastewater to NO 3 -N, the reactor in which activated sludge is present is controlled using ORP as an index, and the activated sludge is immobilized. It is considered that the process using a fluidized bed reactor that uses granulated blast furnace slag, carbon fine powder, etc. as a carrier is efficient. This is because the nitrification reaction of ORP is easier to control than DO and the nitrifying bacteria can be maintained at a high concentration in the reactor because an immobilized carrier is used. By the single treatment process of this fluidized bed reactor, reducing nitrogen compounds in municipal wastewater can be efficiently and stably removed.
However, when the single treatment process of the fluidized bed reactor is also applied to the treatment of wastewater containing a high concentration of organic matter and ammonia compound, the organic matter of the wastewater inhibits the biological oxidation of the ammonia compound to NO 3 -N. There are cases.

【0007】さらに、このような生物処理法とフェント
ン酸化法等の化学的酸化処理法を組み合せる方法である
が、例えば、「愛公セ所報」、No.17、1989に
示されているように、フェントン酸化法は、原水中のC
OD除去やNO2 −N酸化に効果が認められている。し
かし、還元性窒素化合物濃度が高い廃水処理の場合に
は、亜硝酸型酸化に消費される試薬の消費量が増大し、
単独の生物学的処理プロセスと比較して、生物処理と化
学的酸化処理法を組み合せたプロセスはランニングコス
トが増大し、極めて不経済な方法となる。
Further, there is a method of combining such a biological treatment method with a chemical oxidation treatment method such as Fenton oxidation method. 17, 1989, the Fenton oxidation method uses C in raw water.
It is recognized that it has an effect on OD removal and NO 2 —N oxidation. However, in the case of wastewater treatment with a high concentration of reducing nitrogen compounds, the amount of reagents consumed for nitrite type oxidation increases,
Compared to a single biological treatment process, the combined biological treatment and chemical oxidation treatment process increases the running cost and is extremely uneconomical.

【0008】この発明は、上述のような高濃度窒素含有
廃水を処理する場合の従来の処理方法を改良して問題点
を取り除き、安定的かつ効率的な高濃度窒素含有廃水の
処理方法を確立することを目的とする。
The present invention eliminates problems by improving the conventional treatment method for treating wastewater containing high concentration nitrogen as described above, and establishes a stable and efficient treatment method for wastewater containing high concentration nitrogen. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】本発明は、高濃度窒素含
有廃水の処理方法において、微生物固定化担体を用いた
流動床型リアクターと固定床型リアクターの2段処理を
行うことにより、廃水中の有機物と還元性窒素化合物を
同時に除去することを特徴とする高濃度窒素含有廃水の
処理方法である。
The present invention provides a method for treating wastewater containing high-concentration nitrogen by performing two-stage treatment of a fluidized bed type reactor and a fixed bed type reactor using a microorganism-immobilized carrier. The method for treating high-concentration nitrogen-containing wastewater is characterized by simultaneously removing the organic matter and reducing nitrogen compound.

【0010】流動床型リアクターには、高炉水砕スラ
グ、珪砂、活性炭、プラスティクス、クリストバライ
ト、カーボンの微粉などを微生物の固定化担体として用
い、リアクターの酸化還元電位は、廃水中の有機物の酸
化分解に適した0〜+100mV(金−銀/塩化銀電極
基準)の範囲に制御するように、空気および/または酸
素富化空気および/または酸素を供給して曝気を行う。
In the fluidized bed reactor, granulated blast furnace slag, silica sand, activated carbon, plastics, cristobalite, carbon fine powder, etc. are used as a carrier for immobilizing microorganisms, and the redox potential of the reactor is the oxidation of organic matter in wastewater. Aeration is performed by supplying air and / or oxygen-enriched air and / or oxygen so as to control the range of 0 to +100 mV (based on gold-silver / silver chloride electrode) suitable for decomposition.

【0011】また、固定床型リアクターには、高炉水砕
スラグを主原料としたサドル型セラミックス、シリカ−
アルミナ系セラミックスなどを微生物の固定化担体とし
て用い、リアクターの酸化還元電位を廃水中のアンモニ
ア化合物の酸化に適した+100mV以上(金−銀/塩
化銀電極基準)に制御するように、空気および/または
酸素富化空気および/または酸素を供給して曝気を行
う。
Further, the fixed bed reactor includes a saddle-type ceramic, which is mainly made of granulated blast furnace slag, and silica.
Using alumina-based ceramics or the like as a carrier for immobilizing microorganisms, air and / or air is controlled so that the redox potential of the reactor is controlled to +100 mV or more (gold-silver / silver chloride electrode reference) suitable for oxidizing ammonia compounds in wastewater. Alternatively, aeration is performed by supplying oxygen-enriched air and / or oxygen.

【0012】[0012]

【作用】流動床型リアクターは、廃水中に含まれる有機
物を効率的に除去することを目的としている。高炉水砕
スラグ、珪砂、活性炭、プラスティクス、クリストバラ
イト、カーボンの微粉などを微生物の固定化担体に用い
ることによって、微生物の沈降性が改善され、リアクタ
ー内に高濃度に維持することが可能となり、固定化担体
に用いない場合と比較して、処理時間を1/2〜1/3
に短縮することが可能となる。中でも高炉水砕スラグは
カルシウムを主成分としており、このカルシウムの凝集
促進効果によって微生物の固定化性能が他の固定化担体
と比較して優れており、固定化担体として最も望まし
い。さらに、流動床型リアクターのORPを0〜+10
0mV(金−銀/塩化銀電極基準)に維持することによ
って、廃水中のBODの酸化分解を十分に促進すること
ができる。廃水中のBOD濃度が高い場合などは、空気
曝気では流動床型リアクターのORPを0〜+100m
Vに維持するのが困難な場合があり、あまりに大量の空
気を用いると活性汚泥の破壊、細分化が起こり、汚泥沈
降槽で十分に沈降しないで処理水中に流出し、処理水の
悪化を招く場合がある。このような場合には酸素富化空
気および/または酸素を供給して曝気を行うのが望まし
い。
The fluidized bed reactor is intended to efficiently remove organic substances contained in wastewater. By using granulated blast furnace slag, silica sand, activated carbon, plastics, cristobalite, carbon fine powder, etc. as a carrier for immobilizing microorganisms, the sedimentation of microorganisms is improved and it becomes possible to maintain a high concentration in the reactor, Treatment time is 1/2 to 1/3 compared to the case where it is not used for immobilization carrier.
Can be shortened to. Among them, granulated blast furnace slag contains calcium as a main component, and the immobilization performance of microorganisms is superior to that of other immobilization carriers due to the effect of promoting aggregation of calcium, and it is most desirable as the immobilization carrier. Furthermore, the ORP of the fluidized bed reactor is 0 to +10.
By maintaining at 0 mV (gold-silver / silver chloride electrode standard), the oxidative decomposition of BOD in wastewater can be sufficiently promoted. When the BOD concentration in the wastewater is high, the ORP of the fluidized bed reactor is 0 to +100 m in air aeration.
It may be difficult to maintain V, and if too much air is used, the activated sludge will be destroyed or fragmented, and it will flow into the treated water without settling sufficiently in the sludge settling tank, causing deterioration of the treated water. There are cases. In such a case, it is desirable to supply oxygen-enriched air and / or oxygen to perform aeration.

【0013】固定床型リアクターは、廃水中に含まれる
窒素化合物、主にケルダール性窒素化合物、アンモニア
性化合物等の還元性窒素化合物を硝化反応により硝酸性
窒素化合物まで生物学的に効率的に酸化することを目的
としている。前段の流動床型リアクターによって廃水中
の有機物は十分に除去されているため、有機物の硝化反
応に及ぼす阻害効果が無く、硝化反応を効率的に進める
ことができる。高炉水砕スラグを主原料としたサドル型
セラミックス、シリカ−アルミナ系セラミックスおよび
プラスチックスなどを微生物の固定化担体にして増殖速
度の遅い硝化細菌を高濃度に固定化することにより、硝
化反応を効率的に進めることができる。特に、高炉水砕
スラグを主原料としたサドル型セラミックスは、カルシ
ウムを主成分とするため硝化細菌が固定化されやすく、
また、サドル型形状のため固定床型リアクター内の気液
混合性能が優れており、固定床型リアクター用固定化担
体として最も望ましい。さらに、固定床型リアクターの
ORPを+100mV(金−銀/塩化銀電極基準)以上
に維持することによって、ケルダール性窒素化合物、ア
ンモニア性化合物等の還元性窒素化合物を硝化反応によ
り硝酸性窒素化合物まで効率的に酸化することができ
る。廃水中の還元性窒素化合物濃度が高い場合などは、
空気曝気ではリアクターのORPを+100mV以上に
維持するのが困難な場合があり、このような場合には酸
素富化空気および/または酸素を供給して曝気を行うと
よい。さらに、固定床型リアクターから処理水中に流出
する微生物は浮遊物質(SS)として計算されるため、
固定床型リアクターの後段に高炉水砕スラグを主原料と
したサドル型セラミックスを充填した濾過装置を設ける
ことにより、50〜100m/日の濾過速度で効率的に
除去することが可能である。
The fixed bed reactor is a biologically efficient oxidation of nitrogen compounds contained in wastewater, mainly reducing nitrogen compounds such as Kjeldahl nitrogen compounds and ammoniacal compounds, to nitrate nitrogen compounds by nitrification reaction. The purpose is to do. Since the organic matter in the wastewater is sufficiently removed by the fluidized bed reactor in the previous stage, there is no inhibitory effect on the nitrification reaction of the organic matter, and the nitrification reaction can be efficiently advanced. Efficient nitrification reaction by immobilizing nitrifying bacteria with slow growth rate at high concentration by using saddle-type ceramics, silica-alumina ceramics, and plastics, which are mainly made of granulated blast furnace slag, as a carrier for immobilizing microorganisms. You can proceed. In particular, saddle-type ceramics that use granulated blast furnace slag as the main raw material have calcium as the main component, so nitrifying bacteria are easily immobilized,
Further, since it has a saddle shape, the gas-liquid mixing performance in the fixed bed reactor is excellent, and it is most desirable as the immobilization carrier for the fixed bed reactor. Furthermore, by maintaining the ORP of the fixed bed reactor at +100 mV (gold-silver / silver chloride electrode standard) or more, reducing nitrogen compounds such as Kjeldahl nitrogen compounds and ammoniacal compounds are converted into nitrate nitrogen compounds by nitrification reaction. It can be efficiently oxidized. When the concentration of reducing nitrogen compounds in wastewater is high,
In air aeration, it may be difficult to maintain the ORP of the reactor at +100 mV or more, and in such a case, oxygen enriched air and / or oxygen may be supplied to perform aeration. Furthermore, the microorganisms that flow out of the fixed-bed reactor into the treated water are calculated as suspended solids (SS),
By providing a filtration device filled with saddle-type ceramics containing granulated blast furnace slag as a main material in the subsequent stage of the fixed bed reactor, it is possible to remove efficiently at a filtration rate of 50 to 100 m / day.

【0014】[0014]

【実施例】有機性産業廃水が大量に流入する都市下水処
理場において、図1に示す要領で実下水を用いた現場実
験を行った。実下水の性状は、表1に示すように、BO
Dが平均600mg/L,CODが平均450mg/
L,アンモニア性窒素が平均150mg/Lであり、都
市下水と比較して有機物濃度、アンモニア性窒素濃度が
非常に高い下水である。
[Example] In an urban sewage treatment plant into which a large amount of organic industrial wastewater flows, a field experiment was conducted using actual sewage as shown in Fig. 1. As shown in Table 1, the characteristics of actual sewage are BO
D averages 600 mg / L, COD averages 450 mg / L
L and ammoniacal nitrogen are 150 mg / L on average, and the sewage has an organic matter concentration and ammoniacal nitrogen concentration that are extremely higher than those of municipal sewage.

【0015】[0015]

【表1】 [Table 1]

【0016】流動床型リアクター3は、平均粒径が60
ミクロン程度の高炉水砕スラグ微粉を微生物固定化担体
としてリアクター容量あたり3wt%添加し、10日程
度の活性汚泥の馴養ののち、リアクターの処理時間が8
〜12時間(BOD容積負荷1.2〜1.8kg/
3 )になるように実下水を通水し処理を行った。ま
た、流動床型リアクター3のORPは、空気により+5
0mVに維持した。
The fluidized bed reactor 3 has an average particle size of 60.
Micron-sized granulated blast furnace slag fine powder was added as a microorganism-immobilized carrier in an amount of 3 wt% per reactor volume, and after acclimatization of activated sludge for about 10 days, the treatment time of the reactor was 8
~ 12 hours (BOD volume load 1.2-1.8 kg /
The actual sewage was passed through and treated so as to have m 3 ). Further, the ORP of the fluidized bed reactor 3 is +5 by air.
It was maintained at 0 mV.

【0017】固定床型リアクター11は、高炉水砕スラ
グを主原料としたサドル型セラミックス(図2)が微生
物固定化担体として充填され、活性汚泥をリアクター内
に投入し、1日間循環運転し、活性汚泥をセラミックス
に固定化した後、リアクターの処理時間が6〜8時間に
なるように流動床型リアクター処理水を通水し処理を行
った。また、固定床型リアクター11のORPは、酸素
富化空気により+100mV以上に維持した。固定床型
リアクター11の出口には、高炉水砕スラグを主原料と
したサドル型セラミックスを充填した濾過装置13を設
置し、濾過速度が50〜100m/日となるように運転
を行った。
The fixed bed type reactor 11 is filled with saddle type ceramics (FIG. 2), which is mainly made of granulated blast furnace slag, as a microorganism immobilization carrier, charged with activated sludge and circulated for one day, After immobilizing the activated sludge on the ceramics, the treated water was passed through the fluidized bed reactor so that the reactor treatment time was 6 to 8 hours. Further, the ORP of the fixed bed reactor 11 was maintained at +100 mV or more by oxygen-enriched air. At the outlet of the fixed bed reactor 11, a filtration device 13 filled with saddle type ceramics containing granulated blast furnace slag as a main material was installed and operated so that the filtration speed was 50 to 100 m / day.

【0018】実験結果を表1に示す。表1の結果より、
最終処理水はBODが10mg/L以下、CODが60
mg/L以下、SSが15mg/L以下、アンモニア性
窒素が15mg/L以下、亜硝酸性窒素が10mg/L
以下と良好であった。
The experimental results are shown in Table 1. From the results in Table 1,
The final treated water has a BOD of 10 mg / L or less and a COD of 60.
mg / L or less, SS is 15 mg / L or less, ammoniacal nitrogen is 15 mg / L or less, nitrite nitrogen is 10 mg / L
It was good as follows.

【0019】さらに、下水と処理水の窒素収支から、セ
ラミックス充填濾過装置13において脱窒反応が生じて
いることが明らかになった。
Further, it was revealed from the nitrogen balance of the sewage and the treated water that the denitrification reaction occurred in the ceramics-filled filtration device 13.

【0020】この実験結果より、本発明法は、下水中の
有機物と還元性窒素化合物を効率的に除去できることが
明らかになった。
From these experimental results, it became clear that the method of the present invention can efficiently remove organic substances and reducing nitrogen compounds in sewage.

【0021】[0021]

【発明の効果】以上のことから、ケルダール性窒素化合
物、アンモニア性化合物等の還元性窒素化合物を高濃度
に含有する廃水の処理において、本発明は次の効果を奏
する。
From the above, the present invention has the following effects in the treatment of wastewater containing a high concentration of reducing nitrogen compounds such as Kjeldahl nitrogen compounds and ammoniacal compounds.

【0022】流動床型リアクターによる有機物除去プ
ロセスと固定床型リアクターによるケルダール性窒素化
合物、アンモニア性化合物等の還元性窒素化合物除去プ
ロセスの2段処理を行うので、それぞれのプロセスでの
有機物および窒素除去性能が優れている。すなわち、流
動床型リアクターや固定床型リアクターによる単独処理
プロセスと比較して、効率的にアンモニア性窒素等の還
元性窒素化合物を硝酸性窒素まで酸化することができ
る。
Since the organic substance removal process by the fluidized bed reactor and the reducing nitrogen compound removal process of the Kjeldahl nitrogen compounds, ammonia compounds and the like by the fixed bed reactor are carried out in two stages, the organic substances and nitrogen are removed in each process. Excellent performance. That is, reducing nitrogen compounds such as ammoniacal nitrogen can be efficiently oxidized to nitrate nitrogen as compared with a single treatment process using a fluidized bed reactor or a fixed bed reactor.

【0023】流動床型リアクターによる有機物除去
は、微生物固定化担体を用いると同時に酸化分解に適し
たORPによって処理するので、処理効率、除去性能が
優れる。
The removal of organic substances by the fluidized bed reactor is excellent in treatment efficiency and removal performance because it is treated with an ORP suitable for oxidative decomposition while using a microorganism-immobilized carrier.

【0024】固定床型リアクターによるアンモニア性
化合物等の還元性窒素除去は、微生物固定化担体を用い
ると同時に硝化反応に適したORPによって処理するの
で、処理効率、除去性能が優れる。
Since the reducing nitrogen such as ammoniacal compound is removed by the fixed bed reactor by using the ORP suitable for nitrification reaction while using the microorganism-immobilized carrier, the treatment efficiency and the removal performance are excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を示す図である。FIG. 1 illustrates the method of the present invention.

【図2】サドル型セラミックスを示す図である。FIG. 2 is a view showing a saddle type ceramics.

【符号の説明】[Explanation of symbols]

1 廃水タンク 2 廃水ポンプ 3 流動床型リアクター 4 ブロアー 5 ORPセンサー 6 ORP制御装置 7 汚泥沈降槽 8 返送汚泥ポンプ 9 処理水槽 10 移送ポンプ 11 固定床型リアクター 12 セラミックス充填槽 13 濾過装置 14 セラミックス充填槽 15 ORPセンサー 16 ORP制御装置 17 酸素富化空気製造装置 18 処理水 19 サドル型セラミックス 1 Waste Water Tank 2 Waste Water Pump 3 Fluid Bed Type Reactor 4 Blower 5 ORP Sensor 6 ORP Controller 7 Sludge Settling Tank 8 Return Sludge Pump 9 Treated Water Tank 10 Transfer Pump 11 Fixed Bed Reactor 12 Ceramics Packing Tank 13 Filtration Device 14 Ceramics Packing Tank 15 ORP sensor 16 ORP control device 17 Oxygen-enriched air manufacturing device 18 Treated water 19 Saddle type ceramics

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 A 6647−4D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C02F 9/00 A 6647-4D

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高濃度窒素含有廃水の処理方法におい
て、微生物固定化担体を用いた流動床型リアクターと固
定床型リアクターの2段処理を行うことにより、廃水中
の有機物と還元性窒素化合物を同時に除去することを特
徴とする高濃度窒素含有廃水の処理方法。
1. A method for treating high-concentration nitrogen-containing wastewater, wherein two-stage treatment of a fluidized bed reactor and a fixed bed reactor using a microorganism-immobilized carrier is performed to remove organic matter and reducing nitrogen compounds in the wastewater. A method for treating high-concentration nitrogen-containing wastewater, characterized by simultaneous removal.
【請求項2】 流動床型リアクターの微生物固定化担体
として高炉水砕スラグを用いる請求項1記載の高濃度窒
素含有廃水の処理方法。
2. The method for treating highly concentrated nitrogen-containing wastewater according to claim 1, wherein granulated blast furnace slag is used as the microorganism-immobilized carrier of the fluidized bed reactor.
【請求項3】 固定床型リアクターの微生物固定化担体
として高炉水砕スラグを主原料とするサドル型セラミッ
クスを用いる請求項1記載の高濃度窒素含有廃水の処理
方法。
3. The method for treating high-concentration nitrogen-containing wastewater according to claim 1, wherein saddle-type ceramics containing blast-furnace granulated slag as a main material is used as the microorganism-immobilized carrier of the fixed-bed reactor.
【請求項4】 流動床型リアクターおよび/または固定
床型リアクターへの空気および/または酸素富化空気お
よび/または酸素の吹き込み量をリアクターの酸化還元
電位を用いて制御する請求項1、2または3記載の高濃
度窒素含有廃水の処理方法。
4. The method according to claim 1, wherein the amount of air and / or oxygen-enriched air and / or oxygen blown into the fluidized bed reactor and / or the fixed bed reactor is controlled by using the redox potential of the reactor. 3. The method for treating wastewater containing high-concentration nitrogen according to 3.
JP3347702A 1991-12-04 1991-12-04 Treatment of waste water containing high-concentration nitrogen Pending JPH05154491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3347702A JPH05154491A (en) 1991-12-04 1991-12-04 Treatment of waste water containing high-concentration nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3347702A JPH05154491A (en) 1991-12-04 1991-12-04 Treatment of waste water containing high-concentration nitrogen

Publications (1)

Publication Number Publication Date
JPH05154491A true JPH05154491A (en) 1993-06-22

Family

ID=18392005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3347702A Pending JPH05154491A (en) 1991-12-04 1991-12-04 Treatment of waste water containing high-concentration nitrogen

Country Status (1)

Country Link
JP (1) JPH05154491A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045374A1 (en) * 1996-05-28 1997-12-04 Aw Creative Technologies Limited Wastewater treatment
CN104030457A (en) * 2014-05-21 2014-09-10 东莞市华中生物科技有限公司 Method and fluidized bed for purifying eutrophic water by using microorganism filler
CN104828934A (en) * 2015-05-19 2015-08-12 傅成义 Efficient denitrification bio-aerating filter filler and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045374A1 (en) * 1996-05-28 1997-12-04 Aw Creative Technologies Limited Wastewater treatment
CN104030457A (en) * 2014-05-21 2014-09-10 东莞市华中生物科技有限公司 Method and fluidized bed for purifying eutrophic water by using microorganism filler
CN104030457B (en) * 2014-05-21 2016-02-03 东莞市华中生物科技有限公司 The purifying eutrophic water method of using microbe filler and fluidized-bed
CN104828934A (en) * 2015-05-19 2015-08-12 傅成义 Efficient denitrification bio-aerating filter filler and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS637839B2 (en)
JP2000189994A (en) Method for biologically cleaning water containing ammonium perchlorate
JPS5881491A (en) Purification of filthy water with activated sludge
KR100825518B1 (en) Device and method for Biological Treatment of Wastewater using MBR and Zeolite Powder
JPH05337492A (en) Biological treatment of sewage
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JP2001079593A (en) Removing method of nitrogen in waste water
Martienssen et al. Capacities and limits of three different technologies for the biological treatment of leachate from solid waste landfill sites
JPH05154491A (en) Treatment of waste water containing high-concentration nitrogen
JP2003071490A (en) Method for removing nitrogen from wastewater
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JP2946163B2 (en) Wastewater treatment method
JPH09168796A (en) Removal of nitrogen in waste water
JP3449862B2 (en) Advanced purification method for organic wastewater
JP2002018479A (en) Method for removing nitrogen from water
JP3270652B2 (en) Wastewater nitrogen removal method
JPH0631297A (en) Method for treating waste water containing high concentration of nitrogen sophistically
JP3837757B2 (en) Method for treating selenium-containing water
JP2000024687A (en) Treatment of waste nitric acid
KR100470350B1 (en) Method for disposing of livestock waste water
JP3125628B2 (en) Wastewater treatment method
JP2673488B2 (en) Method and apparatus for treating organic wastewater
JP2003311286A (en) Method for cultivating dmf decomposing bacteria and method of effluent treatment
JP2582695B2 (en) Biological treatment method for wastewater containing hydrogen sulfide
KR20020091723A (en) Waste water disposal method by continuos inflow Sequencing Bath Reactor and its apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000822