JPS5880463A - Absorption type air-cooling system - Google Patents

Absorption type air-cooling system

Info

Publication number
JPS5880463A
JPS5880463A JP17944081A JP17944081A JPS5880463A JP S5880463 A JPS5880463 A JP S5880463A JP 17944081 A JP17944081 A JP 17944081A JP 17944081 A JP17944081 A JP 17944081A JP S5880463 A JPS5880463 A JP S5880463A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
tank
cooling system
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17944081A
Other languages
Japanese (ja)
Inventor
憲司 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP17944081A priority Critical patent/JPS5880463A/en
Publication of JPS5880463A publication Critical patent/JPS5880463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はゼオライト等の吸着剤が水、アンモニア等の冷
媒を吸収する効果を利用した吸収式冷房システムに関し
、冷房サイクルを効率よく運転せしめることを目的とす
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption cooling system that utilizes the effect of an adsorbent such as zeolite absorbing a refrigerant such as water or ammonia, and an object of the present invention is to operate the cooling cycle efficiently.

近年、最も簡単でかつ効率的な方法として吸収式冷房サ
イクルが見直されておシ、例えばアンモニアが低温で、
固体や液体によって吸収され、高温で放出されることを
利用したものや、臭化リチウムへの水蒸気の溶解を利用
した冷凍空調システムが多く使用されている。
In recent years, the absorption cooling cycle has been reconsidered as the simplest and most efficient method.
Many refrigeration and air conditioning systems are used that utilize the absorption of water vapor by solids or liquids and release at high temperatures, as well as those that utilize the dissolution of water vapor in lithium bromide.

しかしながらシリカゲルを含む一般的な吸着剤は、第1
図に示すように低温での吸着量は、水蒸気分圧と比例関
係にあるが、高温でのそれは水蒸気分圧の変化に対して
ほぼ一定である。従って低温、低分圧での吸着量と高温
、高分圧での吸着量の差が小さく、従来のシリカゲルに
よる吸着剤を使用した冷凍システムの冷却効率が低いの
はこの理由による。近年太陽熱を利用した吸収式冷房シ
ステムは益々伸びてきているものの、太陽からの熱によ
る低い輻射温度と、空冷コンデンサによる高い凝縮温度
のように悪い条件においては効率は極端に低下する問題
があった。
However, common adsorbents containing silica gel
As shown in the figure, the amount of adsorption at low temperatures is proportional to the partial pressure of water vapor, but at high temperatures it is almost constant with respect to changes in the partial pressure of water vapor. Therefore, the difference between the amount of adsorption at low temperature and low partial pressure and the amount of adsorption at high temperature and high partial pressure is small, and this is the reason why the cooling efficiency of conventional refrigeration systems using silica gel adsorbents is low. Although absorption cooling systems that utilize solar heat have been gaining popularity in recent years, they have had the problem of extremely low efficiency under adverse conditions such as low radiant temperature due to heat from the sun and high condensation temperature due to air-cooled condensers. .

そこでこれらの欠点を解消するためにゼオライト等第2
図に示すように、吸着等混線が水蒸気圧力変化に対して
ほぼ一定な水分吸着量を示す吸着剤を利用したものが注
目されるようになっている。
Therefore, in order to eliminate these drawbacks, zeolite etc.
As shown in the figure, adsorbents that use adsorbents whose adsorption crosstalk exhibits a nearly constant amount of water adsorption with respect to changes in water vapor pressure are attracting attention.

例えば特公昭53−129333号公報に示されるもの
はこれを第3図にて説明すると、吸収式冷房システム1
5は太陽熱利用によるものであり、31・−1 第2図に示しだゼオライト等の吸着剤が充填された貯蔵
体16と、太陽熱により、脱着して放出された水蒸気等
の冷媒を凝縮させる凝縮器17と、凝縮して得られた冷
媒を膨張させるだめの膨張弁18を有した蒸発器19と
、幽閉空間2oとよシ大きくは構成されているものであ
シ、それぞれ冷媒が逆流しないように適当な箇所に逆止
弁(21゜22.231を設けたラインによシ連結され
ている。
For example, what is shown in Japanese Patent Publication No. 53-129333 is as shown in FIG.
5 is based on solar heat utilization, and 31・-1 As shown in Figure 2, there is a storage body 16 filled with an adsorbent such as zeolite, and a condenser that condenses refrigerant such as water vapor desorbed and released by solar heat. 17, an evaporator 19 having an expansion valve 18 for expanding the condensed refrigerant, and a confinement space 2o, each of which is designed to prevent the refrigerant from flowing backwards. It is connected by a line equipped with a check valve (21°22.231) at an appropriate location.

冷却作用を得るだめの運転機構を説明すると、貯蔵体1
6が太陽熱を吸収すると内部に充填されたゼオライト等
の吸着剤に吸着していた水蒸気等の冷媒が脱着される。
To explain the operating mechanism for obtaining the cooling effect, the storage body 1
When 6 absorbs solar heat, the refrigerant such as water vapor adsorbed to the adsorbent such as zeolite filled inside is desorbed.

この時、貯蔵体16内の温度上昇にともなって圧力が増
し、ある値にまで圧力が上昇した時、逆止弁21が開放
するようになっており、脱着した冷媒が凝縮器17に導
入される。
At this time, the pressure increases as the temperature inside the storage body 16 rises, and when the pressure rises to a certain value, the check valve 21 opens, and the desorbed refrigerant is introduced into the condenser 17. Ru.

ここで空冷ファン24あるいは水冷等により冷媒が凝縮
され、液状となった冷媒が蒸発器19の入口付近に設置
された膨張弁18を介して膨張しガス状となって、蒸発
器19を冷却する。蒸発したガス状冷媒は逆止弁22を
経て幽閉空間2oに入1墳唱a−go4ef(2) る。夜間、貯蔵体16が冷却され分圧が低下すると、逆
止弁23が開放し、冷媒が貯蔵体16に入る。この一連
の冷却サイクルを利用して、空気調整または冷凍のだめ
に用いられるものである。
Here, the refrigerant is condensed by an air cooling fan 24 or water cooling, and the liquid refrigerant expands through an expansion valve 18 installed near the inlet of the evaporator 19 and becomes gaseous, thereby cooling the evaporator 19. . The evaporated gaseous refrigerant passes through the check valve 22 and enters the confined space 2o. At night, when the storage body 16 is cooled and the partial pressure decreases, the check valve 23 opens and the refrigerant enters the storage body 16. This series of cooling cycles is used for air conditioning or refrigeration.

しかしながら、このように構成された吸収式冷房システ
ムでは、貯蔵体16から脱着した冷媒を、凝縮器1了に
て凝縮した冷媒を直接蒸発器19で蒸発させるため、凝
縮量と蒸発量のバランス調整が非常に難しい。すなわち
雲りの日の場合等、貯蔵体16からの冷媒の脱着量が少
ない時、凝縮器17を通った冷媒の温度が低下し、この
凝縮器17から膨張弁18までの導管内の分圧と、膨張
弁18から後方にある蒸発器19内の分圧の差が小さく
なり、膨張弁18での冷媒の膨張効果が低下する欠点が
あった。まだこれをきらって、ガス炊き等の加熱により
、貯蔵体16を強制的に加熱して冷媒を脱着させる方法
では、吸着剤から脱着した冷媒の温度が高く、脱着量も
増加する。このため凝縮器17を大型にしたりして凝縮
能力をあげる必要があったり、又凝縮されて得られた、
比較的湿温度の高い冷媒を蒸発させるため、蒸発器19
の蒸発能力をあげる工夫を要し、機器の大型化によるコ
ストアップにもつながる欠点があった。
However, in the absorption cooling system configured in this way, the refrigerant desorbed from the storage body 16 is condensed in the condenser 1 and is directly evaporated in the evaporator 19, so the balance between the amount of condensation and the amount of evaporation must be adjusted. is very difficult. That is, when the amount of refrigerant desorbed from the storage body 16 is small, such as on a cloudy day, the temperature of the refrigerant passing through the condenser 17 decreases, and the partial pressure in the conduit from the condenser 17 to the expansion valve 18 decreases. This has the disadvantage that the difference in partial pressure within the evaporator 19 located behind the expansion valve 18 becomes small, and the effect of expanding the refrigerant in the expansion valve 18 is reduced. However, in a method in which the refrigerant is desorbed by forcibly heating the storage body 16 using heating such as gas heating, the temperature of the refrigerant desorbed from the adsorbent is high and the amount of desorption increases. For this reason, it may be necessary to increase the condensing capacity by increasing the size of the condenser 17, or it may be necessary to increase the condensing capacity by making the condenser 17 larger.
In order to evaporate the refrigerant with relatively high humidity and temperature, the evaporator 19
However, this method had the drawback that it required some effort to increase the evaporation capacity of the evaporation capacity, which led to an increase in costs due to the larger size of the equipment.

本発明は上記従来の欠点を解消し、冷房システムとして
の運転効率を高めるとともに、円滑な運転サイクルを得
るようにしたものである。以下本発明の一実施例を第4
図に基づいて説明する。
The present invention eliminates the above-mentioned conventional drawbacks, increases the operating efficiency of a cooling system, and provides a smooth operating cycle. An embodiment of the present invention will be described below as a fourth embodiment.
This will be explained based on the diagram.

1は冷房システム全体を示し、2はゼオライト等、水、
フロンガス等の冷媒の吸着等混線が圧力に対する依存性
が少なく、温度に高い依存性を示す吸着剤を内蔵した貯
蔵タンク、3は冷媒を凝縮させる凝縮器、4は凝縮され
液状となった冷媒を貯蔵する冷媒タンク、5は冷媒を蒸
発させる蒸発器であり、冷房システム1の主要素をなす
。冷媒タンク4は蒸発器6より上部に位置するよう設置
され、それぞれ各要素は鋼管等で接続配管されている。
1 indicates the entire cooling system, 2 indicates zeolite, water, etc.
A storage tank with a built-in adsorbent whose crosstalk such as adsorption of refrigerants such as fluorocarbon gas is less dependent on pressure and more dependent on temperature; 3 is a condenser that condenses the refrigerant; 4 is a condensed refrigerant that has become liquid. A storage refrigerant tank 5 is an evaporator that evaporates refrigerant, and is a main element of the cooling system 1. The refrigerant tank 4 is installed above the evaporator 6, and each element is connected with piping using steel pipes or the like.

又、凝縮器3の入口側には冷媒の凝縮量調整バイレプ6
を介在させてあり、また冷媒タンク4の出口側には冷媒
の蒸発量調整バルブ7が介在させである。8は貯蔵タン
ク2の入口側に設けだ冷媒の吸着調整バルブ8であり、
この配管内部ニア1あらかじめ真空引き等により減圧さ
れている。
In addition, on the inlet side of the condenser 3, there is a refrigerant condensation amount adjusting valve 6.
A refrigerant evaporation amount adjusting valve 7 is interposed on the outlet side of the refrigerant tank 4. 8 is a refrigerant adsorption adjustment valve 8 provided on the inlet side of the storage tank 2;
The pressure inside this pipe near 1 has been reduced by evacuation or the like.

次にこの冷房システム1の作動状況を説明する。Next, the operating status of this cooling system 1 will be explained.

始めに、凝縮量調整バルブ6を開き、蒸発量調整バルブ
7及び吸着量調整バルブ8を閉じておき、貯蔵タンク2
を加熱するために設けたガス炊き装置9を着火するか、
あるいは図に示さ々いが、太陽熱を利用して加熱する。
First, the condensation amount adjustment valve 6 is opened, the evaporation amount adjustment valve 7 and the adsorption amount adjustment valve 8 are closed, and the storage tank 2 is opened.
ignite the gas cooking device 9 provided to heat the
Alternatively, as shown in the figure, heating can be done using solar heat.

これによって貯蔵タンク2の内部にあるすでに冷媒を吸
着した吸着剤が加熱され再び冷媒が脱着される。次にこ
の冷媒が凝縮器3を通過することにより凝縮されだ液冷
媒となって冷媒タンク4に貯蔵される。所定量液冷媒が
たまると、凝縮量調整バルブ6を閉じ、ガス炊き装置9
を消し、図には示さ々いが、貯蔵タンク2に設けである
、慣用的な空冷あるいは水冷等の冷却装置を作動して貯
蔵タンク2に内蔵された吸着剤を冷却する。次に吸着量
調整バルブ8を開にして、蒸発器5の能力に応じただけ
蒸発量調整バルブ7を調節して、冷媒を蒸発器5に搬送
させる。蒸発器5は通常、空調機器の室内ユニ7)に7
、、−7 七ッi・されてあり、送風ファン10等により、冷気と
して室内に放出される。
As a result, the adsorbent inside the storage tank 2 that has already adsorbed the refrigerant is heated and the refrigerant is desorbed again. Next, this refrigerant passes through the condenser 3 and becomes condensed liquid refrigerant, which is stored in the refrigerant tank 4. When a predetermined amount of liquid refrigerant has accumulated, the condensation amount adjustment valve 6 is closed and the gas cooking device 9 is turned off.
Although not shown in the figure, a conventional cooling device such as air cooling or water cooling provided in the storage tank 2 is operated to cool the adsorbent contained in the storage tank 2. Next, the adsorption amount adjustment valve 8 is opened, and the evaporation amount adjustment valve 7 is adjusted according to the capacity of the evaporator 5 to transport the refrigerant to the evaporator 5. The evaporator 5 is usually installed in the indoor unit 7) of the air conditioner.
,,-7, and is discharged into the room as cold air by a blower fan 10 or the like.

以」−が本発明の冷房システムの基本的な運転操作であ
る。例えば、冷媒としてかりに水を採用し、ゼオライト
 1ooしを貯蔵タンク2に内蔵した場合を考えること
にすると、第2図に示すように、26℃、rsvanH
yで269の水を吸着しだゼオライトが、20011:
′1で過熱され200 trm Hfになったと仮定す
ると10oKPのゼオライトからの水分脱着量MDは次
式で算出される。
The following is the basic operation of the cooling system of the present invention. For example, if we consider the case where water is used as the refrigerant and 100 zeolite is built into the storage tank 2, as shown in Fig. 2, the temperature is 26℃, rsvanH
Zeolite adsorbs 269 water at y, 20011:
Assuming that the zeolite was heated to 200 trm Hf at 10°C, the amount MD of moisture desorbed from the 10oKP zeolite is calculated by the following formula.

すなわち、約201jの水が脱着され、凝縮器3により
、凝縮され、冷媒タンク4に貯蔵される。
That is, approximately 201j of water is desorbed, condensed by the condenser 3, and stored in the refrigerant tank 4.

今、20醪水が各部での熱損失がなく、理想的に1oo
%蒸発器で蒸発させた場合を考えると、水′。
Now, 20 ml of moromi is ideally 1 oo without heat loss in each part.
If we consider the case of evaporation in a % evaporator, water′

の蒸発潜熱を580 Kcan為として20X580=
 11,600Kca12 の冷房能力があることにな
る。
Since the latent heat of vaporization of is 580 Kcan, 20X580=
This means that it has a cooling capacity of 11,600Kca12.

一般に1馬力のエアコンで1800KcaI!、/hr
の冷房能力が必要とされているが、実際にはゼオライト
の吸着効率、各部での熱損失を」算の上、目的に応じた
ゼオライトの充填量を決定し又構造、材料面でできるだ
け熱損失を少なくするように配慮されなければ々らない
ことは云うまでもない。
Generally, 1 horsepower air conditioner is 1800KcaI! ,/hr
However, in reality, the amount of zeolite to be filled is determined according to the purpose by calculating the adsorption efficiency of zeolite and heat loss in each part, and the amount of zeolite to be filled is determined based on the structure and materials to minimize heat loss. Needless to say, consideration must be given to reduce the amount of damage.

したがって、上記実施例の吸収式冷房システムにおいて
は、次に示す効果があるものである。
Therefore, the absorption cooling system of the above embodiment has the following effects.

イ 冷媒タンク4を凝縮器3と蒸発器5の間に介してお
り、凝縮器3で凝縮された冷媒をいったん、冷媒タンク
4内に貯蔵せしめ、必要量に応じた冷媒を蒸発量調節パ
ルプ了を介してとり出すことができる。このため、冷媒
の凝縮量と蒸発量を複雑にバランス調整する必要もなく
、凝縮器、冷媒タンク、蒸発器の大きさ、能力等比較的
容易にかつ独立して選択することができる。
A refrigerant tank 4 is interposed between the condenser 3 and the evaporator 5, and the refrigerant condensed in the condenser 3 is temporarily stored in the refrigerant tank 4, and the refrigerant according to the required amount is supplied to the evaporation amount adjusting pulp. It can be retrieved via. Therefore, there is no need to make complicated balance adjustments between the amount of condensation and the amount of evaporation of the refrigerant, and the sizes, capacities, etc. of the condenser, refrigerant tank, and evaporator can be selected relatively easily and independently.

口 冷媒タンク4を設けることにより、ある一定期間(
例えば−日の)に必要な冷媒を貯蔵することが可能であ
り、吸脱着運転機構を同時にセットしたり、かつ運転さ
せる必要がない。
By providing the refrigerant tank 4, it is possible to
For example, it is possible to store the refrigerant necessary for -day), and there is no need to set and operate the adsorption/desorption operation mechanism at the same time.

ハ 冷媒タンク4に貯蔵された冷媒の温度が放熱等によ
り低下し、冷媒タンク4から蒸発器5捷での配管内の分
圧+PT 、lと蒸発器6から、貯蔵タンク2までの配
管内の分圧IP、2]とがほぼ等しい値1”T−e=P
e−z’となっても、冷媒タンク4が蒸発器5より上部
に位置しているため、分圧差を利用することなく、冷媒
の重量を利用して冷媒を蒸発器6に送ることができ、冷
媒の蒸発が容易となる。
C. The temperature of the refrigerant stored in the refrigerant tank 4 decreases due to heat radiation, etc., and the partial pressure in the piping from the refrigerant tank 4 to the evaporator 5 junction + PT, l and the internal pressure in the piping from the evaporator 6 to the storage tank 2. Partial pressure IP, 2] is approximately equal to 1"T-e=P
Even if it becomes e-z', since the refrigerant tank 4 is located above the evaporator 5, the refrigerant can be sent to the evaporator 6 using the weight of the refrigerant without using the partial pressure difference. , the refrigerant evaporates easily.

すなわち、冷媒タンク4の最下端の位置が床面からhl
、蒸発器最上端の位置が床面からh2の高さにあるとす
るとhl〉h2であり、ある微少量の冷媒mqが上述し
た各点にあるときの位置エネルギーはそれぞれmghl
、mgh2となる。
That is, the position of the lowest end of the refrigerant tank 4 is hl from the floor surface.
, assuming that the top end of the evaporator is at a height of h2 from the floor surface, hl>h2, and the potential energy when a certain minute amount of refrigerant mq is at each point mentioned above is mghl.
, mgh2.

今、蒸発量調整パルプ7を開放したとき両者の位置エネ
ルギーの差mg(hl−h2)が微少量mqの冷媒の運
動エネルギーとして変換され、あたかも上記、PT−e
(!: ”e−zの圧力差があるかのように働き、蒸発
器5で、冷媒が円滑に蒸発する。
Now, when the evaporation amount adjusting pulp 7 is opened, the difference mg (hl - h2) in the potential energy between the two is converted into the kinetic energy of a very small amount mq of refrigerant, as if the above PT-e
(!: ``It works as if there is a pressure difference between e and z, and the refrigerant evaporates smoothly in the evaporator 5.

以上の説明から明らかなように本発明の吸収式冷房シス
テムは、ゼオライト等の吸着剤を内蔵じた貯蔵タンクと
、この吸着剤を加熱することにより脱着した冷媒を凝縮
後貯蔵する冷媒タンクと冷媒を蒸発させる蒸発器を備え
、冷媒タンクを蒸発器より上方に位置させたもので、凝
縮器で凝縮された冷媒をいったん冷媒タンク内に貯蔵し
てから必要量に応じた冷媒を調節パルプ等の調節により
、蒸発器に搬送すればよいから、冷媒タンクがない時の
ように、冷媒の凝縮量と蒸発量を複雑な機構を設けてバ
ランス調整する必要がなく、凝縮器、冷媒タンク、蒸発
器の大きさ、能力等比較的容易にかつ独立して選択する
ことが可能である。
As is clear from the above description, the absorption cooling system of the present invention includes a storage tank containing an adsorbent such as zeolite, a refrigerant tank that condenses and stores the refrigerant desorbed by heating the adsorbent, and a refrigerant tank that stores the refrigerant after condensing it. The refrigerant tank is located above the evaporator, and the refrigerant condensed by the condenser is stored in the refrigerant tank, and then the refrigerant according to the required amount is pumped into a controlled pulp, etc. Since the refrigerant can be transported to the evaporator through adjustment, there is no need to balance the condensed and evaporated amounts of the refrigerant with a complicated mechanism, unlike when there is no refrigerant tank. The size, capacity, etc. of each can be selected relatively easily and independently.

また冷媒の貯蔵能力を適当に考慮することにより、ある
一定期間(例えば−日の)に必要な冷媒の貯蔵が可能で
あるだめ、吸脱着運転が同時にできるような機構をセッ
トしなくてもよく、経済的である。
Also, by appropriately considering the storage capacity of the refrigerant, it is possible to store the refrigerant required for a certain period of time (for example, - days), so there is no need to set up a mechanism that can perform adsorption and desorption operations at the same time. , economical.

更に冷媒タンクが蒸発器よりも上部に位置しているため
、冷媒タンクに貯蔵された冷媒の温度が低下し、冷媒タ
ンクから蒸発器までの配管内の分11 ・、−一 圧と蒸発器から貯蔵タンクまでの配管内の分圧とがほぼ
等しい値となっても、冷媒の蒸発器での蒸発が容易であ
り、円滑な冷却運転が可能となる等の効果を有する。
Furthermore, since the refrigerant tank is located above the evaporator, the temperature of the refrigerant stored in the refrigerant tank decreases, and the pressure in the piping from the refrigerant tank to the evaporator increases. Even if the partial pressure in the pipe leading to the storage tank is approximately the same value, the refrigerant can be easily evaporated in the evaporator, and smooth cooling operation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の吸収式冷房システムに使用されている
シリカゲルの吸着等混線図、第2図は本発明の吸収式冷
房システムに使用可能なゼオライトの吸着等温線図、第
3図は従来例を示す吸収式冷房システムの系統図、第4
図は本発明の一実施例を示す吸収式冷房システムの系統
図である。 2・・・・・・貯蔵タンク、3・・・・・・凝縮器%4
・・・・冷媒タンク、6・・・・・・蒸発器0 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 七°オライドー各:*lr:#ty’ThX)−気圧3
4檜・灸雇量第3図 第4図
Figure 1 is an adsorption isothermal diagram of silica gel used in a conventional absorption cooling system, Figure 2 is an adsorption isotherm diagram of zeolite that can be used in the absorption cooling system of the present invention, and Figure 3 is a conventional absorption isotherm diagram. System diagram of an absorption cooling system showing an example, Part 4
The figure is a system diagram of an absorption cooling system showing one embodiment of the present invention. 2...Storage tank, 3...Condenser%4
... Refrigerant tank, 6 ... Evaporator 0 Name of agent Patent attorney Toshio Nakao and 1 other person 1st
Figure 2 7° oride each: *lr: #ty'ThX) - Atmospheric pressure 3
4 Cypress and moxibustion employment Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] ゼオライト等の吸着剤を内蔵した貯蔵タンクと、この吸
着剤を加熱することにより脱着されたフロンガス、水蒸
気等の冷媒を凝縮する凝縮器と、凝縮後の冷媒を貯蔵す
る冷媒タンクと、冷媒を蒸発させる蒸発器を備え、前記
冷媒タンクを、前記蒸発器より上方に設置した吸収式冷
房システム。
A storage tank containing a built-in adsorbent such as zeolite, a condenser that condenses refrigerant such as fluorocarbon gas and water vapor desorbed by heating this adsorbent, a refrigerant tank that stores the condensed refrigerant, and evaporates the refrigerant. An absorption cooling system comprising: an evaporator for evaporation; the refrigerant tank is installed above the evaporator.
JP17944081A 1981-11-09 1981-11-09 Absorption type air-cooling system Pending JPS5880463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17944081A JPS5880463A (en) 1981-11-09 1981-11-09 Absorption type air-cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17944081A JPS5880463A (en) 1981-11-09 1981-11-09 Absorption type air-cooling system

Publications (1)

Publication Number Publication Date
JPS5880463A true JPS5880463A (en) 1983-05-14

Family

ID=16065894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17944081A Pending JPS5880463A (en) 1981-11-09 1981-11-09 Absorption type air-cooling system

Country Status (1)

Country Link
JP (1) JPS5880463A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179328A1 (en) 2017-03-31 2018-10-04 三菱重工エンジン&ターボチャージャ株式会社 Turbine housing and turbo charger provided with same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179328A1 (en) 2017-03-31 2018-10-04 三菱重工エンジン&ターボチャージャ株式会社 Turbine housing and turbo charger provided with same

Similar Documents

Publication Publication Date Title
US4827733A (en) Indirect evaporative cooling system
US4984434A (en) Hybrid vapor-compression/liquid desiccant air conditioner
US4569207A (en) Heat pump heating and cooling system
US4171624A (en) Air conditioning apparatus
US5442931A (en) Simplified adsorption heat pump using passive heat recuperation
JPS611933A (en) Adsorber for electric heat accumulator and operation method thereof
US5245839A (en) Adsorption-type refrigerant recovery apparatus
JP3120234B2 (en) Heat pump type air conditioner
JPH0145548B2 (en)
JPH076707B2 (en) Heat pump device
JPH11223411A (en) Adsorption heat pump
JPS5880463A (en) Absorption type air-cooling system
JPS581345B2 (en) Air conditioning/heating/hot water equipment
JPS6017668A (en) Cooling system
JP3043080B2 (en) Air conditioning system
JPS59112168A (en) Air conditioner
JPS5875675A (en) Air-cooling or refrigerating device utilizing solar heat
JP3316859B2 (en) Chemical heat storage system
JPS58160774A (en) Hot-water supply device
JPS6252227B2 (en)
JP3470728B2 (en) refrigerator
JPS6238200Y2 (en)
JPH10176872A (en) Adsorption heat pump
JPS5847963A (en) Refrigerating cycle of air conditioner
JPS6352299B2 (en)