JP3470728B2 - refrigerator - Google Patents

refrigerator

Info

Publication number
JP3470728B2
JP3470728B2 JP01926294A JP1926294A JP3470728B2 JP 3470728 B2 JP3470728 B2 JP 3470728B2 JP 01926294 A JP01926294 A JP 01926294A JP 1926294 A JP1926294 A JP 1926294A JP 3470728 B2 JP3470728 B2 JP 3470728B2
Authority
JP
Japan
Prior art keywords
pipe
cooler
refrigerant
moisture
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01926294A
Other languages
Japanese (ja)
Other versions
JPH07229652A (en
Inventor
伸 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP01926294A priority Critical patent/JP3470728B2/en
Publication of JPH07229652A publication Critical patent/JPH07229652A/en
Application granted granted Critical
Publication of JP3470728B2 publication Critical patent/JP3470728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一般の冷凍機、詳細に
は、蒸気圧縮式冷凍機、吸収式冷凍機、吸着式冷凍機等
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a general refrigerator, more specifically, a vapor compression refrigerator, an absorption refrigerator, an adsorption refrigerator and the like.

【0002】[0002]

【従来の技術】従来より、一般の蒸気圧縮式冷凍機は、
圧縮機、凝縮器、受液器、膨張弁、蒸発器の順に配管接
続した冷凍回路からなり、性能向上のため膨張弁入口の
冷媒に過冷却度を与えることが有効であることが知られ
ている。このため、例えば図10に示す従来例の冷凍機
のように、圧縮機1、凝縮器2、受液器3、冷却用熱交
換器6、膨張弁4、蒸発器5の順に配管9で接続した冷
凍回路や、同様に特開平4−92714号公報に示され
る車両用冷房装置のように、受液器の入口側と出口側に
凝縮器と冷却用熱交換器とを配設したものがある。
2. Description of the Related Art Conventional vapor compression refrigerators have been
It consists of a compressor, a condenser, a liquid receiver, an expansion valve, and a refrigeration circuit in which piping is connected in this order to the evaporator, and it is known that it is effective to give a supercooling degree to the refrigerant at the inlet of the expansion valve in order to improve performance. There is. Therefore, for example, as in the conventional refrigerator shown in FIG. 10, the compressor 1, the condenser 2, the liquid receiver 3, the cooling heat exchanger 6, the expansion valve 4, and the evaporator 5 are connected in this order by the pipe 9. The refrigerating circuit described above and a vehicle cooling device similarly disclosed in Japanese Patent Laid-Open No. 4-92714 have a condenser and a cooling heat exchanger arranged on the inlet side and the outlet side of the liquid receiver. is there.

【0003】このような蒸気圧縮式冷凍機は、受液器の
出口側に冷却用熱交換器を配設することにより、受液器
を出た飽和液冷媒を低温空気や低温水と熱交換してさら
に冷却し、特に冷凍機の性能の向上を可能にしている。
In such a vapor compression refrigerating machine, a cooling heat exchanger is arranged on the outlet side of the liquid receiver so that the saturated liquid refrigerant discharged from the liquid receiver exchanges heat with low temperature air or low temperature water. It further cools and makes it possible to improve the performance of the refrigerator in particular.

【0004】[0004]

【発明が解決しようとする課題】しかし、この種の冷凍
機によると、前記従来例のものは、受液器3の出口側に
配設される冷却用熱交換器6の構造がU字形状に同一平
面上で複数回折返した形状の配管と配管との間に波形状
の放熱フィンを有する一般的な熱交換器の構造であり、
また、特開平4−92714号公報に示されるものは、
受液器の出口側に配設される冷却用熱交換器が凝縮器と
同様の構造である。このため、両者とも冷却用熱交換器
の構造により容積、重量、コストが増大するという問題
がある。
However, according to this type of refrigerator, in the conventional example, the structure of the cooling heat exchanger 6 arranged on the outlet side of the liquid receiver 3 is U-shaped. It is a structure of a general heat exchanger having a wave-shaped heat radiation fin between the pipe and the pipe having a shape in which a plurality of diffraction lines are returned on the same plane,
Further, the one disclosed in Japanese Patent Laid-Open No. 4-92714,
The cooling heat exchanger arranged on the outlet side of the liquid receiver has the same structure as the condenser. Therefore, both of them have a problem that the structure of the cooling heat exchanger increases the volume, weight and cost.

【0005】また、冷凍機の定常運転時には、冷凍負荷
が小さいため冷凍性能の向上はさほど要求されないにも
かかわらず、前記従来例および特開平4−92714号
公報に示されるものは常時作動させるため、冷媒の圧力
損失が増加するという問題や送風機の追加により電力が
増加するという問題がある。本発明は、このような問題
を解決するためになされたもので、簡素な方法で冷凍機
の例えば膨張弁入口の冷媒を始動時のみ冷却することに
より、始動時の性能を向上した冷凍機を提供することを
目的とする。
Further, in the steady operation of the refrigerator, since the refrigerating load is small and improvement of the refrigerating performance is not required so much, the conventional example and the one disclosed in JP-A-4-92714 are always operated. However, there are problems that the pressure loss of the refrigerant increases and that the electric power increases due to the addition of the blower. The present invention has been made in order to solve such a problem, and by cooling the refrigerant at the inlet of the expansion valve of the refrigerator only at the time of starting by a simple method, a refrigerator having improved performance at the time of starting is provided. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】前記の課題を解決するた
めの本発明による冷凍機は、請求項1では、冷媒圧縮
機、凝縮器、受液器、減圧装置、蒸発器を配管により接
続した冷凍機であって、前記受液器と前記減圧装置との
間に外気中の水分の吸湿と蒸発を行える冷却器を配し、
前記冷却器に吸湿した水分を前記受液器出口側の冷媒温
度により蒸発させることを特徴とする。
According to a first aspect of the present invention, there is provided a refrigerator according to the present invention, wherein a refrigerant compressor, a condenser, a liquid receiver, a pressure reducing device and an evaporator are connected by piping. A refrigerator, in which a cooler capable of absorbing and evaporating moisture in the outside air is arranged between the liquid receiver and the pressure reducing device,
The moisture absorbed in the cooler is evaporated by the temperature of the refrigerant at the outlet side of the liquid receiver.

【0007】また、本発明による冷凍機は、請求項2で
は、冷媒が流通する配管と、この配管の外周面に固定さ
れ径方向外側に拡がるフィンと、少なくとも前記フィン
の外表面に接触し水分の吸湿と蒸発とが可能な吸湿材を
有する前記冷却器を備えたことを特徴とする。また、本
発明による冷凍機は、請求項3または4では、好ましく
は、前記フィンの外表面または前記配管の外表面あるい
はその両方に接着される前記吸湿材や、前記フィンまた
は前記配管と、前記フィンまたは前記配管とを覆う通気
性部材との間に充填される前記吸湿材を有する前記冷却
器を備えたことを特徴とする。
Further, in the refrigerator according to the present invention, in claim 2, the pipe through which the refrigerant flows, the fins fixed to the outer peripheral surface of the pipe and extending outward in the radial direction, and the moisture contacting at least the outer surface of the fin The cooler is provided with a hygroscopic material capable of absorbing and evaporating. Further, the refrigerator according to the present invention, in claim 3 or 4, preferably, the hygroscopic material adhered to an outer surface of the fin or an outer surface of the pipe, or both, the fin or the pipe, and It is characterized by comprising the cooler having the hygroscopic material filled between the fin or the breathable member covering the pipe.

【0008】また、本発明による冷凍機は、請求項5で
は、好ましくは、ゼオライト、シリカゲル、活性アルミ
ナ、活性炭、吸湿性高分子樹脂、臭化リチウム水溶液、
塩化カルシウム水溶液からなる群から選ばれる1種類ま
たは2種類以上である前記吸湿材を有する前記冷却器を
備えたことを特徴とする。また、本発明による冷凍機
は、請求項6では、冷媒圧縮機、凝縮器、受液器、減圧
装置、蒸発器を配管により接続した冷凍機であって、前
記冷媒圧縮機と前記凝縮器との間に外気中の水分の吸湿
と蒸発を行える冷却器を配し、前記冷却器に吸湿した水
分を前記冷媒圧縮機出口側の冷媒温度により蒸発させる
ことを特徴とする。
Further, in the refrigerator according to the present invention, in claim 5, preferably, zeolite, silica gel, activated alumina, activated carbon, hygroscopic polymer resin, aqueous solution of lithium bromide,
It is characterized by comprising the cooler having one or more kinds of the hygroscopic material selected from the group consisting of calcium chloride aqueous solution. Further, the refrigerator according to the present invention is, in claim 6, a refrigerator in which a refrigerant compressor, a condenser, a liquid receiver, a decompression device, and an evaporator are connected by piping, and the refrigerant compressor and the condenser are connected to each other. A cooler capable of absorbing and evaporating the moisture in the outside air is arranged between the two, and the moisture absorbed by the cooler is evaporated by the refrigerant temperature at the outlet side of the refrigerant compressor.

【0009】[0009]

【作用】本発明の冷凍機は、高温冷媒が流通する管に吸
湿材または吸収液を接触させるという簡素な方法により
吸湿材または吸収液が含有する水分と蒸発、吸収させる
冷媒冷却器を備えるため、始動時の冷凍性能または成績
係数を改善することができる。
The refrigerating machine of the present invention is provided with a refrigerant cooler for evaporating and absorbing the moisture contained in the hygroscopic material or the absorbing liquid by a simple method of bringing the hygroscopic material or the absorbing liquid into contact with the pipe through which the high temperature refrigerant flows. , It is possible to improve the refrigerating performance at start-up or the coefficient of performance.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。 (第1実施例)本発明を蒸気圧縮式冷凍機に適用した第
1実施例を図1〜図3に示す。図2に示すように、蒸気
圧縮式冷凍機20は、圧縮機1と凝縮器2と受液器3と
膨張弁4と蒸発器5と冷却器10と、これらを接続する
配管9とから構成される。圧縮機1から吐出された冷媒
は、凝縮器2、受液器3、冷却器10、膨張弁4、蒸発
器5を経由して圧縮機1に至る冷凍回路を循環する。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) A first embodiment in which the present invention is applied to a vapor compression refrigerator is shown in FIGS. As shown in FIG. 2, the vapor compression refrigerator 20 includes a compressor 1, a condenser 2, a liquid receiver 3, an expansion valve 4, an evaporator 5, a cooler 10, and a pipe 9 connecting them. To be done. The refrigerant discharged from the compressor 1 circulates in the refrigeration circuit that reaches the compressor 1 via the condenser 2, the liquid receiver 3, the cooler 10, the expansion valve 4, and the evaporator 5.

【0011】図1に示すように、冷却器10は、配管9
とフィン11と吸湿材12と通気性部材13とから構成
される。配管9は、例えばアルミニウム、銅を材料と
し、円筒形状からなり管内を冷媒が流れる。フィン11
は、例えばアルミニウム、銅を材料とし、配管9と同軸
状の複数の円板から構成され、配管9を流れる冷媒と吸
湿材12との間の熱交換を容易にするため配管9の外周
縁に環状に設けられる。
As shown in FIG. 1, the cooler 10 includes a pipe 9
It is composed of a fin 11, a hygroscopic material 12, and a breathable member 13. The pipe 9 is made of, for example, aluminum or copper, has a cylindrical shape, and the refrigerant flows in the pipe. Fin 11
Is made of, for example, aluminum or copper and is composed of a plurality of discs coaxial with the pipe 9, and is provided on the outer peripheral edge of the pipe 9 to facilitate heat exchange between the refrigerant flowing through the pipe 9 and the moisture absorbent 12. It is provided in a ring shape.

【0012】配管9の軸方向に隣合う各フィン11は、
互いに平行になるように設定され、各フィン11の間隔
は、吸湿材12の水蒸気の出入りが困難にならない程度
の例えば1〜5mm程度の一定間隔である。また、配管
9の外周表面からフィン11の外周端部までの長さは、
冷却器10に要求される冷却量および吸湿材12の充填
量の関係から決定されるが、例えば5〜40mm程度で
ある。
The fins 11 adjacent to each other in the axial direction of the pipe 9 are
The fins 11 are set so as to be parallel to each other, and the interval between the fins 11 is a constant interval of, for example, about 1 to 5 mm, which does not make it difficult for the moisture absorbent 12 to move in and out of water vapor. Further, the length from the outer peripheral surface of the pipe 9 to the outer peripheral end of the fin 11 is
It is determined from the relationship between the cooling amount required for the cooler 10 and the filling amount of the hygroscopic material 12, and is, for example, about 5 to 40 mm.

【0013】吸湿材12は、例えばゼオライト、シリカ
ゲル、活性アルミナ、活性炭等の吸着剤、吸湿性高分子
樹脂等を材料とし、フィン11の外表面または前記配管
の外表面あるいはその両方に接触するように充填され、
空気中の水分を吸収し補水させるために使用される。吸
湿材12の充填量は、例えばカーエアコン用にシリカゲ
ルを使用する場合、50〜200g程度である。また、
吸湿材12にシリカゲルを使用した場合、シリカゲルの
粒径は、水蒸気の出入りが困難にならない程度の例えば
10μm以上の粒径である。
The hygroscopic material 12 is made of, for example, an adsorbent such as zeolite, silica gel, activated alumina, activated carbon or the like, a hygroscopic polymer resin or the like, and is designed to come into contact with the outer surface of the fin 11 or the outer surface of the pipe or both. Filled in,
It is used to absorb water in the air and replenish it. The filling amount of the hygroscopic material 12 is, for example, about 50 to 200 g when silica gel is used for a car air conditioner. Also,
When silica gel is used as the hygroscopic material 12, the particle size of silica gel is, for example, a particle size of 10 μm or more, which does not make it difficult for water vapor to flow in and out.

【0014】通気性部材13は、水蒸気を抵抗なく容易
に通過させることができる例えば木綿、化学繊維、金属
を材料とし、配管9の外周表面からフィン11の外周縁
部近傍まで充填された吸湿材12をフィン11と共に外
側から包み固定する。このため、通気性部材13は、吸
湿材12が脱落しない形状であれば良く例えば筒状の
布、筒状の網、またはセラミック、焼結金属、発泡金属
を材料とした通気性が良好な成形部材を使用してもよ
い。
The breathable member 13 is made of, for example, cotton, chemical fiber, or metal that allows water vapor to easily pass through without resistance, and is a moisture absorbent filled from the outer peripheral surface of the pipe 9 to the vicinity of the outer peripheral edge of the fin 11. 12 and the fin 11 are wrapped and fixed from the outside. Therefore, the breathable member 13 may have any shape as long as the hygroscopic material 12 does not fall off. For example, a tubular cloth, a tubular net, or a molding made of ceramic, sintered metal, or foam metal with good air permeability. Members may be used.

【0015】配管9の軸方向に対する冷却器10の長さ
は、冷却器10に要求される冷却量および吸湿材12の
充填量の関係から決定され、カーエアコン用に使用する
場合、例えば50mm程度である。組立て時、複数の各
フィン11が互いに平行になるように配管9をフィン1
1に挿入した後、配管9とフィン11とをろう付し、配
管9の外周表面からフィン11の外周縁部近傍までフィ
ン11の表面に接触するように吸湿材12を充填しなが
ら筒状の通気性部材13で吸湿材12とフィン11とを
外側から包み固定する。通気性部材13は、吸湿材12
が外に漏れ出ない程度に端部13aを配管9に接着また
はかしめることにより固定される。
The length of the cooler 10 with respect to the axial direction of the pipe 9 is determined by the relationship between the cooling amount required for the cooler 10 and the filling amount of the hygroscopic material 12, and when used for a car air conditioner, for example, about 50 mm. Is. When assembling, the pipe 9 is connected to the fins 1 so that the plurality of fins 11 are parallel to each other.
1, the pipe 9 and the fins 11 are brazed together, and a tubular shape is formed while filling the hygroscopic material 12 so as to contact the surface of the fins 11 from the outer peripheral surface of the pipes 9 to the vicinity of the outer peripheral edge of the fins 11. The breathable member 13 wraps and fixes the moisture absorbent 12 and the fin 11 from the outside. The breathable member 13 is a moisture absorbent material 12.
Is fixed by adhering or caulking the end portion 13a to the pipe 9 to the extent that does not leak out.

【0016】蒸気圧縮式冷凍機20の冷媒回路の動作を
冷媒の流れに沿って説明する。初期始動時、外気温に近
い温度の低圧気体の冷媒は、圧縮機1で断熱圧縮され高
温高圧気体に変化した後、凝縮器2に送られ、外部へ熱
を放熱し例えば50℃程度の高温高圧液体になる。その
後、高温高圧液体の冷媒は、受液器3で一時貯蔵された
後、冷却器10に送られ、冷却器10により吸湿材12
が補水していた水分の大部分を水蒸気として気化させる
まで冷媒は冷却され受液器出口より低温の高圧液体にな
る。さらに冷媒は、膨張弁4に送られ、冷媒の一部が膨
張弁4により霧状になってさらに温度が低下し、例えば
0℃程度の低温低圧気液二相状態に変化した後、蒸発器
5に送られ外部から吸熱し低温低圧の気体になり再び圧
縮機1に送られ循環する。この冷媒の循環による蒸発器
5の吸熱作用により、蒸発器5を流通する空気は冷却さ
れる。
The operation of the refrigerant circuit of the vapor compression refrigerator 20 will be described along the flow of the refrigerant. At the time of initial start-up, a low-pressure gas refrigerant having a temperature close to the outside air temperature is adiabatically compressed by the compressor 1 and changed into a high-temperature high-pressure gas, which is then sent to the condenser 2 to radiate heat to the outside, for example, a high temperature of about 50 ° C. Become a high-pressure liquid. After that, the refrigerant of the high-temperature high-pressure liquid is temporarily stored in the liquid receiver 3 and then sent to the cooler 10, and the cooler 10 causes the hygroscopic material 12 to flow.
The refrigerant is cooled and becomes a high temperature liquid at a low temperature from the receiver outlet until most of the water replenished by is vaporized as water vapor. Further, the refrigerant is sent to the expansion valve 4, and a part of the refrigerant is atomized by the expansion valve 4 to further lower the temperature, for example, change to a low temperature low pressure gas-liquid two-phase state of about 0 ° C., and then the evaporator. 5, the heat is absorbed from the outside to become a low-temperature low-pressure gas, which is again sent to the compressor 1 and circulated. Due to the endothermic action of the evaporator 5 due to the circulation of the refrigerant, the air flowing through the evaporator 5 is cooled.

【0017】定常運転時、冷却器10の吸湿材12が補
水していた水分の大部分が水蒸気になり気化が完了して
いるため、蒸気圧縮式冷凍機20の冷媒回路は、冷却器
10が付加されていない場合と同様の動作をする。次に
前記蒸気圧縮式冷凍機20の動作に基づいて冷却器10
の作動を説明する。
During steady operation, most of the moisture replenished by the absorbent material 12 of the cooler 10 becomes steam and vaporization is completed, so that the refrigerant circuit of the vapor compression refrigerator 20 is operated by the cooler 10. The same operation as when not added is performed. Next, based on the operation of the vapor compression refrigerator 20, the cooler 10
The operation of will be described.

【0018】蒸気圧縮式冷凍機20の始動直後、高温高
圧液体の冷媒が冷却器10の配管9を通過するため、冷
却器10の配管9、フィン11および、これらに接触あ
るいは熱交換可能に固定される吸湿材12が加熱され
る。このとき、図3に示すような吸湿特性を有する例え
ばシリカゲル、活性アルミナを材料とする吸湿材12
は、平衡吸湿量が吸湿材12の温度の上昇に伴い実線で
示す曲線15上の点Aから点Bへ向かって徐々に減少し
始めるため、補水していた水分を気化させ、通気性部材
13を通して外部へ水蒸気の放出を開始する。これと同
時に吸湿材12は、接触する配管9およびフィン11の
表面から水分を気化するための潜熱を奪うため、配管9
およびフィン11は冷却され、また配管9を通過する冷
媒も冷却される。これにより、受液器3から出た高温高
圧液体の冷媒は、冷却器10により放熱を促進し、蒸気
圧縮式冷凍機20の冷凍性能または成績係数を向上させ
る。この作動は、吸湿材12が補水していた水分をすべ
て水蒸気として気化させ、通気性部材13を通して外部
へ放出するまで持続される。冷却器10における水分放
出後は、冷却効果が生じないため蒸気圧縮式冷凍機20
は、冷却器10が付加されていない冷凍機と同様の冷凍
性能または成績係数である。
Immediately after the vapor compression refrigerator 20 is started, the refrigerant of the high-temperature high-pressure liquid passes through the pipe 9 of the cooler 10, so that the pipe 9 of the cooler 10, the fins 11 and these are fixed so as to be in contact with or capable of exchanging heat. The moisture absorbent 12 is heated. At this time, the hygroscopic material 12 made of, for example, silica gel or activated alumina having a hygroscopic property as shown in FIG.
Indicates that the equilibrium moisture absorption amount gradually decreases from the point A on the curve 15 shown by the solid line to the point B as the temperature of the hygroscopic material 12 rises, so that the replenished water is vaporized and the breathable member 13 To start releasing water vapor to the outside. At the same time, the hygroscopic material 12 removes latent heat for vaporizing water from the surfaces of the pipe 9 and the fins 11 in contact therewith, so that the pipe 9
The fins 11 are cooled, and the refrigerant passing through the pipe 9 is also cooled. As a result, the refrigerant of the high-temperature high-pressure liquid discharged from the liquid receiver 3 promotes heat dissipation by the cooler 10 and improves the refrigeration performance or the coefficient of performance of the vapor compression refrigerator 20. This operation is continued until the moisture absorbing material 12 vaporizes all the water that has been replenished as water vapor and is discharged to the outside through the breathable member 13. After the moisture is released in the cooler 10, the cooling effect does not occur, so the vapor compression refrigerator 20
Is the same refrigerating performance or coefficient of performance as a refrigerator to which the cooler 10 is not added.

【0019】蒸気圧縮式冷凍機20の停止後、高温高圧
の液体の冷媒が自然放熱等により外気温程度まで温度が
低下することに伴い、配管9、フィン11および、これ
らに接触する吸湿材12も同様に外気温程度まで温度が
低下する。これにより、図3に示すような吸湿特性を有
する例えばシリカゲル、活性アルミナを材料とする吸湿
材12は、平衡吸湿量が吸湿材12の温度の低下に伴い
実線で示す曲線15上の点Bから点Aへ向かって徐々に
増加し始めるため、自発的に外気中の水蒸気を吸湿して
補水する。したがって、保守作業者による冷却器10へ
の給水作業を必要としない。
After the vapor compression refrigerator 20 is stopped, the temperature of the high-temperature and high-pressure liquid refrigerant is lowered to the ambient temperature due to natural heat radiation and the like, so that the piping 9, the fins 11 and the hygroscopic material 12 contacting these are provided. Similarly, the temperature drops to the outside temperature. As a result, the hygroscopic material 12 made of, for example, silica gel or activated alumina having the hygroscopic property as shown in FIG. 3 has the equilibrium hygroscopic amount from the point B on the curve 15 indicated by the solid line as the temperature of the hygroscopic material 12 decreases. Since it gradually increases toward point A, it spontaneously absorbs water vapor in the outside air to replenish water. Therefore, the maintenance worker does not need to supply water to the cooler 10.

【0020】以上のことから、受液器3と膨張弁4との
間に付加した冷却器10は、配管9およびフィン11の
表面から潜熱を奪い熱交換を行なうため、従来例で示し
た顕熱による熱交換を行なう冷却用熱交換器6と比較し
て熱交換効率を著しく向上させることが可能であり、蒸
気圧縮式冷凍機20の始動時に高温冷媒の放熱を促進し
始動時の冷凍性能または成績係数を改善させることがで
きる。
From the above, the cooler 10 added between the liquid receiver 3 and the expansion valve 4 takes latent heat from the surfaces of the pipes 9 and the fins 11 to perform heat exchange, so that the cooling system shown in the conventional example is used. It is possible to remarkably improve the heat exchange efficiency as compared with the cooling heat exchanger 6 that performs heat exchange by heat, and promotes heat dissipation of the high-temperature refrigerant at the time of starting the vapor compression refrigerator 20 to improve the refrigerating performance at the time of starting. Or the coefficient of performance can be improved.

【0021】なお、本発明では、フィンの形状は、円板
に限らず配管を流れる冷媒と吸湿材との間の熱交換が可
能であれば、矩形、多角形、その他複雑な形状でもよ
い。また、配管とフィンとの固定方法は、配管をフィン
に圧入する方法や、配管をフィンに挿入後に配管を拡管
し圧着する方法等でもよい。さらに、配管とフィンとを
一体成形した配管を用いてもよい。
In the present invention, the shape of the fin is not limited to a circular plate, and may be a rectangular shape, a polygonal shape, or any other complicated shape as long as heat exchange between the refrigerant flowing through the pipe and the hygroscopic material is possible. Further, the method of fixing the pipe and the fin may be a method of press-fitting the pipe into the fin, a method of expanding the pipe after the pipe is inserted into the fin, and crimping. Furthermore, a pipe in which the pipe and the fin are integrally formed may be used.

【0022】(第2実施例)本発明の第2実施例を図4
に示す。第2実施例による蒸気圧縮式冷凍機は、冷却器
10を圧縮機1と凝縮器2との間に付加した点が第1実
施例の蒸気圧縮式冷凍機20と異なる。図4に示すよう
に、蒸気圧縮式冷凍機30の冷媒回路は、圧縮機1と凝
縮器2と受液器3と膨張弁4と蒸発器5と冷却器10
と、これらを接続する配管9とから構成され、この冷媒
回路を流れる冷媒は、圧縮機1から冷却器10、凝縮器
2、受液器3、膨張弁4、蒸発器5を経由して圧縮機1
に至る冷凍回路を循環する。
(Second Embodiment) FIG. 4 shows a second embodiment of the present invention.
Shown in. The vapor compression refrigerator according to the second embodiment differs from the vapor compression refrigerator 20 according to the first embodiment in that a cooler 10 is added between the compressor 1 and the condenser 2. As shown in FIG. 4, the refrigerant circuit of the vapor compression refrigerator 30 includes a compressor 1, a condenser 2, a liquid receiver 3, an expansion valve 4, an evaporator 5, and a cooler 10.
The refrigerant flowing through the refrigerant circuit is compressed from the compressor 1 via the cooler 10, the condenser 2, the liquid receiver 3, the expansion valve 4, and the evaporator 5. Machine 1
Circulate in the refrigeration circuit leading to.

【0023】蒸気圧縮式冷凍機30の冷媒回路の動作を
冷媒の流れに沿って説明する。始動時、外気温に近い温
度の低圧気体の冷媒は、圧縮機1で断熱圧縮され高温高
圧の気体に変化した後、冷却器10に送られ、冷却器1
0により吸湿材12が補水していた水分の大部分を水蒸
気として気化させるまで冷媒は冷却され圧縮機出口の気
体より低温の高圧気体になる。その後、この高圧気体の
冷媒は、凝縮器2に送られ、外部へ熱を放熱し高圧液体
になる。さらに冷媒は、受液器3で一時貯蔵された後、
膨張弁4に送られ、膨張弁4により例えば0℃程度の低
温低圧気液二相状態に変化した後、蒸発器5に送られ外
部から吸熱し低温低圧の気体になり再び圧縮機1に送ら
れ循環する。この冷媒の循環による蒸発器5の吸熱作用
により、蒸発器5を流通する空気は冷却される。
The operation of the refrigerant circuit of the vapor compression refrigerator 30 will be described along the flow of the refrigerant. At the time of start-up, the low-pressure gas refrigerant having a temperature close to the outside air temperature is adiabatically compressed by the compressor 1 and changed into a high-temperature and high-pressure gas, and then sent to the cooler 10 to cool the cooler 1.
By 0, the refrigerant is cooled and becomes a high-pressure gas at a temperature lower than that of the gas at the compressor outlet until most of the moisture replenished by the hygroscopic material 12 is vaporized as water vapor. After that, this high-pressure gas refrigerant is sent to the condenser 2 and radiates heat to the outside to become a high-pressure liquid. Furthermore, after the refrigerant is temporarily stored in the receiver 3,
It is sent to the expansion valve 4, and after being changed to a low-temperature low-pressure gas-liquid two-phase state of, for example, about 0 ° C. by the expansion valve 4, it is sent to the evaporator 5 and absorbs heat from the outside to become a low-temperature low-pressure gas and is sent to the compressor 1 again. Be circulated. Due to the endothermic action of the evaporator 5 due to the circulation of the refrigerant, the air flowing through the evaporator 5 is cooled.

【0024】定常運転時は、第1実施例と同様、蒸気圧
縮式冷凍機30の冷媒回路は、冷却器10が付加されて
いない場合と同様の動作をする。この第2実施例による
と、圧縮機1と凝縮器2との間に付加した冷却器10
が、蒸気圧縮式冷凍機30の始動時に凝縮器2の補助的
役割を果し高温冷媒の放熱を促進するため始動時の冷凍
性能または成績係数を改善させることができる。
During steady operation, as in the first embodiment, the refrigerant circuit of the vapor compression refrigerator 30 operates in the same manner as when the cooler 10 is not added. According to this second embodiment, the cooler 10 added between the compressor 1 and the condenser 2
However, since the condenser 2 plays an auxiliary role at the time of starting the vapor compression refrigerator 30 and promotes the heat dissipation of the high-temperature refrigerant, the refrigerating performance or the coefficient of performance at the time of starting can be improved.

【0025】(第3実施例)本発明の第3実施例を図5
および図6に示す。第3実施例は、吸湿材を凝縮器の放
熱面上に接着したことにより、第2実施例の冷却器10
の機能を凝縮器にもたせた点が第2実施例と異なる。図
5および図6に示すように、凝縮器40は、チューブ4
1とコルゲートフィン42と吸湿材43とから構成され
る。
(Third Embodiment) FIG. 5 shows a third embodiment of the present invention.
And shown in FIG. In the third embodiment, the moisture absorbent is adhered to the heat dissipation surface of the condenser, so that the cooler 10 of the second embodiment is used.
The difference from the second embodiment is that the condenser has the function of. As shown in FIGS. 5 and 6, the condenser 40 includes a tube 4
1, a corrugated fin 42, and a hygroscopic material 43.

【0026】チューブ41は、高圧に耐えるように横断
形状が矩形の四辺状に形成された筒状の管をU字形状に
同一平面上で複数回折返した形状を有する。チューブ4
1の内部に冷媒が流れ、またU字形状に折返した隣合う
チューブ41の間には、コルゲートフィン42が設けら
れる。コルゲートフィン42は、U字形状に折返したチ
ューブ41の間隔に適合した波状の薄板から構成され、
波状の山部と谷部とでチューブ41に接触するようにろ
う付等により固定される。また、コルゲートフィン42
の表面は、通風抵抗の増加を極力抑えるため粒径の極め
て小さい吸湿材43が接着される。この場合、吸湿材4
3が接着されるにより固定されるため通気性部材は必要
ない。
The tube 41 has a shape in which a tubular tube formed in a quadrangular shape having a rectangular transverse shape so as to withstand high pressure is diffracted back in a U shape on the same plane. Tube 4
A coolant flows inside the unit 1, and corrugated fins 42 are provided between adjacent tubes 41 that are folded back in a U shape. The corrugated fin 42 is composed of a corrugated thin plate adapted to the interval between the tubes 41 folded back in a U shape,
The corrugated peaks and valleys are fixed by brazing or the like so as to come into contact with the tube 41. Also, the corrugated fin 42
A moisture absorbent material 43 having an extremely small particle size is adhered to the surface of the above in order to suppress the increase of ventilation resistance as much as possible. In this case, the moisture absorbent 4
No breathable member is required as 3 is glued and fixed.

【0027】この第3実施例によると、この凝縮器40
に接着された吸湿材43が凝縮器40の表面から潜熱を
奪い熱交換を行なうため、凝縮器40を冷凍回路に使用
した場合、第2実施例の冷却器10を付加した場合と同
様、蒸気圧縮式冷凍機の始動時に高温冷媒の放熱を促進
し始動時の冷凍性能または成績係数を改善させることが
可能である。
According to this third embodiment, this condenser 40
When the condenser 40 is used in the refrigeration circuit, as in the case where the cooler 10 of the second embodiment is added, the moisture absorbing material 43 adhered to the heat exchanger 40 removes latent heat from the surface of the condenser 40 to perform heat exchange. It is possible to promote the heat dissipation of the high temperature refrigerant at the time of starting the compression type refrigerator and improve the refrigerating performance or the coefficient of performance at the time of starting.

【0028】(第4実施例)本発明の第4実施例を図7
および図8に示す。第4実施例による冷却器は、フィン
の形状をひげ状にして、このひげ状のフィンの表面に吸
湿材を接着した点が第1実施例の冷却器10と異なる。
図7および図8に示すように、冷却器50は、配管9と
スパイラルフィン51と吸湿材12とから構成される。
(Fourth Embodiment) A fourth embodiment of the present invention is shown in FIG.
And shown in FIG. The cooler according to the fourth embodiment is different from the cooler 10 according to the first embodiment in that fins are formed in a beard shape and a hygroscopic material is bonded to the surfaces of the fins having a beard shape.
As shown in FIGS. 7 and 8, the cooler 50 includes the pipe 9, the spiral fin 51, and the moisture absorbent 12.

【0029】スパイラルフィン51は、配管9に接触す
る帯状の基部51と、基部51の表面から配管9の径方
向外側へ伸びるひげ状のひげ部52とから構成され、配
管9の外周面に螺旋状に巻付け固定される。吸湿材12
は、配管9の表面およびスパイラルフィン51のひげ部
52の表面に接着される。
The spiral fin 51 is composed of a strip-shaped base portion 51 which comes into contact with the pipe 9, and a whisker-shaped whisker portion 52 which extends from the surface of the base portion 51 to the outside in the radial direction of the pipe 9, and is spirally formed on the outer peripheral surface of the pipe 9. It is wound around and fixed. Hygroscopic material 12
Is bonded to the surface of the pipe 9 and the surface of the whiskers 52 of the spiral fin 51.

【0030】この第4実施例によると、配管9の表面お
よびスパイラルフィン51のひげ部52の表面に接着さ
れた吸湿材12が配管9およびスパイラルフィン51の
表面から潜熱を奪い熱交換を行なうため、冷却器50を
冷凍回路に使用した場合、第1実施例の冷却器10を付
加した場合と同様、蒸気圧縮式冷凍機の始動時に高温冷
媒の放熱を促進し始動時の冷凍性能または成績係数を改
善させることが可能である。なお、スパイラルフィンの
代わりにスカイブドフィン等を使用しても同様の効果が
得られる。
According to the fourth embodiment, the hygroscopic material 12 adhered to the surfaces of the pipe 9 and the whiskers 52 of the spiral fin 51 removes latent heat from the surfaces of the pipe 9 and the spiral fin 51 for heat exchange. When the cooler 50 is used in the refrigeration circuit, as in the case where the cooler 10 of the first embodiment is added, the heat dissipation of the high temperature refrigerant is promoted at the time of starting the vapor compression refrigerator, and the refrigeration performance or the coefficient of performance at the time of starting. Can be improved. The same effect can be obtained by using skived fins instead of the spiral fins.

【0031】(第5実施例)本発明の第5実施例を図9
に示す。第5実施例による冷却器は、吸湿材12に代わ
りに液体状の吸収液を使用し、この吸収液が貯溜される
液槽を設けた点が第1実施例の冷却器10と異なる。図
9に示すように、冷却器60は、配管9とフィン11と
液槽61と吸収液62と通気性部材63とから構成され
る。
(Fifth Embodiment) FIG. 9 shows a fifth embodiment of the present invention.
Shown in. The cooler according to the fifth embodiment is different from the cooler 10 according to the first embodiment in that a liquid absorbing liquid is used instead of the moisture absorbent 12 and a liquid tank for storing the absorbing liquid is provided. As shown in FIG. 9, the cooler 60 includes a pipe 9, fins 11, a liquid tank 61, an absorbing liquid 62, and a breathable member 63.

【0032】配管9は、第1実施例と同様のフィン11
を備え、液槽61の一方の側面から他方の側面へ貫通す
る。液槽61は、上部に開口部を有する容器からなり、
配管9のフィン11により液槽61に貯溜される吸収液
62と熱交換する。吸収液62は、例えば臭化リチウム
水溶液、塩化カルシウム水溶液からなり、吸収液62に
よりフィン11の全部が浸されるところまで吸収液62
が液槽61に貯溜されている。
The pipe 9 is a fin 11 similar to that of the first embodiment.
, And penetrates from one side surface of the liquid tank 61 to the other side surface. The liquid tank 61 is composed of a container having an opening at the top,
The fins 11 of the pipe 9 exchange heat with the absorbing liquid 62 stored in the liquid tank 61. The absorbing liquid 62 is made of, for example, an aqueous solution of lithium bromide or an aqueous solution of calcium chloride, and the absorbing liquid 62 is used until the entire fin 11 is immersed in the absorbing liquid 62.
Are stored in the liquid tank 61.

【0033】通気性部材63は、大気中の塵等が液槽6
1へ侵入するのを防止するため、液槽61の開口部全面
を覆うように設けられる。この第5実施例によると、液
槽61に溜められた吸収液62がフィン11の表面から
潜熱を奪い熱交換を行なうため、冷却器60を冷凍回路
に使用した場合、第1実施例の冷却器10を付加した場
合と同様、蒸気圧縮式冷凍機の始動時に高温冷媒の放熱
を促進し始動時の冷凍性能または成績係数を改善させる
ことが可能である。
The air-permeable member 63 prevents dust and the like in the air from flowing into the liquid tank 6.
In order to prevent the liquid from entering the container 1, it is provided so as to cover the entire opening of the liquid tank 61. According to the fifth embodiment, the absorbing liquid 62 stored in the liquid tank 61 removes latent heat from the surfaces of the fins 11 to perform heat exchange. Therefore, when the cooler 60 is used in the refrigeration circuit, the cooling of the first embodiment is performed. Similar to the case where the vessel 10 is added, it is possible to promote the heat dissipation of the high temperature refrigerant at the time of starting the vapor compression refrigerator and improve the refrigerating performance or the coefficient of performance at the time of starting.

【0034】[0034]

【発明の効果】本発明の冷凍機によると、配管内を流れ
る高温冷媒と熱交換を行なうことにより冷媒を冷却する
ことができる冷却器を冷凍回路に使用することにより、
冷却器に水分が残存する期間中の冷凍性能または成績係
数を改善させることができ、構造上の容積、重量、コス
トが削減できる効果がある。
According to the refrigerator of the present invention, by using in the refrigeration circuit a cooler capable of cooling the refrigerant by exchanging heat with the high temperature refrigerant flowing in the pipe,
The refrigerating performance or the coefficient of performance can be improved during the period when water remains in the cooler, and the structural volume, weight, and cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例による冷却器の部分断面図
である。
FIG. 1 is a partial cross-sectional view of a cooler according to a first exemplary embodiment of the present invention.

【図2】本発明の第1実施例による蒸気圧縮式冷凍機の
冷媒回路を示す回路図である。
FIG. 2 is a circuit diagram showing a refrigerant circuit of the vapor compression refrigerator according to the first embodiment of the present invention.

【図3】本発明の第1実施例による冷却器の吸湿材の吸
湿材温度に対する平衡吸湿量を示す吸湿特性図である。
FIG. 3 is a hygroscopic characteristic diagram showing an equilibrium hygroscopic amount of a hygroscopic material of a cooler according to a first embodiment of the present invention with respect to a hygroscopic material temperature.

【図4】本発明の第2実施例による冷凍機の冷媒回路を
示す回路図である。
FIG. 4 is a circuit diagram showing a refrigerant circuit of a refrigerator according to a second embodiment of the present invention.

【図5】本発明の第3実施例による吸湿材を接着した凝
縮器の概略構成図である。
FIG. 5 is a schematic configuration diagram of a condenser to which a hygroscopic material according to a third embodiment of the present invention is adhered.

【図6】本発明の第3実施例の図5に示す円内拡大図で
ある。
FIG. 6 is an enlarged view of the inside of the circle shown in FIG. 5 of the third embodiment of the present invention.

【図7】本発明の第4実施例による冷却器の概略構成図
である。
FIG. 7 is a schematic configuration diagram of a cooler according to a fourth embodiment of the present invention.

【図8】本発明の第4実施例の図7に示す円内拡大断面
図である。
FIG. 8 is an enlarged sectional view in a circle shown in FIG. 7 of a fourth embodiment of the present invention.

【図9】本発明の第5実施例による冷却器の概略構成図
である。
FIG. 9 is a schematic configuration diagram of a cooler according to a fifth embodiment of the present invention.

【図10】従来の冷凍機の冷媒回路を示す回路図であ
る。
FIG. 10 is a circuit diagram showing a refrigerant circuit of a conventional refrigerator.

【符号の説明】[Explanation of symbols]

1 圧縮機(冷媒圧縮機) 2 凝縮器 3 受液器 4 膨張弁 5 蒸発器 9 配管 10 冷却機 11 フィン 12 吸湿材 13 通気性部材 20 蒸気圧縮式冷凍機 40 凝縮器 41 チューブ(配管) 42 コルゲートフィン(フィン) 43 吸湿材 62 吸収液(吸湿材) 1 compressor (refrigerant compressor) 2 condenser 3 liquid receiver 4 expansion valve 5 evaporator 9 piping 10 Cooler 11 fins 12 Hygroscopic material 13 Breathable material 20 Vapor compression refrigerator 40 condenser 41 tubes 42 Corrugated fin (fin) 43 Hygroscopic material 62 Absorbing liquid (hygroscopic material)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷媒圧縮機、凝縮器、受液器、減圧装
置、蒸発器を配管により接続した冷凍機であって、 前記受液器と前記減圧装置との間に外気中の水分の吸湿
と蒸発を行える冷却器を配し、 前記冷却器に吸湿した水分を前記受液器出口側の冷媒温
度により蒸発させることを特徴とする冷凍機。
1. A refrigerator in which a refrigerant compressor, a condenser, a liquid receiver, a decompression device, and an evaporator are connected by piping, and moisture absorption of moisture in the outside air is provided between the liquid receiver and the decompression device. And a cooler capable of performing evaporation, and the moisture absorbed in the cooler is evaporated by the refrigerant temperature at the outlet side of the receiver.
【請求項2】 前記冷却器は、冷媒が流通する配管と、
この配管の外周面に固定され径方向外側に拡がるフィン
と、少なくとも前記フィンの外表面に接触し水分の吸湿
と蒸発とが可能な吸湿材を備えることを特徴とする請求
項1記載の冷凍機。
2. The cooler includes a pipe through which a refrigerant flows,
The refrigerator according to claim 1, further comprising: a fin fixed to an outer peripheral surface of the pipe and extending outward in a radial direction; and a hygroscopic material contacting at least an outer surface of the fin and capable of absorbing and evaporating moisture. .
【請求項3】 前記吸湿材は、前記フィンの外表面また
は前記配管の外表面あるいはその両方に接着されること
を特徴とする請求項2記載の冷凍機。
3. The refrigerator according to claim 2, wherein the hygroscopic material is adhered to an outer surface of the fin, an outer surface of the pipe, or both.
【請求項4】 前記吸湿材は、前記フィンまたは前記配
管と、前記フィンまたは前記配管とを覆う通気性部材と
の間に充填されることを特徴とする請求項2記載の冷凍
機。
4. The refrigerator according to claim 2, wherein the hygroscopic material is filled between the fin or the pipe and an air permeable member that covers the fin or the pipe.
【請求項5】 前記吸湿材は、ゼオライト、シリカゲ
ル、活性アルミナ、活性炭、吸湿性高分子樹脂、臭化リ
チウム水溶液、および塩化カルシウム水溶液からなる群
から選ばれる1種類または2種類以上であることを特徴
とする請求項2、3または4記載の冷凍機。
5. The hygroscopic material is one or more kinds selected from the group consisting of zeolite, silica gel, activated alumina, activated carbon, hygroscopic polymer resin, aqueous solution of lithium bromide, and aqueous solution of calcium chloride. 5. The refrigerator according to claim 2, 3 or 4.
【請求項6】 冷媒圧縮機、凝縮器、受液器、減圧装
置、蒸発器を配管により接続した冷凍機であって、 前記冷媒圧縮機と前記凝縮器との間に外気中の水分の吸
湿と蒸発を行える冷却器を配し、 前記冷却器に吸湿した水分を前記冷媒圧縮機出口側の冷
媒温度により蒸発させることを特徴とする冷凍機。
6. A refrigerating machine in which a refrigerant compressor, a condenser, a liquid receiver, a decompression device, and an evaporator are connected by piping, and moisture absorption of moisture in the outside air is provided between the refrigerant compressor and the condenser. And a cooler capable of performing evaporation, and the moisture absorbed in the cooler is evaporated by the refrigerant temperature at the outlet side of the refrigerant compressor.
【請求項7】 冷媒圧縮機、凝縮器、受液器、減圧装
置、蒸発器を配管により接続した冷凍機であって、 前記凝縮器の熱交換表面に吸湿材を配し、前記 吸湿材は外気中から吸湿した水分を蒸発させること
を特徴とする冷凍機。
7. A refrigerant compressor, a condenser, a receiver, a decompression device, an evaporator a refrigerator connected by a pipe, arranged hygroscopic material to the heat exchange surface of the condenser, the moisture absorbing material refrigerator according to claim Rukoto evaporate moisture absorbed from the outside air.
JP01926294A 1994-02-16 1994-02-16 refrigerator Expired - Fee Related JP3470728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01926294A JP3470728B2 (en) 1994-02-16 1994-02-16 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01926294A JP3470728B2 (en) 1994-02-16 1994-02-16 refrigerator

Publications (2)

Publication Number Publication Date
JPH07229652A JPH07229652A (en) 1995-08-29
JP3470728B2 true JP3470728B2 (en) 2003-11-25

Family

ID=11994532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01926294A Expired - Fee Related JP3470728B2 (en) 1994-02-16 1994-02-16 refrigerator

Country Status (1)

Country Link
JP (1) JP3470728B2 (en)

Also Published As

Publication number Publication date
JPH07229652A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
KR930008821B1 (en) Refrigerating system
US6568205B2 (en) Air-conditioner for a motor vehicle
JP4096646B2 (en) Cooling system
JP4363336B2 (en) Air conditioning
JP2007001485A (en) Refrigerating cycle device for vehicle
JP3358460B2 (en) Chemical storage air intake cooling system
JP3470728B2 (en) refrigerator
JP3295743B2 (en) Adsorption refrigerator
CN106042821B (en) Air conditioning system with vacuum enclosure
JP2003312240A (en) Air conditioner for vehicle
JP4086011B2 (en) Refrigeration equipment
US20190003749A1 (en) Heating, ventilation, air conditioning and refrigeration system
JP4069691B2 (en) Air conditioner for vehicles
JP3978989B2 (en) Refrigerant circuit device and refrigerant filling system
JP3007455B2 (en) Refrigeration cycle device
JPH0814691A (en) Adsorption type freezing device
JP4186738B2 (en) Adsorption type refrigerator
JPS581345B2 (en) Air conditioning/heating/hot water equipment
JP2001082831A (en) Adsorber for absorption refrigerating machine
JPH04203891A (en) Heat exchanger for both cooling and heating
JP2006200870A (en) Adsorber for adsorption type refrigerator and production method for the adsorber for adsorption type refrigerator
JP2013238330A (en) Evaporator of adsorption type refrigerator, adsorption type refrigerator, and air conditioner for vehicle
KR100290544B1 (en) Device for condensing of air conditioner for cooling
JPH11223416A (en) Refrigerating device
JP2006132804A (en) Refrigerating cycle and heat exchanger

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees