JPS587966B2 - Hikari Densouyo Glass Fiber - Google Patents

Hikari Densouyo Glass Fiber

Info

Publication number
JPS587966B2
JPS587966B2 JP50157438A JP15743875A JPS587966B2 JP S587966 B2 JPS587966 B2 JP S587966B2 JP 50157438 A JP50157438 A JP 50157438A JP 15743875 A JP15743875 A JP 15743875A JP S587966 B2 JPS587966 B2 JP S587966B2
Authority
JP
Japan
Prior art keywords
glass
porous glass
fibers
porous
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50157438A
Other languages
Japanese (ja)
Other versions
JPS5282248A (en
Inventor
黒崎四郎
松野幸一郎
滝本英之
田中豪太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP50157438A priority Critical patent/JPS587966B2/en
Publication of JPS5282248A publication Critical patent/JPS5282248A/en
Publication of JPS587966B2 publication Critical patent/JPS587966B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3644Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the coupling means being through-holes or wall apertures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means

Description

【発明の詳細な説明】 本発明は光伝送用ガラスファイバーの接続方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for connecting glass fibers for optical transmission.

光通信の分野では、光伝送用ガラスファイバーの接続は
実用上重要な課題である。
In the field of optical communications, connecting glass fibers for optical transmission is a practically important issue.

従来、この光伝送用ガラスファイバーの接続方法として
犬別して次の三つが (i)■型溝でのファイバーの接続 (ii)スリーブ内でのファイバーの接続(iii)コ
ネクター が検討されている。
Conventionally, the following three methods have been considered for connecting glass fibers for optical transmission: (i) connecting fibers in a ■-shaped groove; (ii) connecting fibers within a sleeve; and (iii) connectors.

しかし、これらの方法には、一長一短がある。However, these methods have advantages and disadvantages.

例えば (1)の欠点は、V型溝を設ける部材に制限があり、と
くにガラス材に高精度な■型溝を形成することは難しい
ことであり、 (1[)の欠点は、基本的にスリーブ内径とファイバー
外径に差が生じ、完全な一致が得られないことであり、 (iii)の欠点は、調整機構の具備により、形状が大
きく、複雑化し、また何等かの調整治具が必要となる。
For example, the disadvantage of (1) is that there are restrictions on the materials in which the V-shaped groove can be formed, and it is particularly difficult to form highly accurate ■-shaped grooves on glass materials; There is a difference between the inner diameter of the sleeve and the outer diameter of the fiber, and a perfect match cannot be obtained. It becomes necessary.

また、この他にも、従来、第1図a〜d及び第2図a,
bに示すような接続方法も提案されている。
In addition, conventionally, in addition to this, Fig. 1 a to d and Fig. 2 a,
A connection method as shown in b has also been proposed.

第1図a〜dに於いて、1は加熱されることにより収縮
する多孔性ガラス、2は多孔性ガラス1に設けられた孔
、A,Bはファイバー、3A,3B,3はクラツド、4
A,4B,4はコア、5は加熱器である。
In Figures 1 a to d, 1 is porous glass that shrinks when heated, 2 is a hole provided in porous glass 1, A, B are fibers, 3A, 3B, 3 are cladding, 4
A, 4B, 4 are cores, and 5 is a heater.

ここで、多孔性ガラスとは、米国特許第3,859,0
73号及び同第3,864,113号明細書に於いて記
されでハる火炎加水分解によるススの生成条件を適当に
することによって作る多孔性ガラスであってもよいし、
Vycoh等で知られているような分相性ガラスの溶解
→熱処理による分相→リーチングによる可溶性部分の除
去の工程によって作る多孔性ガラスであってもよい。
Here, porous glass refers to U.S. Patent No. 3,859,0
73 and No. 3,864,113, and may be a porous glass made by appropriate soot generation conditions by flame hydrolysis.
It may be a porous glass made by the process of melting a phase-splitting glass, separating the phase by heat treatment, and removing a soluble portion by leaching, as known by Vycoh et al.

要は高温加熱時に大きく収縮するものであればよい。In short, any material that shrinks significantly when heated at high temperatures is sufficient.

また、孔2はススの生成或は溶解時に耐火物を入れてガ
ラスが出来上った時点でその耐火物を引き抜くことによ
り、或は多孔性ガラスを作った後に形成するものである
Further, the holes 2 are formed by inserting a refractory material when soot is generated or melted and pulling out the refractory material when the glass is completed, or after the porous glass is produced.

また、孔2の形状は円形か多角形であるこ吉が望ましい
Further, the shape of the hole 2 is preferably circular or polygonal.

第1図a,b,cはこうして作った多孔性ガラス1の孔
2の中に伝送コアがそれぞれ4A,4B、クラツドがそ
れぞれ3A,3BからなるファイバーA及びBを入れて
突き合せることを示している。
Figures 1a, b, and c show that fibers A and B, each having a transmission core of 4A and 4B and a cladding of 3A and 3B, are inserted into the holes 2 of the porous glass 1 made in this manner and are butted together. ing.

なおこの多孔性ガラスは表面に多量の水分を吸着してい
るので、例えばホウケイ酸ガラスの時には200〜30
0℃等の適当な温度で処理してから及至は処理後真空雰
囲気等のような水分の少ない雰囲気に置いたものを使用
しなければならない。
Note that this porous glass adsorbs a large amount of moisture on its surface, so for example, in the case of borosilicate glass, the moisture content is 200 to 30%.
It is necessary to use a material that has been treated at an appropriate temperature such as 0° C. and then placed in a low moisture atmosphere such as a vacuum atmosphere after the treatment.

第1図dは、第1図aのように準備したセットを加熱器
5により高温に加熱して収縮させ第1図aの孔2をつぶ
したところを示している。
FIG. 1d shows the set prepared as shown in FIG. 1a being heated to a high temperature by a heater 5 to shrink and crush the hole 2 shown in FIG. 1a.

この加熱器としては電気炉,火炎その他何であってもよ
い。
This heater may be an electric furnace, a flame, or anything else.

例えばSiO2 15%,B2O3 30%,Na2O
5%の組成のホウケイ酸ガラスを溶解→分相→溶出して
作った多孔性ガラスを300℃まで徐々に加熱して4時
間程保持したものを用いた時、900〜1150℃まで
高温に加熱すること、により15〜35係も収縮する。
For example, SiO2 15%, B2O3 30%, Na2O
When porous glass made by melting → phase separation → elution of borosilicate glass with a composition of 5% was gradually heated to 300℃ and held for about 4 hours, it was heated to a high temperature of 900 to 1150℃. By doing this, the 15th to 35th sections also contract.

このように多孔性ガラスは収縮するのでファイバーA,
Bは端面をつき合せた才ま固着される。
As porous glass shrinks in this way, fiber A,
B is fixed with its end faces abutting each other.

この高温加熱の時には、一般にファイバーの強度は表面
を高温に露らすと弱くなるという点に注意を払わねばな
らない。
When heating at this high temperature, attention must be paid to the fact that the strength of the fiber generally weakens when the surface is exposed to high temperatures.

例えば多孔性ガラスに被われないファイバー表面部分は
あまり高温に加熱してはいけない。
For example, the surface of the fiber that is not covered by the porous glass should not be heated to too high a temperature.

第2図a,bでは、光学的活性の部分の屈折率に近い屈
折率を有する多孔性ガラス2を用いている。
In FIGS. 2a and 2b, a porous glass 2 with a refractive index close to that of the optically active portion is used.

この場合ファイバーA,Bの間にコア24A,24Bの
屈折率と同じ程度の屈折率からなる薄いガラスの部分2
6を間にはさみこんでおくことも出来る。
In this case, a thin glass portion 2 having a refractive index similar to that of the cores 24A and 24B is formed between the fibers A and B.
You can also put 6 in between.

この方法の変更例としては、ガラスの薄層26のみが、
コア部の屈折率と同等であり、それ以外はそれとは別の
多孔性ガラスからなるようにすることも出来る。
In a variation of this method, only the thin layer of glass 26 is
The refractive index of the core portion is the same as that of the core portion, and the other portions may be made of a different porous glass.

第1図a〜d、第2図a,bに示した接続方法は多孔性
ガラスを用いてファイバーを接続しているものであるか
ら、熱のかかる場所に於いても接続部の寿命を長いもの
とすることができ(ファイバーと多孔性ガラスとの膨張
係数をほぼ等しくすることができる為)、且つ接続部の
構成を簡易,小型化できる利点があるが、単に多孔性ガ
ラスを収縮させることにより、ファイバーを接続するよ
うにしているものであるから、接続部の強度、信頼性に
問題があった。
The connection methods shown in Figures 1a to d and Figures 2a and b use porous glass to connect the fibers, so the lifespan of the connections can be extended even in hot locations. (because the expansion coefficients of the fiber and porous glass can be made almost equal), and the structure of the connection part can be simplified and miniaturized. However, it is possible to simply shrink the porous glass. Since the fibers are connected by the same method, there are problems with the strength and reliability of the connection part.

本発明は前述の如き欠点を改善したものであり、その目
的は接続部の強度,信頼性を向上させることにある。
The present invention has improved the above-mentioned drawbacks, and its purpose is to improve the strength and reliability of the connection.

以下実施例について詳細に説明する。第3図a〜dは本
発明の実施例の説明図であり、以下同図a〜dを参照し
て説明する。
Examples will be described in detail below. FIGS. 3A to 3D are explanatory diagrams of an embodiment of the present invention, and the following description will be made with reference to FIGS. 3A to 3D.

まずガラスファイバー31A,Bをそれらファイバのガ
ラス及び多孔性ガラス33と溶着し易くかつ溶融温度が
低くそして必要な場合には屈折率がファイバー中の光活
性部分の屈折率と同等な値を示すガラスからなるパイプ
32に挿入する。
First, the glass fibers 31A, B are made of a glass that is easy to weld with the glass of the fibers and the porous glass 33, has a low melting temperature, and, if necessary, has a refractive index similar to that of the photoactive portion in the fiber. Insert it into the pipe 32 consisting of.

(第3図a又はb) これらを多孔質ガラスからなるパイプ33に入れて加熱
する。
(Fig. 3 a or b) These are placed in a pipe 33 made of porous glass and heated.

ここで必要なガラス32が溶融して溶け出す孔34を設
けておいてもよい。
A hole 34 may be provided in which the necessary glass 32 melts and melts.

(第3図C) 加熱の結果多孔性ガラス33は収縮して第3図dのよう
になる。
(FIG. 3C) As a result of heating, the porous glass 33 contracts and becomes as shown in FIG. 3D.

これらの方法において多孔質ガラスからなるテーパ付パ
イプを種々に組み合せたものを利用することも出来る。
In these methods, it is also possible to use various combinations of tapered pipes made of porous glass.

さらに多孔質ガラスとファイバー間にはこれらガラスと
膨張係数が近い他のガラス粉末等を詰め込むようにして
もよい。
Furthermore, other glass powder or the like having a coefficient of expansion close to that of these glasses may be packed between the porous glass and the fibers.

或いは多孔質ガラス全体を樹脂等でモールドしてもよい
Alternatively, the entire porous glass may be molded with resin or the like.

これまでの説明では、ファイバ一一本同志の接続につい
て説明したが、これらの接続方法は多孔質ガラスに設け
る孔を数多くとっても同様に可能である。
In the explanations so far, the connection of individual fibers has been explained, but these connection methods are also possible even if a large number of holes are provided in the porous glass.

次に本発明の実施例を具体的数値を掲げて説明する。Next, examples of the present invention will be described using specific numerical values.

StO255%,GeO2 10%,B2 O327%
,Na2O6%,Al2 O3 2%からなるガラスを
1400℃で溶解し、このガラスを600μmφの白金
線のまわりに巻き付け5mmφの太さのロツドを作り、
その後白金を引き抜いて、内径600μmφ,外径5m
mφ,長さ200mmの多孔性ガラス管を作成した。
StO2 55%, GeO2 10%, B2 O3 27%
, 6% Na2O, and 2% Al2O3 was melted at 1400°C, and this glass was wound around a 600μmφ platinum wire to make a 5mmφ thick rod.
After that, the platinum was pulled out and the inner diameter was 600μmφ and the outer diameter was 5m.
A porous glass tube with a diameter of 200 mm and a length of 200 mm was prepared.

この多孔質ガラス管を550℃で50時間熱処理して相
分離した後、3N−HCI(100℃)により溶出を行
ってポーラスにした。
This porous glass tube was heat-treated at 550° C. for 50 hours to cause phase separation, and then eluted with 3N-HCI (100° C.) to make it porous.

このボーラスなガラス管は徐々に300’Cまで加熱し
て脱水した。
This bolus glass tube was gradually heated to 300'C to dehydrate it.

次にB2 O3 20%,Ge O220%,SiO2
60%からなるガラスを溶融して紡糸することにより
作成した内径150μmφ,外径500μmφ,長さ1
00mmのガラス管を前記多孔質ガラス管内に設置した
Next, B2 O3 20%, Ge O2 20%, SiO2
Created by melting and spinning 60% glass, inner diameter 150 μmφ, outer diameter 500 μmφ, length 1
A 00 mm glass tube was placed inside the porous glass tube.

次に前記ガラス管内に130μmφのファイバーを2本
入れ付き合わせた。
Next, two fibers each having a diameter of 130 μm were inserted into the glass tube and brought together.

次いでこの多孔性ガラス管の外側を1100℃に加熱し
て収縮させた。
Next, the outside of this porous glass tube was heated to 1100° C. to shrink it.

この時B2O3−Ge O2−SiO2 ガラスは溶融
して多孔性ガラス管の孔内を伝わって流れ出した。
At this time, the B2O3-GeO2-SiO2 glass melted and flowed out through the pores of the porous glass tube.

このようにして作ったファイバーの接続場所の伝送損失
0.2dBという極めて良好な結果が得られた。
Very good results were obtained, with a transmission loss of 0.2 dB at the connection location of the fiber made in this manner.

以上説明したように、本発明は多孔性ガラスに設けられ
た孔に挿入されたファイバーと多孔性ガラスとの間に、
ファイバーと溶着しやすい低溶融温度を有するガラス層
を設け、この後、多孔性ガラスを加熱するものであり、
加熱時、前記ガラス層が溶融して前記ファイバーと溶融
して前記ファイバーと溶着するものであるから、第1図
a〜d及び第2図a,bに示した従来方法に比べて接続
部の信頼性,強度を向上できる利点がある。
As explained above, the present invention provides a method for connecting fibers inserted into holes provided in porous glass and porous glass.
A glass layer with a low melting temperature that is easy to weld with fibers is provided, and then the porous glass is heated.
When heated, the glass layer melts and fuses with the fibers to weld them together, so compared to the conventional method shown in FIGS. 1a to d and 2a and b, the connection part It has the advantage of improving reliability and strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜d、第2図a,bは従来例の説明図、第3図
a〜dは本発明の実施例の説明図である。 A,B,31A,31Bはファイバー,1,21,33
は多孔性ガラス、2,34は孔.3A,3B,3,23
A,23Bはクラツド、4A,4B,4,24A,24
Bはコア、5,25,35は加熱器、26はガラス膜、
32はガラスパイプである。
1A to 1D and 2A and 2B are explanatory diagrams of a conventional example, and FIGS. 3A to 3D are explanatory diagrams of an embodiment of the present invention. A, B, 31A, 31B are fibers, 1, 21, 33
is porous glass, and 2 and 34 are holes. 3A, 3B, 3, 23
A, 23B is clad, 4A, 4B, 4, 24A, 24
B is a core, 5, 25, 35 are heaters, 26 is a glass membrane,
32 is a glass pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔性ガラスに設けられた孔内に、2本の光伝送用
ガラスファイバーを突き合わせて配置すると共に、前記
多孔性ガラスと光伝送用ガラスファイバーとの間に、前
記光伝送用ガラスファイバーと溶着し易い低溶融温度を
有するガラス層を設け、次いで前記多孔性ガラスの外周
を加熱して前記ガラス層を溶融させると共に、前記多孔
性ガラスを収縮させ、前記光伝送用ガラスファイバーを
固着することを特徴とする光伝送用ガラスファイバーの
接続方法。
1. Two optical transmission glass fibers are arranged in abutted relation to each other in a hole provided in the porous glass, and the optical transmission glass fiber is welded between the porous glass and the optical transmission glass fiber. A glass layer having a low melting temperature that is easy to melt is provided, and then the outer periphery of the porous glass is heated to melt the glass layer, shrink the porous glass, and fix the optical transmission glass fiber. A unique method for connecting glass fibers for optical transmission.
JP50157438A 1975-12-27 1975-12-27 Hikari Densouyo Glass Fiber Expired JPS587966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50157438A JPS587966B2 (en) 1975-12-27 1975-12-27 Hikari Densouyo Glass Fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50157438A JPS587966B2 (en) 1975-12-27 1975-12-27 Hikari Densouyo Glass Fiber

Publications (2)

Publication Number Publication Date
JPS5282248A JPS5282248A (en) 1977-07-09
JPS587966B2 true JPS587966B2 (en) 1983-02-14

Family

ID=15649641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50157438A Expired JPS587966B2 (en) 1975-12-27 1975-12-27 Hikari Densouyo Glass Fiber

Country Status (1)

Country Link
JP (1) JPS587966B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824650A (en) * 2019-11-27 2020-02-21 朱立怀 Home decoration optical fiber positioning device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919510A (en) * 1989-05-04 1990-04-24 Corning Incorporated Optical fiber connector and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051335A (en) * 1973-09-05 1975-05-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051335A (en) * 1973-09-05 1975-05-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824650A (en) * 2019-11-27 2020-02-21 朱立怀 Home decoration optical fiber positioning device

Also Published As

Publication number Publication date
JPS5282248A (en) 1977-07-09

Similar Documents

Publication Publication Date Title
US4490163A (en) Method of manufacturing a fiber-optical coupling element
US4948217A (en) Optic coupler
JPS6240404A (en) Low loss fiber optic coupler and manufacture thereof
JPS6240403A (en) Method and apparatus for forming fiber optic coupler
JPS6022652B2 (en) Manufacturing method of glass fiber for optical transmission
JPS587966B2 (en) Hikari Densouyo Glass Fiber
JPS627130B2 (en)
JPS6228098B2 (en)
JPS63217314A (en) Production of optical branching filter
JP2925173B2 (en) Fiberscope
JPS6246931A (en) Production of base material for optical fiber
JPH0776104B2 (en) Method of manufacturing constant polarization optical fiber
JPH0723228B2 (en) Method of manufacturing constant polarization optical fiber
JPS60122744A (en) Manufacture of simple-mode fiber
JPS5884137A (en) Manufacture of optical fiber retaining polarized light
JPS596264B2 (en) Optical fiber spinning method
JPS59185308A (en) Production of coupler
JPS60264341A (en) Manufacture of optical fiber having index
JPH0364707A (en) Manufacture of spot size converting optical fiber
JPH0756027A (en) Production of bundle type optical fiber end part
JP2827476B2 (en) Manufacturing method of preform for polarization maintaining optical fiber
JPH0130768B2 (en)
JPS6234695B2 (en)
JPS6146414B2 (en)
JPH0221563B2 (en)