JPS5884137A - Manufacture of optical fiber retaining polarized light - Google Patents

Manufacture of optical fiber retaining polarized light

Info

Publication number
JPS5884137A
JPS5884137A JP56178942A JP17894281A JPS5884137A JP S5884137 A JPS5884137 A JP S5884137A JP 56178942 A JP56178942 A JP 56178942A JP 17894281 A JP17894281 A JP 17894281A JP S5884137 A JPS5884137 A JP S5884137A
Authority
JP
Japan
Prior art keywords
glass
pipe
optical fiber
elliptical
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56178942A
Other languages
Japanese (ja)
Inventor
Tomoo Yanase
柳瀬 知夫
Kanze Tanigawa
谷川 侃是
Hiroshi Honmo
本望 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56178942A priority Critical patent/JPS5884137A/en
Publication of JPS5884137A publication Critical patent/JPS5884137A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To manufacture an optical fiber retaining polarized light sufficiently and causing no large loss when coupled to laser, etc. by putting a glass rod with a high refractive index in an elliptical glass pipe having a glass layer formed on the inner wall and by making the pipe solid. CONSTITUTION:A high purity quartz glass layer 12 contg. B2O3 or the like is formed on the inner wall of a quartz glass pipe 11 having a circular hollow part by a chemical vapor deposition method, and a glass pipe having an elliptical hollow part is formed by making the internal pressure of the pipe 11 lower than the external pressure and heating the pipe 11. A high-purity quartz glass rod 14 contg. GeO2 or the like and having a refractive index higher than that of the layer 12 is put in the hollow part of the formed glass pipe, and the pipe is shrunk by heating from the outside of fill the gap between the pipe and the rod 14. Thus, a base material for an optical fiber having an elliptical clad and a circular core is obtd. By heating and drawing the rodlike glass as the base material, an optical fiber is manufactured.

Description

【発明の詳細な説明】 本発明は光通信、光センサ、等で用いられる偏光保存光
ファイバの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a polarization-maintaining optical fiber used in optical communications, optical sensors, and the like.

偏光を係着したまま光を導波する光ファイバは1周波数
安定化レーザとともに、将来の光ヘテロダイン通信を可
能にする鍵として、開発の必要性は高い。
There is a strong need for the development of optical fibers that guide light while maintaining polarization, as they are the key to enabling future optical heterodyne communications, along with single-frequency stabilized lasers.

従来開発されてきた偏光保存光ファイバは。Polarization preserving optical fibers have been developed so far.

通称内付けCVD法(内封は化学蒸着法)と呼ばれる方
法で9円形の中空部を有するガラス管の内壁に低屈折率
のガラス層と、高屈折率のガラス層の2層を形成し、さ
らにガラス管の内圧をガラス管の外圧よシ低くしかつガ
ラス管を加熱し楕円形の中空部を有するガラス管に変形
し。
Two layers, a glass layer with a low refractive index and a glass layer with a high refractive index, are formed on the inner wall of a glass tube having 9 circular hollow parts by a method commonly called internal CVD method (inner sealing is chemical vapor deposition method). Furthermore, the internal pressure of the glass tube is made lower than the external pressure of the glass tube, and the glass tube is heated to transform it into a glass tube having an elliptical hollow portion.

そのままさらに加熱し中実化し棒状の光フアイバプリフ
ォームを得、さらに線引きし製造された。上記方法ソ襄
′造された光ファイバは、コアが楕円形であシ9通常長
径が10ミクロンメートル、短径が1.5ミクロンメー
トルになるように製作される。このような楕円形コアを
有する光ファイバは、偏光は良く保存出来るが、その形
状が楕円形のため、レーザとの結合や、光フアイバ同志
の結合の際大きな損失が発生しやすい問題点かあづた。
The product was further heated and solidified to obtain a rod-shaped optical fiber preform, which was then drawn and produced. The optical fiber produced by the above method has an elliptical core and is usually manufactured with a major axis of 10 micrometers and a minor axis of 1.5 micrometers. Optical fibers with such elliptical cores can preserve polarization well, but because of their elliptical shape, there is a problem that large losses are likely to occur when coupling with a laser or when coupling optical fibers together. Zuta.

したがって本発明の目的は、偏光を良く保存し、かつレ
ーザとの結合や光フアイバ同志の結合の際大きな損失が
発生しない偏光保存光フ。
Therefore, an object of the present invention is to provide a polarization-preserving optical fiber that preserves polarization well and does not cause large losses when coupled with a laser or between optical fibers.

イパの製造方法全提供するものである。The entire method of manufacturing IPA is provided.

本発明によれば9円形の中空部を有するガラス管の内壁
に化学蒸着法によりガラス1層を形成する第1の工程と
、前記第1の工程で形成されたガラス管の内圧をガラス
管の外圧より低くしかつガラス管を加熱し楕円形の中空
部を有するガラス管に変形する第2の工程と、前記楕円
形の中空部を有するガラス管の内部に、第1の工程によ
って形成されたガラス層の屈折率に比べて高い屈折率を
有するガラス棒を挿入する第3の工程と、前記楕円形の
中空部を有するガラス管と前記挿入されたガラス棒の間
の空隙が埋るようガラス管を加熱する第4の工程とを含
むことを特徴とする偏光保存光ファイバの製造方法が得
られる。
According to the present invention, the first step is to form one layer of glass by chemical vapor deposition on the inner wall of a glass tube having nine circular hollow parts, and the internal pressure of the glass tube formed in the first step is controlled. a second step of heating the glass tube at a temperature lower than the external pressure and transforming it into a glass tube having an elliptical hollow portion; a third step of inserting a glass rod having a refractive index higher than that of the glass layer; and a third step of inserting a glass rod having a refractive index higher than that of the glass layer, and inserting glass so as to fill the gap between the glass tube having the oval hollow part and the inserted glass rod. A fourth step of heating the tube is obtained.

次に図面を用いて本発明を説明する。Next, the present invention will be explained using the drawings.

第1図は、従来法によって製作された偏光保存光ファイ
バの断面形状を示した図である。図中、11は石英ガラ
ス管であり、12は化学蒸着法によって形成されたクラ
ッド部、13は化学蒸着法によって形成されたコア部で
ある。従来法では、前述したように円形の中空部を有す
る出発石英管の内壁に、クラッド部12に相当するガラ
ス膜とコア部13に相当するガラス膜を形成した後、管
内圧を外圧より低くし加熱中実自 する光ファイバは、従来からよく知られているように、
偏波面は良く保存される。しかし、このような楕円形コ
アを有する偏波面保存光ファイバは光の強度分布も楕円
形をしているため。
FIG. 1 is a diagram showing the cross-sectional shape of a polarization-maintaining optical fiber manufactured by a conventional method. In the figure, 11 is a quartz glass tube, 12 is a cladding portion formed by chemical vapor deposition, and 13 is a core portion formed by chemical vapor deposition. In the conventional method, as described above, after forming a glass film corresponding to the cladding part 12 and a glass film corresponding to the core part 13 on the inner wall of the starting quartz tube having a circular hollow part, the pressure inside the tube is lowered than the external pressure. As is well known, optical fibers that undergo heating are
The plane of polarization is well preserved. However, in a polarization maintaining optical fiber having an elliptical core, the light intensity distribution is also elliptical.

レーザと結合したり、光フアイバ同志を接続する場合損
失が大きくなりやすい。
When coupling with a laser or connecting optical fibers together, losses tend to increase.

第2図は9本発、明によって製作された偏光保存光ファ
イバの断面形状を示した図である。図中、14は後述す
るように挿入されたガラス棒からなるコア部である。本
発明で製作される偏光保存光ファイバの断面形状は、コ
ア部14はほぼ円形であるがクラッド部12は楕円形に
なっている。このような楕円形クラッド円形コア光ファ
イバは、クラッドの非対称性に起因するコアに対する歪
力により、コアの複屈折効果を強める。前記効果により
、楕円形クラッド円形コア光ファイバは偏波面を保存す
ることは従来から予想されていたが、その製造方法がな
いために実現されなかった。このような光コアイノくけ
、光あ強度分布がほぼ円形であるため、レーザと結合し
たり、光フアイバ同志を接続する場合でも、損失はそれ
ほど大きくならない。
FIG. 2 is a diagram showing the cross-sectional shape of a polarization-maintaining optical fiber manufactured by the present invention. In the figure, reference numeral 14 indicates a core portion made of a glass rod inserted as described later. The cross-sectional shape of the polarization-maintaining optical fiber manufactured according to the present invention is such that the core portion 14 is approximately circular, but the cladding portion 12 is elliptical. Such elliptical clad circular core optical fibers enhance the birefringence effect of the core due to strain forces on the core due to the asymmetry of the cladding. Due to the above effect, it has been expected that an elliptical clad circular core optical fiber preserves the plane of polarization, but this has not been realized due to the lack of a manufacturing method. Since the light intensity distribution of such an optical core is approximately circular, the loss does not become so large even when coupled with a laser or when connecting optical fibers together.

第6図(a)〜(、)は1本発明による各工程における
断面形状を表わした図である。図中11は出発石英管、
12はクラッド部に相当するガラス。
FIGS. 6(a) to 6(,) are diagrams showing cross-sectional shapes in each step according to the present invention. In the figure, 11 is the starting quartz tube;
12 is glass corresponding to the cladding portion.

14はコア部に相当するガラスである。本発明の第1の
工程によって図(、)から図(b)のようにガラス管1
1の内側にガラス層12が形成され、第2の工程によっ
てガラス管の形状は図(C)のように楕円形となる。次
に第3の工程で図(d)のようにコアに相当するガラス
棒14が挿入され、さらに第4の工程によって図(、)
のようにガラス管の外側から加熱収縮され楕円クラッド
円形コア光ファイバが形成される。上記各工程を経て製
作された棒状ガラスはさらに加熱引伸され光ファイバと
なる。上記方法で製作された光コアイノ(は、前述した
ように楕円形クラッドとほぼ円形なコアを有する。 ゛ 次に2本発明によって、実際に製作された光ファイバの
製造条件を説明する。第5図(a)に示される出発石英
管は、外径14■、内径12 mm 。
14 is glass corresponding to the core portion. According to the first step of the present invention, a glass tube 1 is prepared as shown in FIGS.
A glass layer 12 is formed inside the glass tube 1, and in the second step, the shape of the glass tube becomes an ellipse as shown in Figure (C). Next, in the third step, the glass rod 14 corresponding to the core is inserted as shown in Figure (d), and then in the fourth step, as shown in Figure (,).
The glass tube is heated and shrunk from the outside to form an elliptical clad circular core optical fiber. The rod-shaped glass produced through the above steps is further heated and stretched to become an optical fiber. The optical core fiber manufactured by the above method has an elliptical cladding and a substantially circular core as described above.Next, the manufacturing conditions of the optical fiber actually manufactured according to the present invention will be explained.Fifth. The starting quartz tube shown in figure (a) has an outer diameter of 14 mm and an inner diameter of 12 mm.

長さ1mで9通常の内付は化学蒸着法で用いられるガラ
ス旋盤に装着される。次に、132o3i約2%含有す
る高純度石英ガラスが内付は化学蒸着法で約0.5層m
の厚み・lなるまで堆積し、第1の工程を行なう。次に
石英管内圧を外圧に対し約10胴H20程度低くシ99
石英管1700℃になるまで加熱し、第2の工程を行な
う。次に。
A typical internal fitting of 1 meter in length is mounted on a glass lathe used in chemical vapor deposition. Next, high-purity quartz glass containing about 2% 132o3i is applied internally by chemical vapor deposition to a thickness of about 0.5 layer.
The film is deposited to a thickness of .l, and the first step is performed. Next, lower the internal pressure of the quartz tube by about 10 H20 compared to the external pressure.99
The quartz tube is heated to 1700° C. and the second step is performed. next.

Gem、、 f約5%含有する外径0.5咽の高純度石
英ガラス棒を前記楕円形管内に挿入し、第3の工程を行
なう。次に再び石英管を1800℃になるまで加熱し9
石英管と挿入石英ガラス棒の間の中空部が消滅するよう
第4の工程を行なう。ここで用いられるGe02f約0
%含有する高純度石英ガラス棒は、良く知られているス
ート法で製造される。スート法とは、酸水素炎中にGe
Ct。
A high-purity quartz glass rod with an outer diameter of 0.5 mm containing about 5% of Gem, f is inserted into the oval tube, and the third step is performed. Next, heat the quartz tube again until it reaches 1800℃.
A fourth step is performed so that the hollow space between the quartz tube and the inserted quartz glass rod disappears. Ge02f used here is about 0
% of high purity quartz glass rods are manufactured by the well-known soot method. The soot method refers to Ge in an oxyhydrogen flame.
Ct.

と5iC44%含む気体を流し、加熱加水分解反応によ
って生成しだGeO2とSiO□の混合スートヲ軸方向
に成長させ、しかる後に高温の焼結炉に導入し透明ガラ
ス棒を得る方法である。上記第4の工程を経て製作主れ
た棒状ガラス母材の外径は約9閣、クラッド長径6. 
Otas +クラッド短径3關、コア径約0.5咽であ
り、さらに加熱引伸され外径125μm、コア径7μm
のファイバとなった。
In this method, a gas containing 44% of 5iC and 5iC is flowed to grow the mixed soot of GeO2 and SiO□ produced by a heated hydrolysis reaction in the axial direction, and then introduced into a high-temperature sintering furnace to obtain a transparent glass rod. The outer diameter of the rod-shaped glass base material produced through the fourth step is approximately 9 mm, and the major axis of the cladding is 6 mm.
Otas + 3 short diameters of the cladding, and a core diameter of about 0.5 mm, and is further heated and stretched to have an outer diameter of 125 μm and a core diameter of 7 μm.
fiber.

本実施例では、クラッドのドーパントとじてB2O3,
コアのドーパントとしてGe02f用いたが9本発明が
ドーパントの種類を限定しないのは明らかである。
In this example, the cladding dopant is B2O3,
Although Ge02f was used as the core dopant, it is clear that the present invention does not limit the type of dopant.

本実施例では、コアに用いられるガラス棒としてスート
法によっ−て製作されたガラス棒を利用しだが、プラズ
マ法でも良く本発明が前記ガラス棒の製造方法を限定し
ないのは明らかである。
In this embodiment, a glass rod manufactured by the soot method is used as the glass rod used for the core, but it is clear that the present invention does not limit the method of manufacturing the glass rod, although a plasma method may also be used.

以上の説明で明らかなように2本発明を使用することに
より、偏光を良く保存し、かつレー
As is clear from the above explanation, by using the present invention, polarization can be well preserved and the laser

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来法によって製作された偏光保存光ファイ
バの断面形状を示しだ図、第2図は。 本発明によって製作された偏光保存光ファイバの断面形
状を示した図、第3図(a)〜(e)は9本発明の各工
程時におけるファイバ母材の断面形状を示した図である
。 第1図 7 序2図
FIG. 1 shows the cross-sectional shape of a polarization-maintaining optical fiber manufactured by the conventional method, and FIG. FIGS. 3A to 3E are diagrams showing the cross-sectional shape of a polarization-maintaining optical fiber manufactured according to the present invention, and FIGS. 3A to 3E are diagrams showing the cross-sectional shape of the fiber preform at each step of the present invention. Figure 1 7 Introduction 2

Claims (1)

【特許請求の範囲】 1、円形の中空部を有するガラス管の内壁に化学蒸着法
によりガラス層を形成する第1の工程と。 前記第1の工程で形成されたガラス管の内圧をガラス管
の外圧より低くしかつガラスWt加熱し楕円形の中空部
を有するガラス管に変形する第2の工程と、前記楕円形
の中空部を有するガラス管の内部に、前記ガラス・層の
屈折率に比べて高い屈折率を有するガラス棒を挿入する
第3の工程と、前記楕円形の中空部を有するガラス管と
前記挿入されたガラス棒の間σ空隙が埋るようガラス管
を加熱する第4の工程とを含むことを特徴とする偏光保
存光ファイバの製造方法。 以下余白
[Scope of Claims] 1. A first step of forming a glass layer on the inner wall of a glass tube having a circular hollow portion by chemical vapor deposition. a second step of reducing the internal pressure of the glass tube formed in the first step to be lower than the external pressure of the glass tube and heating the glass Wt to transform it into a glass tube having an elliptical hollow portion; a third step of inserting a glass rod having a refractive index higher than the refractive index of the glass layer into the glass tube having the elliptical hollow portion; and a fourth step of heating the glass tube so that the σ gaps between the rods are filled. Below margin
JP56178942A 1981-11-10 1981-11-10 Manufacture of optical fiber retaining polarized light Pending JPS5884137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56178942A JPS5884137A (en) 1981-11-10 1981-11-10 Manufacture of optical fiber retaining polarized light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56178942A JPS5884137A (en) 1981-11-10 1981-11-10 Manufacture of optical fiber retaining polarized light

Publications (1)

Publication Number Publication Date
JPS5884137A true JPS5884137A (en) 1983-05-20

Family

ID=16057333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56178942A Pending JPS5884137A (en) 1981-11-10 1981-11-10 Manufacture of optical fiber retaining polarized light

Country Status (1)

Country Link
JP (1) JPS5884137A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924967U (en) * 1982-08-06 1984-02-16 日産自動車株式会社 Fuel filtration device for diesel engine
JPS5926349U (en) * 1982-08-12 1984-02-18 日本電気株式会社 printer
JPS5927158U (en) * 1982-08-12 1984-02-20 三菱電機株式会社 Engine ignition power distributor
JPS5969438A (en) * 1982-10-15 1984-04-19 Hitachi Ltd Manufacture of base material for optical fiber
JP2006265095A (en) * 2005-03-23 2006-10-05 Furukawa Electric North America Inc Optical fiber preform with overclad tubes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924967U (en) * 1982-08-06 1984-02-16 日産自動車株式会社 Fuel filtration device for diesel engine
JPS5926349U (en) * 1982-08-12 1984-02-18 日本電気株式会社 printer
JPS5927158U (en) * 1982-08-12 1984-02-20 三菱電機株式会社 Engine ignition power distributor
JPS5969438A (en) * 1982-10-15 1984-04-19 Hitachi Ltd Manufacture of base material for optical fiber
JP2006265095A (en) * 2005-03-23 2006-10-05 Furukawa Electric North America Inc Optical fiber preform with overclad tubes
EP1712934A1 (en) * 2005-03-23 2006-10-18 Furukawa Electric North America Inc. Optical fiber preform with overclad tubes
US7641969B2 (en) 2005-03-23 2010-01-05 Fletcher Iii Joseph P Optical fiber preform with overclad tubes

Similar Documents

Publication Publication Date Title
FI81209B (en) ENMODS OPTICAL VAOGROERSFIBER OCH FOERFARANDET FOER FRAMSTAELLNING AV DESS.
CN103936277B (en) Multi-core optical fiber manufacturing method
US4360371A (en) Method of making polarization retaining single-mode optical waveguide
US4834786A (en) Method of manufacturing a preform for asymmetrical optical fiber
JPH044986B2 (en)
CN111443423B (en) Radiation-resistant polarization-maintaining optical fiber and preparation method and application thereof
JPS5884137A (en) Manufacture of optical fiber retaining polarized light
JPH01153551A (en) Production of optical fiber having definite polarization
WO2011001850A1 (en) Method for manufacturing photonic bandgap fibre preform and method for manufacturing a photonic bandgap fibre
JPS627130B2 (en)
JPS6246931A (en) Production of base material for optical fiber
JPH0776104B2 (en) Method of manufacturing constant polarization optical fiber
JPS60186432A (en) Manufacture of polarization-maintaining fiber
JPS6150887B2 (en)
JPH0723228B2 (en) Method of manufacturing constant polarization optical fiber
JPS60122744A (en) Manufacture of simple-mode fiber
JPH01160840A (en) Preform for dispersion-shift optical fiber and production thereof
JPS598634A (en) Preparation of base material for optical fiber having retained plane of polarization
CN114075036B (en) Ultralow-loss optical fiber preform and manufacturing method thereof
JPH0212887B2 (en)
JPH01160838A (en) Production of preform for dispersion-shift optical fiber
JPS5855340A (en) Manufacture of optical fiber retaining polarized light
JP2827231B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JPH0961645A (en) Production of multicore optical fiber perform
JPS6212180B2 (en)