JPS587868A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS587868A
JPS587868A JP10588581A JP10588581A JPS587868A JP S587868 A JPS587868 A JP S587868A JP 10588581 A JP10588581 A JP 10588581A JP 10588581 A JP10588581 A JP 10588581A JP S587868 A JPS587868 A JP S587868A
Authority
JP
Japan
Prior art keywords
silicon
film
substrate
dielectric
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10588581A
Other languages
Japanese (ja)
Inventor
Nobuhiro Endo
遠藤 伸裕
Yukinori Kuroki
黒木 幸令
Yukinobu Tanno
丹野 幸悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10588581A priority Critical patent/JPS587868A/en
Priority to US06/395,110 priority patent/US4637127A/en
Priority to DE19823225398 priority patent/DE3225398A1/en
Publication of JPS587868A publication Critical patent/JPS587868A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce the size of a semiconductor device and to eliminate diffusion capacity of the device by epitaxially growing a single crystal Si thicker than the thickness of a dielectric on an amorphous dielectric formed partly on a substrate, and forming an insulated gate FET with the Si as a base. CONSTITUTION:An oxidized film 32 is fored on a substrate 31 and is patterned. Si is epitaxially grown on the film, and a smooth P type single crystal Si film 33 is accumulated on the Si. A gate oxidized film 34 is formed, an impurity 35 is injected, and a gate electrode 35 is then formed. Arsenic ions are implanted, thereby forming source and drain region 37. An interlayer insulating film 38 is accumulated. In this manner, the size of the element is shortened, and diffusion capacity is reduced.

Description

【発明の詳細な説明】 本発明は、半導体装置41KI!l縁ゲート型トランジ
スタおよびそれを少くとも一部に含む半導体集積回路の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a semiconductor device 41KI! The present invention relates to an L-edge gate type transistor and a method of manufacturing a semiconductor integrated circuit including the same at least in part.

従来、一般的な絶縁ゲート製電界効果トランジスタはシ
リコン単結晶基板表面に素子間分離領域と能動領域とを
平面的に設け、能動領域KFiソース・ドレインとする
PN接合部分およびゲートとする絶縁膜部分をそれぞれ
形成していた。しかるにこの従来構造では、ドレイン拡
散領域と基板間とのPN接合容量が存在するため、トラ
ンジスタのスイッチング速tは一合容量がなくならない
限プ、その容量の大きさによりて制限されてしまい、原
理的に素子の高速化O障害となっていた。このため基板
とドレイン関の接合容量を減少させることKよって高速
化を目指す一方法として5O8(5ilicon on
 jsapphlre )基板を使用し、基板とドレイ
ン関を誘電的に分離することが以前から提案されている
が、異種基板上のエピタキシャルシリコン中に高密度の
欠陥等が存在してシシ、この欠陥t−帰因とした接合リ
ークが発生し易い等の理由で実用上関連となってい九〇
一方部分的に誘電体で榎われたシリコン基板にシリコン
のエビタキ怖ル成−&を適用し、シリコン基板表面に単
結晶、誘電体表面に多結晶のシリコンを堆積しておき、
MO8電界効果トランジスタのソース・ドレインを誘電
体上の多結晶シリコンに形成した半導体装置の構造がR
OMOS (Buried Qxld* MD S )
としてアイ・イー・イー・イートランザクシーン オン
エレクト醇ン デバイシズ ED−23巻10号、10
00頁(I  EEE   Transaetlons
  on  El@ctron  Devic@sμ佳
ED−231190(1976)KjII!案された0
このネル領域等に使用することは困難であり、素子設計
の点で単結晶と多結晶間O遷移部分管考慮する等、不部
会な場合が多く、微細化技術の適用を困難としていた。
Conventionally, a general insulated gate field effect transistor has an isolation region and an active region provided in a plane on the surface of a silicon single crystal substrate. were formed respectively. However, in this conventional structure, since there is a PN junction capacitance between the drain diffusion region and the substrate, the switching speed t of the transistor is limited by the size of the capacitance unless the total capacitance disappears. This has been a hindrance to increasing the speed of devices. For this reason, one way to increase speed by reducing the junction capacitance between the substrate and the drain is to use 5O8 (5ilicon on
It has been proposed for some time to dielectrically separate the substrate and drain connections by using a t This has become a practical problem due to the tendency for junction leakage to occur. Single crystal silicon is deposited on the surface and polycrystal silicon is deposited on the dielectric surface.
The structure of a semiconductor device in which the source and drain of an MO8 field effect transistor are formed of polycrystalline silicon on a dielectric material is R.
OMOS (Buried Qxld* MD S)
As I.E.E.Transaccene OnElectronic Devices ED-23 No.10, 10
Page 00 (I EEE Transaetrons
on El@ctron Device@sμ ED-231190 (1976) KjII! proposed 0
It is difficult to use it in this channel region, and in many cases it is not possible to use it in element design, such as considering the O transition section between the single crystal and the polycrystal, making it difficult to apply miniaturization technology.

本発明の目的は前記従来の欠点を解決せしめた半導体装
置の製造方法を提供することKある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that solves the above-mentioned conventional drawbacks.

本IA明によれば単結晶シリコン基板上に部分的に非晶
質誘電体を設ける工程、前記非晶質−電体の膜厚よ)も
少くとも厚くなるように、不純物の種類および員度を制
御してエピタキシャルシリコン會少くとも一層以上堆積
する工程、ゲート絶縁膜を形成する工程、前記非晶質誘
電体上の単結晶シリコン基体に少くともノース・ドレイ
ンとなすべき領域を設ける工程、を含むことを**とす
る半導体装置の製造方法が得られる。
According to this IA, in the process of partially providing an amorphous dielectric material on a single crystal silicon substrate, the type and amount of impurities are added so that the film thickness of the amorphous dielectric material is at least as thick as that of the amorphous dielectric material. a step of depositing at least one layer of epitaxial silicon in a controlled manner; a step of forming a gate insulating film; and a step of providing at least a region to be a north drain in a single crystal silicon substrate on the amorphous dielectric. A method for manufacturing a semiconductor device is obtained that includes **.

以下、図を用いて従来ROMOS  構成と本発明構成
と管比較し詳しく説明する。第1図#′iBOMOSS
造の41像を述べるために簡単な製造プロセスMKした
がりて示した模式的な断面図で、第2図は本発明の特徴
を第1v!JK対比して示した模式的な断面図である。
Hereinafter, the conventional ROMOS configuration and the configuration of the present invention will be compared and explained in detail with reference to the drawings. Figure 1 #'iBOMOSS
FIG. 2 is a schematic cross-sectional view showing the simple manufacturing process MK in order to describe the 41 image of the structure. It is a typical sectional view shown in comparison with JK.

通常1および21はシリコン基板、2および22はシリ
コン酸化膜、3および23はエピタキシャルシリコン、
4はエピタキシャル成長時に堆積された多結晶シリコン
、24社非晶質誘電体であるシリコン酸化製上に堆積さ
れた単結晶シリコン層、5はフィールド酸化膜、6およ
び26はゲート酸化機、7および27はゲート電極用多
結晶シリコン、8および28はソース・ドレイン領域、
9および29は層間絶縁膜、例えばPSG躾、1Gおよ
びaO#iアルi=ウム配線電極という構成が多用され
ている@こうし九従来構成は誘電体によってソース・ド
レイン拡散層の大部分が基板から分離されていることが
特徴であり、このため多くの場合電圧が印加されるドレ
イン側の拡散容量を大巾に削減でき、高速動作が期待さ
れる。しかるく、誘電体上のシリコン展は多結晶で、し
かも誘電体全面に堆積されてしまうため、篤lに多結晶
シリコンの電子中正孔の移動度が小さく、チャネル領域
もしくはその一部に用いることが困難である大め、必然
的に素子寸法が増大すること、籐2K)2ンジスタ関の
基体を分−するために、不要な多結晶シリコンを除去す
るかLOCO8法によって絶縁膜に変質させるかのいず
れの工程が会費となり、マスク目金せ1数も増加すると
と、勢の欠点を有してい友。それに対して92図で框、
誘電体22の上に単結晶シリコンが堆積されるので、チ
ャネル領域4L<はその一部として構成することが可能
となる。そζで誘電体で分離される間隔を小さくし、ソ
ース・ドレイン領域を誘電体膜上に形成できる結果、素
子寸法の短縮化、拡散容量の大巾なる削減を可能せしめ
る。
Usually 1 and 21 are silicon substrates, 2 and 22 are silicon oxide films, 3 and 23 are epitaxial silicon,
4 polycrystalline silicon deposited during epitaxial growth; 24 monocrystalline silicon layer deposited on silicon oxide amorphous dielectric; 5 field oxide; 6 and 26 gate oxidizer; 7 and 27 is polycrystalline silicon for gate electrode, 8 and 28 are source/drain regions,
9 and 29 are interlayer insulating films, such as PSG, 1G, and aO #i aluminum wiring electrodes. This feature makes it possible to significantly reduce the diffusion capacitance on the drain side, where voltage is applied in most cases, and is expected to provide high-speed operation. However, since the silicon on the dielectric is polycrystalline and is deposited on the entire surface of the dielectric, the mobility of holes in electrons in polycrystalline silicon is extremely low, making it difficult to use it in the channel region or a part of it. It is difficult to remove unnecessary polycrystalline silicon or transform it into an insulating film using the LOCO8 method in order to separate the substrate of the two transistors, which inevitably increases the element size. If any of these steps becomes a membership fee and the number of masks increases, it has a disadvantage. On the other hand, in Figure 92, the stile,
Since monocrystalline silicon is deposited on the dielectric 22, the channel region 4L< can be formed as a part thereof. In this way, the interval separated by the dielectric can be reduced and the source/drain regions can be formed on the dielectric film, making it possible to shorten the device dimensions and greatly reduce the diffusion capacitance.

さらに、本発明の大きな特徴は、誘電体膜厚よ)モ犀<
エピタキシャルシリコンt−堆積することKより、ある
距離だけ誘電体端から単結晶性シリコン展が形成される
、それ以上離れた誘電体表面には堆積されない仁とであ
る。この距離はエピタキシャルクリコン膜厚と誘電体膜
厚との差や用いられた基板の方位に依存している。した
がって、基板方位とエピタキシャルクリコン膜厚と誘電
体の巾寸法を設定すれば、マスク目金わせ工程なしに第
2図に示された島状形状に選択的なエピタキシャルシリ
コン基体を任意の場所に堆積させることができる利点が
ある0このような選択的なエピタキシャル成長は、主に
ジクロルシラン<81%C11)と塩素原子を含むガス
を用いて行われ、生成された塩化水嵩がシリコンのエツ
チングに寄与し、特に1シリコンではエツチング速度が
堆積速簾より下まわる結果であると考えられるOまた誘
電体端近傍の表面に成長し九シリコンは誘電体膜厚より
も厚いエピタキシャルシリコンが、誘電体端から横方向
へ成長し単結晶化してい9九ものと考えられるO このように本発明を用いることによ)、非晶質誘電体表
Wを含むようにエピタキシャルシリコン展を自己整合的
に島状に分離して形成することができ、この結果、ドレ
イン拡散容量管著しく削減して素子の鳥速化ならしめ、
しかも目合せマスク工St増やすことなしに、羨造工程
の簡略化と素子寸法の短縮化を計ることができるという
大きな利点がある。
Furthermore, a major feature of the present invention is that the dielectric film thickness
By depositing epitaxial silicon, monocrystalline silicon is formed at a certain distance from the edge of the dielectric, and is not deposited on the dielectric surface further away. This distance depends on the difference between the epitaxial crystalline film thickness and the dielectric film thickness and the orientation of the substrate used. Therefore, by setting the substrate orientation, epitaxial silicon film thickness, and dielectric width dimension, a selective epitaxial silicon substrate can be deposited at any location in the island shape shown in Figure 2 without the need for a mask fitting process. 0 Such selective epitaxial growth is mainly performed using dichlorosilane <81% C11) and a gas containing chlorine atoms, and the volume of chloride water produced contributes to etching of silicon. In particular, this is thought to be a result of the etching rate being lower than the deposition rate for silicon 1.O also, for silicon 9, epitaxial silicon, which is thicker than the dielectric film thickness, grows on the surface near the edge of the dielectric, and the epitaxial silicon grows laterally from the edge of the dielectric. Thus, by using the present invention, epitaxial silicon can be separated into islands in a self-aligned manner so as to include an amorphous dielectric surface W. As a result, the drain diffusion capacitance tube can be significantly reduced and the device speed can be increased.
Furthermore, there is a great advantage that the fabrication process can be simplified and the element dimensions can be shortened without increasing the number of alignment mask steps.

次に本発明の実施例twJを使りて詳細に説明する。第
3図は本発明を実机するためβ、絶縁ケート蓋電界効呆
トランジスタの製造プロ七スを説明する丸めの図で生簀
プロセスにおける素子断面を示したもので、PljIi
で〈100〉方位のもつシリコン基板31に熱酸化法に
よって約5ooo ko vs化膜32を形成し、通常
の写真蝕刻技術とエツチング法により所望の形状にパタ
ーン化を施ζす・その後水素をキャリヤガス・ジクロル
シラン(St)12C1,)會ソースガス、さらに塩化
水素ガスを加えて、80 to口程度の減圧下、108
0℃ の基板温良で5ooo X程度の膜厚としたシリ
コンのエピタキシャル成長を行うと、シリコン基板表面
および酸化膜′32表面の一部K、平滑なるPffiの
単結晶性シリコン膜 が堆積される。シリコン線化膜厚
5000 Xとエピタキシャルシリコン膜厚5ooo 
Xの条件では酸化膜表面に広がるシリコン層33の巾は
約3μmとなった。こうして第3図(a)が得られる。
Next, the present invention will be explained in detail using Example twJ. Figure 3 is a rounded diagram for explaining the manufacturing process of β, an insulating cat-lid field effect transistor to put the present invention into practice, and shows a cross section of the element in the cage process.
A silicon substrate 31 with a <100> orientation is formed with a film 32 of about 500 kHz by thermal oxidation, and then patterned into a desired shape by ordinary photolithography and etching. Add gas dichlorosilane (St) 12C1,) source gas and hydrogen chloride gas, and boil under reduced pressure of about 80°C to 108°C.
When silicon is epitaxially grown to a film thickness of about 500.degree. C. at a substrate temperature of 0.degree. C., a smooth monocrystalline silicon film of Pffi is deposited on a portion of the surface of the silicon substrate and the surface of the oxide film '32. Silicon linear film thickness 5000X and epitaxial silicon film thickness 5ooo
Under the conditions of X, the width of the silicon layer 33 spread over the oxide film surface was approximately 3 μm. In this way, FIG. 3(a) is obtained.

ゲート酸化層34t−形成後、イオン注入法勢の手段に
よシ基板表面に不純物35に一制御して導入し、所MO
)ランジスタのしきい値電圧に設定する。その後多結晶
シリコンをCVD法で堆積し、ゲート電極36のパター
ン化を行うと、第3図(b)t−得、続いてヒ素等のN
型の不純物t 10’”on−”以上のドース蓋でイオ
ン注入することによりソース・ドレイン領域37を形成
する0次に層間絶縁膜として高*fIrS038をCV
D法によって堆積し、適当な熱処理を施すことKより、
ゲート多結晶シリコン36の低抵抗化を計るとともに表
面の平担化がなされ、93図(c) を得る。その徒通
常の写真蝕刻技術とエツチング法によってコンタクトホ
ール39t−形成し良後、アルミs−’lム40を真空
蒸着法で被着させ、配線電極のパターン化を行い、水素
中でアルミニウムとシリコンの合金化を施すと仕上り図
の第3図(d)を得ることができる。必l!に応じてC
VD法で保護lIを堆積させ、電極ノクツド上の保II
IIt−写真蝕刻技術とエツチング法を用いて除去する
。こうして得られたトランジスタ特性は極めて良好なも
のであったO 次に第2の実施例を詳細に説明する。第4図は2単位の
絶縁ゲート型電界効果トランジスタのソース電位管下地
単結晶7リコン基板電位と共通結線するようneat実
現するための製造プロセス411I管説明するための図
で、主−畳プロセスにおける素子断面を示したものであ
るO比抵抗0.01Ω1程度のn整で(100)方位を
もつシリコン基板41に熱酸化法にようて約5ooo 
L の酸イヒl[42を形成し、通常の写真蝕刻技術と
エツチング法により所望の形状にパターン化を施こす。
After the formation of the gate oxide layer 34t, impurities 35 are introduced into the substrate surface in a controlled manner by means of ion implantation, and the MO
) Set to the threshold voltage of the transistor. After that, polycrystalline silicon is deposited by the CVD method and the gate electrode 36 is patterned.
CV of high*fIrS038 as a zero-order interlayer insulating film to form source/drain regions 37 by ion implantation with a dose lid of type impurity t 10'"on-" or more.
By depositing by method D and applying appropriate heat treatment,
The resistance of the gate polycrystalline silicon 36 is lowered and the surface is made flat to obtain the result shown in FIG. 93(c). After that, a contact hole 39t is formed using conventional photolithography and etching. After that, aluminum S-'lm 40 is deposited using a vacuum evaporation method to pattern a wiring electrode, and aluminum and silicon are formed in hydrogen. When alloying is performed, the finished drawing shown in FIG. 3(d) can be obtained. Must! C depending on
Protective II is deposited by VD method, and protective II is deposited on the electrode notch.
IIt-removed using photolithography and etching techniques. The transistor characteristics thus obtained were extremely good. Next, a second example will be described in detail. FIG. 4 is a diagram for explaining the manufacturing process 411I for realizing a 411I tube in which the source potential tube of two units of insulated gate field effect transistors is commonly connected to the underlying single crystal 7 silicon substrate potential. A silicon substrate 41 with a (100) orientation and a resistivity of about 0.01Ω1 is coated with a silicon substrate 41 of approximately 500Ω using a thermal oxidation method.
An acid film L [42] is formed, and patterned into a desired shape by conventional photolithography and etching.

その仮水素?キャリヤガス、ジクロルシラン(SiHC
l2)をソースガス、さらに塩素ガスを加えて、80t
on程度の減圧下、1080CC)基板温度とした条件
でシリコンのエピタキシャル成長t長を行うOただしこ
のエピタキシャル成jkは、2段階で行われ、第1段階
では、エピタキシャルシリコンIIO比抵抗が0.1Ω
国 となるようにP型不純物としたボロンを制御して導
入し、0.5μtnq)II厚シリコン層61を形成し
、次段階では1011mの 比抵抗t−得るように不純
物ボロンの導入量を制御10.5am(DlK厚のシリ
コン43f形成する。酸化膜表面に広がるシリコン、シ
リコン層43の巾は約5μmとなりた。こうして第4図
(&)が得られる。ゲート酸化I[44を形成後、イオ
ン注入法等の手段により基板表面に不純物45を制御し
て導入し、所望のトランジスタしきい値電圧に設定する
。その後多結晶シリコン1rCVD法で堆積し、ゲート
型tijA46の/シターンイヒを行うと第4図(b)
 を得、続いてヒ素やリン等のn型の不純物@ 10’
%m−%L上のドース蓋でイオン注入するととによりソ
ース領域47およびドレイン領域48會形成する。次に
層間絶縁膜としてP 8 G49 t−CV D法によ
りて堆積し、適当な熱処理を施こし、ケート多結晶シリ
コン46の低抵抗化を計るとともに表面の平担化がなさ
れ、第4図(e)を得る0その後通常の写真蝕刻技術と
エツチング法によりてコンタクトホール50を形成した
後、アルミニウム51を真空蒸着法で被着させ、配線の
パターン化を行い、水素中でアルミニウムとシリコンの
合金化を施すととKより仕上り図の第4図(d)を得る
ことができる0こうして得られたトランジスタ特性は極
めて良好なものであった0また典製的なシリコン基板上
に形成されたMO8電界効果トランジスタの寸法に比較
すると、同じルールで設計され、本発明方法によって形
成された単位トランジスタの寸法ki4G−以上短縮さ
れ、さらにソース配[47が高濃度シて有効であること
が立証されたO
That temporary hydrogen? Carrier gas, dichlorosilane (SiHC)
12) as a source gas, and then add chlorine gas to 80t.
Epitaxial growth of silicon is performed at a substrate temperature of 1080 cc (1080 cc) under a reduced pressure of about 100 Ω.
Boron as a P-type impurity is controlled and introduced so as to form a 0.5μtnq)II thick silicon layer 61, and in the next step, the amount of boron impurity introduced is controlled so as to obtain a resistivity t- of 1011m. A silicon layer 43f with a thickness of 10.5 am (DlK) is formed. The width of the silicon layer 43, which is silicon spread over the surface of the oxide film, is approximately 5 μm. In this way, FIG. 4 (&) is obtained. After forming the gate oxide I[44, Impurities 45 are controlled and introduced into the substrate surface by means such as ion implantation, and the desired transistor threshold voltage is set.After that, polycrystalline silicon is deposited by CVD, and gate-type tijA46 is deposited. Figure 4(b)
and then n-type impurities such as arsenic and phosphorus @ 10'
A source region 47 and a drain region 48 are formed by ion implantation with a dose lid above %m-%L. Next, an interlayer insulating film of P8G49 was deposited by the t-CVD method, and an appropriate heat treatment was performed to lower the resistance of the gate polycrystalline silicon 46 and flatten the surface, as shown in FIG. After that, a contact hole 50 is formed by ordinary photolithography and etching, and then aluminum 51 is deposited by vacuum evaporation to form a wiring pattern. 4(d), which is the finished diagram, can be obtained from the . Compared to the dimensions of a field-effect transistor, the dimensions of a unit transistor designed according to the same rules and formed by the method of the present invention are reduced by more than 4G-, and it has also been proven that the source wiring [47] is effective with high concentration. O

【図面の簡単な説明】[Brief explanation of drawings]

館1図は、従来ROMO8構造の例を示す多結晶シリコ
ン基板)型MO8電界効果トランジスタの模式的断面図
で、第2図は第1図に対比して示した本発明の特徴を強
調した模式的断面図である。 図中、1および21はシリコン基板、2および22は非
晶質誘電体、3および23はエピタキシャルシリコン、
4はエピタキシャル成長時に堆積された多結晶シリコン
、24は非晶質誘電体上に堆積された単結晶性シリコン
、5#′iフイールド酸化膜、6および26はゲー)[
化膜、7および27はゲート電極用多結晶シリコン、8
および28Fiソース・ドレイン領域、9および2Qi
j層間絶縁膜、10および30はアルミニウム配線電極
をそれぞれ示している。第3図および第4図はそれぞれ
本発明の別々な実施例を説明するための図で主要プロセ
スにおける素子断面を示したものである。図において3
1はシリコン基板、41 Fi低低抵抗型型シリコン基
板32および42は非晶質誘電体、33および43は高
抵抗P型エピタキシャルシリコン層、61は中間抵抗P
型エピタキシャルシリコン層、34および44はゲート
酸化膜、35オよヒ45Fi)ランジスタのしきい値電
圧を制御するためのP型不純物導入層、36および46
はゲート電極用多結晶シリコン、37はソース・ドレイ
ン領域、47は・2つのトランジスタの共通したソース
領域、48はドレイン領域、38および49t′i層間
絶縁膜、39および50はコンタクトホール、40およ
び51はアルミニウム配線電極をそれぞれ示している。 代理人弁理士 内 原  費 第1図 く−一巧−−す 第2口 ◆ノ、ゆ 手続補正書(自船 57.9.20 昭和  手心  日 特許庁長官 殿 1、事件の表示   昭和56年特 許 願第1058
85号2・ am(D名称   亭導体装置の製造方法
3、補正をする者 事件との関係       出 願 人東京都港区芝五
丁目33番1号 4、代理人 (連絡先 日本電気株式会社特許部) 5、補正の対象 明細書の発明の詳細な説明の欄 明細書の図面の簡単な説明の欄 添付図面 6、補正の内容 (1)  明幽書第2貢ag17行目に「帰因とし几」
とあるのt「起因としt」と補正する。 (21明細書84頁第14行目から第20打目にかけて
[24は非晶質#電体であるシリコン酸化物上に堆積さ
れ几単結晶シリコン層、5はフィールド酸化膜、6およ
び26はゲート酸化膜。 7および27はゲート電極用多結晶シリコン。 8および28はソース◆Fレイン領域、9および29は
階間絶縁1111.例えばP2O膜、ioおよび30は
アルミニウム配線電極という構成」とあるのを「5はフ
ィールド酸化膜、6および24Fiゲート酸化膜、7お
よび25Fiゲート電極用多結晶シリコン、8および2
6はソース・ドレイン領域、9および27は層間絶縁膜
9例えばP2O膜という構成」と補正する。 (3)  明細書第5頁第15行目の「第2図では」と
「誘電体22」の間に次の文を挿入する。 rst体膜体膜口開口露出した単結晶基板シリコンを種
としてエピタキシャル成長シ、エビタキシャ′ルシリコ
ン膜が誘電体誂厚を越えると横方向にも単結!A11l
が成長していく。この九め、j程度の減圧下で行なわれ
、塩化水素が」と補正する。 (5)  明細書第8頁第3行目に「80ton程度の
減圧下、1080℃の基板温度」とあるのを「80to
rr8度の減圧下、950℃の基板温度」と補正する。 (6)明細書fa8頁第8行目から第9行目にかけて「
膜厚8000Aの条件では %%S%%  巾は約3j
mJとあるのを「膜厚2,5μmの条件では。 い・1)1 巾は約2μm」 と補正する。 (η 明細書1s9頁1g18行目にrnfflで」と
6るのを「p型で」と補正する。 (8)明細II第10員第3行目から第4行目にかけて
「塩素ガスを加えて+ 80 t On 4度の減圧下
、1080℃の基敏温屓」とあるのt−r塩化水素tt
スtmえて50torr@ii:の減圧下。 950℃の基板温度」と補止する。 (91明−書第10貞@11行自から第13打目にかけ
て「0.5μmの濃厚のい1い巾鉱約2μmとなつ几。 」と補止する。 (M))  @gll1m12m第9行1カラiE 1
4行[C力けて「24は非晶質誘電体上にいい1配−電
極を」とあるのt″「5はフィールド酸化膜、6および
24はゲート酸化11.7および25はゲート電極用多
結晶シリコ/、8および26はソース・ドレイン領域、
9および27は層関絶縁膜會」と補正する。 呻 明#ll書第13頁第7行目から第8行目にかけて
「39および50は1%11%40および51は」とあ
るのき「39はコンタクト一−、)−40および50は
」と補正する。 (ロ)本願添付図面の纂1図、812図、IIEA図を
別紙図面のように補正する。 代理人 弁理士 内 鳳   普 牙 7 口 、/、 □ 第2図 −!l−
Figure 1 is a schematic cross-sectional view of a polycrystalline silicon substrate type MO8 field effect transistor showing an example of a conventional ROMO8 structure, and Figure 2 is a schematic diagram emphasizing the features of the present invention in contrast to Figure 1. FIG. In the figure, 1 and 21 are silicon substrates, 2 and 22 are amorphous dielectrics, 3 and 23 are epitaxial silicon,
4 is polycrystalline silicon deposited during epitaxial growth, 24 is monocrystalline silicon deposited on an amorphous dielectric, 5#'i field oxide film, 6 and 26 are gates) [
7 and 27 are polycrystalline silicon for gate electrodes, 8
and 28Fi source/drain regions, 9 and 2Qi
10 and 30 indicate aluminum wiring electrodes, respectively. FIGS. 3 and 4 are diagrams for explaining different embodiments of the present invention, respectively, and show cross sections of elements in main processes. In the figure 3
1 is a silicon substrate, 41 Fi low resistance type silicon substrates 32 and 42 are amorphous dielectrics, 33 and 43 are high resistance P type epitaxial silicon layers, and 61 is an intermediate resistance P
type epitaxial silicon layers, 34 and 44 are gate oxide films;
37 is a source/drain region; 47 is a common source region of the two transistors; 48 is a drain region; 38 and 49 are interlayer insulating films; 39 and 50 are contact holes; 40 and Reference numeral 51 indicates aluminum wiring electrodes. Representative Patent Attorney Uchihara Uchihara Fees Figure 1 - Ikkaku - Part 2 ◆, Procedural Amendment (September 20, 1982, Own Ship, 1982) Director General of the Japanese Patent Office, 1, Indication of the Case, 1982 Patent Application No. 1058
No. 85, No. 2, am (D Name: Manufacturing method of conductor device 3, Relationship with the person making the amendment) Applicant: 5-33-1-4 Shiba, Minato-ku, Tokyo, Agent (Contact address: NEC Corporation Patent Section) 5. Column for detailed description of the invention in the specification subject to amendment Column for brief explanation of drawings in the specification Attached drawing 6. Contents of the amendment (1) Meiyusho No. 2 Contribution ag line 17 states "Attribution Toshiro”
Correct the statement ``t'' to be ``caused by t''. (From the 14th line to the 20th line on page 84 of the 21 specification, 24 is a single crystal silicon layer deposited on silicon oxide which is an amorphous electric material, 5 is a field oxide film, 6 and 26 are Gate oxide film. 7 and 27 are polycrystalline silicon for gate electrodes. 8 and 28 are source◆F rain regions, 9 and 29 are interlayer insulation 1111. For example, P2O film, io and 30 are aluminum wiring electrodes." 5 is a field oxide film, 6 and 24 are Fi gate oxide films, 7 and 25 are polycrystalline silicon for Fi gate electrodes, 8 and 2 are
6 is a source/drain region, and 9 and 27 are interlayer insulating films 9, for example, a P2O film. (3) Insert the following sentence between "in Figure 2" and "dielectric 22" on page 5, line 15 of the specification. Epitaxial growth is performed using the exposed single crystal substrate silicon as a seed, and when the epitaxial silicon film exceeds the dielectric thickness, it also forms single crystals in the lateral direction! A11l
is growing. This is corrected by saying, ``This process is carried out under a reduced pressure of about J, and hydrogen chloride is present.'' (5) On page 8, line 3 of the specification, the phrase “substrate temperature of 1080°C under reduced pressure of about 80 tons” has been replaced with “80 tons”.
rr 8 degrees of reduced pressure, substrate temperature of 950 degrees Celsius.'' (6) From line 8 to line 9 of page 8 of the specification fa, “
Under the condition of film thickness 8000A, %%S%% width is approximately 3J
Correct the statement mJ to ``Under the condition of a film thickness of 2.5 μm. 1) The width is approximately 2 μm.'' (η In specification 1s, page 9, 1g, line 18, ``with rnffl'' is corrected to ``with p-type.'' + 80 t On 4°C under reduced pressure, 1080°C base temperature t-r Hydrogen chloride tt
under reduced pressure of 50 torr@ii. 950℃ substrate temperature.'' (91 Meisho No. 10 @ Line 11 to the 13th stroke is supplemented with "0.5 μm of thick thin ore with a thickness of about 2 μm." (M)) @gll1m12m No. 9 Row 1 color iE 1
4th line [C: ``24 is a good single electrode on the amorphous dielectric material.''t'' ``5 is a field oxide film, 6 and 24 are gate oxides, 11. 7 and 25 are gate electrodes. polycrystalline silicon/, 8 and 26 are source/drain regions,
9 and 27 are corrected to ``layer insulation film association''. From the 7th line to the 8th line of page 13 of the book #ll, it says "39 and 50 are 1% 11% 40 and 51 are", "39 is contact 1-,)-40 and 50 are" and correct it. (B) The summary of drawings attached to this application, Figure 1, Figure 812, and Figure IIEA, shall be amended as shown in the attached drawings. Agent Patent Attorney Uchiho Fuga 7 Kuchi, /, □ Figure 2-! l-

Claims (1)

【特許請求の範囲】[Claims] 牛導体装置OII造方法において、単結晶シリコン基板
上に部分的に非晶質誘電体を設ける工程、前記非晶質誘
電体の腹厚よjP4少くとも厚くなるように、不純物t
)@@h−よび濃ft制御してエピタキシャルシリコン
を少くとも一層以上堆積する工程、ゲート絶縁膜を形成
する工程、前記非晶質誘電体上の前記単結晶性シリコン
基体にゲート領域・ソース領域、ドレイン領域のうち少
くとも1つの領域を設ける工程・會含むことを41徴と
する半導体装置の製造方法。
In the method for manufacturing a conductor device OII, in the step of partially providing an amorphous dielectric on a single crystal silicon substrate, an impurity t is added so that the thickness of the amorphous dielectric becomes at least as thick as JP4.
) a step of depositing at least one layer of epitaxial silicon by controlling @@h- and concentration ft, a step of forming a gate insulating film, and a step of depositing a gate region/source region on the single crystal silicon substrate on the amorphous dielectric. , a method for manufacturing a semiconductor device comprising the step of providing at least one region of a drain region.
JP10588581A 1981-07-07 1981-07-07 Manufacture of semiconductor device Pending JPS587868A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10588581A JPS587868A (en) 1981-07-07 1981-07-07 Manufacture of semiconductor device
US06/395,110 US4637127A (en) 1981-07-07 1982-07-06 Method for manufacturing a semiconductor device
DE19823225398 DE3225398A1 (en) 1981-07-07 1982-07-07 SEMICONDUCTOR DEVICE AND METHOD FOR THEIR PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10588581A JPS587868A (en) 1981-07-07 1981-07-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS587868A true JPS587868A (en) 1983-01-17

Family

ID=14419376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10588581A Pending JPS587868A (en) 1981-07-07 1981-07-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS587868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700096A3 (en) * 1994-09-01 1996-11-06 Nec Corp SOI-field effect transistor und method for making the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616954B2 (en) * 1976-10-25 1981-04-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616954B2 (en) * 1976-10-25 1981-04-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700096A3 (en) * 1994-09-01 1996-11-06 Nec Corp SOI-field effect transistor und method for making the same

Similar Documents

Publication Publication Date Title
US4497106A (en) Semiconductor device and a method of manufacturing the same
JPH03173480A (en) Manufacture of semiconductor device having multilayer conduction line lying on board
JPH11204782A (en) Semiconductor device and manufacture therefor
JPS61102782A (en) Making of dmos semiconductor element
US5093700A (en) Single gate structure with oxide layer therein
JPH0586663B2 (en)
JPH058587B2 (en)
EP0077737A2 (en) Low capacitance field effect transistor
JPH07153952A (en) Semiconductor device and manufacture thereof
JPS587868A (en) Manufacture of semiconductor device
JPS63215068A (en) Semiconductor device and manufacture thereof
JPS6228591B2 (en)
JPH0329189B2 (en)
JPH05243575A (en) Thin film transistor and manufacture thereof
JPH05114734A (en) Semiconductor device
JPS6159672B2 (en)
JPS6246570A (en) Vertical type semiconductor device and manufacture thereof
JP2941984B2 (en) Semiconductor device
JPS6367779A (en) Insulated-gate transistor and manufacture of same
JPH06275830A (en) Accumulation-type polycrystalline silicon thin-film transistor
JPS60136377A (en) Manufacture of semiconductor device with insulated gate
JPS63117459A (en) Manufacture of insulated gate field effect transistor
JPH01260857A (en) Semiconductor device and manufacture thereof
JPS6154661A (en) Manufacture of semiconductor device
JPS639658B2 (en)