JPS5878465A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5878465A
JPS5878465A JP17690981A JP17690981A JPS5878465A JP S5878465 A JPS5878465 A JP S5878465A JP 17690981 A JP17690981 A JP 17690981A JP 17690981 A JP17690981 A JP 17690981A JP S5878465 A JPS5878465 A JP S5878465A
Authority
JP
Japan
Prior art keywords
film
gate
gate electrode
silicon film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17690981A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nihei
仁平 裕之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP17690981A priority Critical patent/JPS5878465A/en
Publication of JPS5878465A publication Critical patent/JPS5878465A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To offer the manufacturing method of a semiconductor, in which a gate electrode does not come off and the degradation in withstanding voltage of said electrode can be prevented. CONSTITUTION:An SiO2 film 22 is formed on a p type silicon substrate 21 at a relatively high temperature. Thereafter, an MoSi film 23 is formed on said SiO2 film 22 by an evaporating method. Then a resist pattern 24 is formed on said MoSi film 23 by a photoetching method. It is removed by an ion etching method and a gate electrode 25 is formed. Then the resist pattern 24 is removed. With the gate electrode 25 as a mask, the SiO2 film 22 is etched by aqueous solution of NH4F and the like, and a gate insulating film 26 is formed. Then n<+> type source and drain regions 27 and 28 are formed by a self-aligning method. Thereafter a polycrystal silicon film 29 is formed by a CVD method at a relatively low temperature (550-650 deg.C). Then heat treatment of said polycrystal silicon film 29 is performed in an oxidizing atmosphere at a relatively high temperature (800-1,100 deg.C), so that the film 29 is transformed into a thermal oxide film 30. An interlayer insulating film 31 is further coated on said thermal oxide film 30 by a CVD method.

Description

【発明の詳細な説明】 本発明は半導体f!亀の製造方法の改良に関する0 従来、半導体#装置例えば絶縁ゲート型電界効果トラン
ジスタ (MO8FET)は、141111(a)〜(
d)に示す如く製造されてV%た0まず、p戯半導体基
板l上Kit!!縁農例えば5lot膜2を比較的渦電
で形成した彼、このstow膜2上に電極材料膜例えは
モリブデンシリナイドlII(Most展)3を形成し
、*に写真蝕刻法により、このMo5t展s上にレジス
トパターン4を形成蓼ル(第1tg (a)’tlJ示
)0次に、ζOレジストパターン4をマスク七してMo
81jllJをエツチング除去してゲートIIIL惚5
を形成する(同図(b)図示)0次いで、レジストハタ
ーン4を除去体、ゲート電極5t−!スクとして81.
0會換2をエツチング除去してケート絶縁膜6を形成し
、ひきつづきゲート電番5t−マスクとしてn型不#1
1物例えば砒素をイオン注入して基板1嵌面に自己整合
的にn+製のソース・ドレイン領域7.8を形成する(
 IW、1m (c)図示)。つづいて、前記ゲート電
極5及びソース・ドレイン領域1.8を含む半導体基板
1上にCVD法により低温で鳩間絶縁展pを振軸しfc
後、ゲート電極5及びソース・ドレイン領域2.8と一
気的接触をとるべきコンタクトホール(し1示せず)を
形だ糺し、所望の配線(図示せず)を行なってMOSF
ETを製造する(同図(d)−示)。− しかしながら、上記の如く形成された絶縁瀝亀界効果ト
ランジスタは次の欠点を有していた。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a semiconductor f! 0 Regarding improvement of the manufacturing method of turtles Conventionally, semiconductor # devices such as insulated gate field effect transistors (MO8FET) have been manufactured using 141111(a) to (
d) is manufactured as shown in FIG. ! For example, a 5 lot film 2 is formed by relatively eddy current, an electrode material film such as molybdenum silinide lII (Most) is formed on this stow film 2, and this Mo5t is formed by photolithography. A resist pattern 4 is formed on the resist pattern 4 (see 1st tg (a)' tlJ).Next, the ζO resist pattern 4 is masked and
Etching and removing 81jllJ and gate IIIL love 5
(Illustrated in FIG. 2B) 0 Then, the resist pattern 4 is removed, and the gate electrode 5t-! 81.
A gate insulating film 6 is formed by etching away the gate electrode 2, and then an n-type non-layer 1 is used as a gate voltage 5t mask.
Source/drain regions 7.8 made of n+ are formed in a self-aligned manner on the fitting surface of the substrate 1 by ion-implanting one substance, for example, arsenic (
IW, 1m (c) shown). Subsequently, a Hatoma insulation layer P is applied to the semiconductor substrate 1 including the gate electrode 5 and the source/drain regions 1.8 at a low temperature by the CVD method.
After that, contact holes (not shown) to make simultaneous contact with the gate electrode 5 and source/drain regions 2.8 are shaped, and desired wiring (not shown) is performed to complete the MOSFET.
ET is manufactured (as shown in the same figure (d)). - However, the insulating field effect transistor formed as described above had the following drawbacks.

即ち、ゲート電極5をマスクにしてStO,展2をエツ
チングする際の芽−パーエツチングのために、ゲート絶
縁膜6の端mxoがゲート電極5の端部11よシも内側
に形成され、いわゆるオーバーハング@XXが生ずる。
That is, because of the bud-per-etching when etching the StO layer 2 using the gate electrode 5 as a mask, the end mxo of the gate insulating film 6 is formed inside the end 11 of the gate electrode 5, so-called Overhang @XX occurs.

こOオーバー八ング部114%CVD法によ〕形成する
層関馳縁膜−で先金に曹め込むことができず、第1−(
6)に示す如く空−@IIが形Iitされ、これによ)
ダート亀−Iの耐圧が低下し、得られるrviMOIF
I:T 0m1lli性at下を招く◎こOようlkこ
とからゲート電1kJの耐圧を向上1せるえめに、ソー
ス・ドレイン領域1.ξを形威し良後、酸化を雰囲気中
で高温熱処理してソース・ドレイン領域1,1゛及びゲ
−)11111上に熱酸化層を形成する手Rが採られて
いもところが、グー)を極材料膜が多結晶シリコン膜の
場合はグー)を極Iの耐圧低下を防止し得るが、高融点
金属及びζt>*tso*化物の場合、ダート電miを
直接酸化性lFI!I気で高温熱処理することa集用上
−―である・即ち、ゲート電& J $J611#KA
11Kml(t、 L、腐食され九〉、電tikJとダ
ート絶縁膜CとO熱膨張係数O違−から熱歪−IIX!
1.じ大)して局部的にゲート電極50ゲート絶縁ll
N−から−紅が四する。
This over-eight part 114% could not be deposited in the lead metal with the layer-related film formed by the CVD method.
As shown in 6), the sky-@II is formed into the form Iit, and this)
The rviMOIF obtained by reducing the pressure resistance of Dart Kame-I
In order to improve the breakdown voltage of the gate voltage 1kJ, the source/drain region 1. After shaping ξ, a thermal oxidation layer is formed on the source/drain regions 1, 1'' and the gate layer 11111 by heat treatment at high temperature in an oxidizing atmosphere. If the electrode material film is a polycrystalline silicon film, it can prevent the breakdown voltage of the electrode I from decreasing, but if it is a high-melting point metal or a ζt>*tso* compound, it can directly oxidize the dirt charge Mi! High-temperature heat treatment at high temperature is used for - i.e., gate electrode &J$J611#KA
11Kml (t, L, corroded 9〉, thermal strain due to the difference between electric tikJ and dirt insulating film C and O thermal expansion coefficient O - IIX!
1. ) and locally insulate the gate electrode 50
N- to - Kurenai is four.

本発明は上記事情に−みてなされ良もので、ゲート電極
の剥れを゛招くことな□く、腋電極の耐圧低下を防止し
得る半導体lI装置の製造方法を提供することを目的と
する4のである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a semiconductor II device that can prevent a drop in breakdown voltage of the armpit electrode without causing peeling of the gate electrode. It is.

即ち、本発明Fi、鯖l尋亀蓋の半導体基板上に絶縁膜
及び亀−材料膜を順次形成する工程と、この電極材料膜
をバターニング□してゲート電極を形成し良後、このゲ
ート電極をマスクとして前記絶縁膜を選択エツチングし
てゲート絶縁膜を形成する工程と、露出して半導体基板
表面に第2導電瀝のソース・ドレイン領域I域を形成す
4工1と、前記ゲート11−及びソース・ドレイン領域
を會む半導体基板上に非単結晶シリーン属を形成する工
、IIMと、前記非単結晶シリコン展を酸化性雰囲気で
熱処理して酸化lI&に変換させる工程とを具備し九こ
とを特徴とする。
That is, the process of sequentially forming an insulating film and a metal material film on the semiconductor substrate of the present invention Fi, the process of forming a gate electrode by buttering this electrode material film, and then forming a gate electrode. forming a gate insulating film by selectively etching the insulating film using the electrode as a mask; forming a second conductive source/drain region I on the surface of the semiconductor substrate by exposing the gate 11; - a step of forming a non-single-crystal silicon layer on a semiconductor substrate that meets a source/drain region; and a step of heat-treating the non-single-crystal silicon layer in an oxidizing atmosphere to convert it into oxide lI&. It is characterized by nine things.

本斃1)iK用釣られる電極材料膜としては、モリブデ
ン、タングステン、チタン、タンタルJC1高融点金属
及びこれら金属O!!化物である螢リプデンジ9tイド
、タングステンシリナイド等が挙げられる。
1) The electrode material film for iK includes molybdenum, tungsten, titanium, tantalum JC1 high melting point metals and these metals O! ! Examples include firefly lipdendi9tide, tungsten silinide, etc., which are chemical compounds.

本発明に用−られる非単結晶シリコン展としては、多結
晶シリコン膜、不純物ドープ多結晶シリコン膜、非晶質
シリコン換等を挙けることができる。41に1非早紬晶
シリコン展として5sO〜6sO℃のCVD法により形
成される多結晶シリコン膜を用−ることが好ましい・こ
うし良CVD法にお−ては、ゲート電極の端部付近に形
成されるオーバーハングの空隙を慎め込むことができる
。また、かかる多結晶シリコン膜を熱魁珈して熱酸化層
を形成するときの温腹範lIは800〜1100℃が好
まし□い。この温度颯−を外れると、ゲート電極のゲー
ト絶縁膜からO#れを生じ14 Vh 。
Examples of the non-single crystal silicon material used in the present invention include a polycrystalline silicon film, an impurity-doped polycrystalline silicon film, and an amorphous silicon film. It is preferable to use a polycrystalline silicon film formed by the CVD method at 5sO to 6sO ℃ as a non-early crystalline silicon film. It is possible to reduce the overhang gap that is formed. Further, the temperature range lI when forming a thermal oxidation layer by annealing the polycrystalline silicon film is preferably 800 to 1100°C. When the temperature exceeds this level, O# leakage occurs from the gate insulating film of the gate electrode at 14 Vh.

以下、本発明をMo2  FIST K適用し′圧倒に
つ−て第2図(1)〜(・)を参照して説明する。
Hereinafter, the present invention will be described with reference to FIGS. 2(1) to (•) when applied to Mo2 FIST K.

(1)1ず、Pa1lシリ;ン基板xxよに810゜膜
J1を比横約高亀で形成した後、この810゜膜11上
KM・8111A11を蒸着法によ〕形成する。次に、
写真蝕刻法により、このMo81JIkzs上にレジス
トパターン24を形成する(論2図(a)図示)。次−
で、このレジストパターン24をマスクとして前記Me
Sl腺21を反応性イオンエツチング法によ)除去し、
ゲート電@1gを形成する(P!U卸(b)図示)。
(1) First, an 810° film J1 is formed on the Pa11 silicon substrate xx with a specific width of about 100°, and then KM 8111A11 is formed on this 810° film 11 by a vapor deposition method. next,
A resist pattern 24 is formed on this Mo81JIkzs by photolithography (as shown in FIG. 2(a)). Next-
Then, using this resist pattern 24 as a mask, the Me
Sl gland 21 is removed (by reactive ion etching method),
Form a gate electrode @1g (P!U wholesaler (b) shown).

CM) 次に、レジストパターン24を除去し良後、ゲ
ート電極25をマスクとして810m膜22をN114
F*fllj液等でエツチング処理してゲート絶縁膜2
6を形成し、*に同電極z5をマスクとして基板21表
面に1例えは砒素を拡散あるいはイオン注入してゲート
電&jJK対して自己整合的Knfm、のソース−ドレ
イン領域zy、isを形成する(fj1図(e)図示)
CM) Next, after removing the resist pattern 24, the 810m film 22 is coated with N114 using the gate electrode 25 as a mask.
The gate insulating film 2 is etched with F*flj liquid or the like.
6 is formed, and using the same electrode z5 as a mask, for example, arsenic is diffused or ion-implanted into the surface of the substrate 21 to form a source-drain region zy, is of self-aligned Knfm with respect to the gate electrode &jJK ( fj1 diagram (e) diagram)
.

(…〕 次いで、前記ゲート電極26及びソーヌードレ
イン領域zy、isを含む半導体基板21上に比較的低
温(550〜650℃)のCVD法により、多結晶シリ
コンj[2#を形成する(同区(イ)図示)。つづいて
、この多結晶シリコン膜29を比軟的高温(800〜1
100℃)の酸化性雰囲気・で熱処理して熱酸化膜30
に変化させる。ひ一つづ龜、この熱線化膜Jo上KCV
D法により低温で場関絶flk換81を被榎する。この
俵、ゲート電41Kis及びソース・ドレイン領域sr
、zaと電気的接触すべきコンタクトホーk(−示せず
)を形成し、所望のAn配k(図示せず)を行なってM
OS  FETを製造する。(同図(・)−示)。
(...) Next, polycrystalline silicon j[2# is formed on the semiconductor substrate 21 including the gate electrode 26 and the solar drain regions zy and is by a CVD method at a relatively low temperature (550 to 650°C). The polycrystalline silicon film 29 is then heated to a relatively high temperature (800 to 1
A thermal oxide film 30 is formed by heat treatment in an oxidizing atmosphere (100°C).
change to KCV on this heat-cured film Jo
The flk conversion 81 is carried out at low temperature by method D. This bale, gate electrode 41Kis and source/drain region sr
, za are formed, and a desired An arrangement (not shown) is performed to form a contact hole k (not shown) to make electrical contact with M.
Manufactures OS FETs. (Same figure (・)-shown).

しかして、上記製造方法によれば、次のような利点を有
する。
The above manufacturing method has the following advantages.

(支) CVD法によって形成場れる多結晶シリコン膜
2#は!R差部の被接性がよめため、第2図(d) K
示す如くゲート電極25勢を含む基板11食1iIK被
嶺されると、ゲート電極z5の端sJ!付近に形成され
たオーバーハング部IJを多結晶シリーン膜2#で気密
に壌め込む仁とがで自る。との曳めゲート電1に25等
を會む基@xr*mK被徨した多結晶シリコン属2磨と
オーバーハング部IIに雛め込首れた多結晶シリコン3
I!7gを熟処jllKより完全に熱峡化展80に変化
させることによって、オーバーハングssJ下の空−を
熱酸化膜SOで皺めることができる◇したがって、ゲー
ト亀@xiの耐圧低下を防止することができる。
(Support) Polycrystalline silicon film 2# formed by CVD method! Because the weldability of the R difference part is improved, Fig. 2 (d) K
As shown, when the substrate 11 containing 25 gate electrodes is covered with 1iIK, the end sJ of the gate electrode z5! A hole is formed in which the overhang portion IJ formed in the vicinity is hermetically filled with the polycrystalline silicon film 2#. The polycrystalline silicon group 2 with the group @xr*mK that meets the 25 mag.
I! By completely changing 7g from JllK to thermal oxidation 80, the air below the overhang ssJ can be wrinkled by the thermal oxide film SO ◇Therefore, a drop in the breakdown voltage of the gate turtle @xi can be prevented. can do.

(イ)従来の如く、ゲート電極を直接熱酸化せスゲート
IIL健25を板積する多結晶シリコン膜29を熱酸化
処理することKよりゲート1klk25自体の酸化を最
小限に押えることができるため、ゲート電@3sの異常
酸化を防止できる。爽に多結晶シリコン1129の形成
が550〜650℃の比較的低温で行なわれ、かつその
反応が堆積反応である次め、熱歪によるゲート電&25
のゲート絶縁膜2gからの剥れ及び多結晶シリコン膜2
#の基板11からの剥れを防止できるoしかも、800
〜1100℃の比軟的高温での熱酸化に際し、グー)I
IE極2極上5接する多結晶シリコン族29がゲート電
極25を押えるため、剥れを防止できる。
(a) As in the conventional method, the oxidation of the gate 1klk 25 itself can be minimized by thermally oxidizing the polycrystalline silicon film 29 on which the gate IIL 25 is laminated, instead of directly thermally oxidizing the gate electrode. Abnormal oxidation of gate voltage @3s can be prevented. Refreshingly, the formation of polycrystalline silicon 1129 takes place at a relatively low temperature of 550 to 650°C, and the reaction is a deposition reaction.
Peeling from the gate insulating film 2g and polycrystalline silicon film 2
It is possible to prevent # from peeling off from the substrate 11.
During thermal oxidation at a relatively high temperature of ~1100°C, Gu) I
Since the polycrystalline silicon group 29 which is in contact with the top of the IE electrode 2 presses the gate electrode 25, peeling can be prevented.

(fA  オーバーハング部3JK個め込まれ九多結晶
シリコン換2pを完全に熱酸化するため、鉋21(・)
の如く、ゲート−惚z5の端部S2近送のゲート絶縁膜
jgIfi厚くなり、その結果ゲート亀1kisの端部
32は中央部と比べて中十反ヤ上がる0その結果、ゲー
ト電極25とソース・ドレイン領域z’t、is関の耐
圧を一層向上できるとともに、それら間の寄生容量も減
少゛てき、得られるMOS  FETの為連動性が可能
となる。
(fA) In order to completely thermally oxidize the overhang part 3JK embedded 9 polycrystalline silicon 2p, use a plane 21 (・)
As shown in FIG. - The withstand voltage of the drain regions z't and is can be further improved, and the parasitic capacitance between them can be reduced, and the resulting MOS FET can be interlocked.

なお、上記実施例で多結晶シリコン膜の熱酸化KWする
時間は、多結晶シリコン膜を完全に熱酸化するだff0
時間で十分で、その酸化性雰囲気はドライ酸素、水蒸気
あるvsFi塩化水素の−ずれからなる雰囲気でもより
h6 tた、上記実施例では熱線化膜上にCVD法により低温
で層間絶縁膜を被榎したが、かかる層間絶縁膜を用いず
、前記熱酸化膜を層間絶縁膜として用いてもよい。
In addition, in the above embodiment, the time for thermally oxidizing the polycrystalline silicon film is ff0 to completely thermally oxidize the polycrystalline silicon film.
The oxidizing atmosphere may be dry oxygen, water vapor, or hydrogen chloride. However, the thermal oxide film may be used as the interlayer insulating film without using such an interlayer insulating film.

ま喪、上記*施例では、ソーヌードレイン領域を形成し
たのちその領域を含む半導体基板上に多結晶シリコン族
を形成し九が、ソース・ドレイン領域を形成する前に半
導体基&全面を多結晶シリコン族で被板し、その彼、そ
の膜を通して拡散あるいはイオン注入を行なって、自己
整合的にソース・ドレイン領域を形成しても、その多結
晶シリコン膜を熱酸化膜に変換する限りにおいて伺らさ
しつかえない。
In the *example above, after forming the source/drain region, a polycrystalline silicon layer is formed on the semiconductor substrate including that region, but before forming the source/drain region, the semiconductor substrate and the entire surface are Even if a source/drain region is formed in a self-aligned manner by covering a substrate with crystalline silicon and performing diffusion or ion implantation through that film, as long as the polycrystalline silicon film is converted into a thermal oxide film, I can't help but ask.

以上評述し友如く本発明によれけ、ゲート電極の局部的
な異常酸化中剥れを招くことなく、賦電極の耐圧低下を
防止し得る信頼性の高−絶縁ゲートtIlt界効果トラ
ンジスタ等の半導体装置O1l造方法を提供できるもの
である。
As described above, the present invention provides semiconductors such as highly reliable insulated gate tIlt field effect transistors that can prevent a drop in breakdown voltage of a gate electrode without causing peeling during local abnormal oxidation of the gate electrode. It is possible to provide a method for manufacturing an apparatus O1l.

【図面の簡単な説明】[Brief explanation of drawings]

111i 1 m(a)〜(d)U従来のMOS  F
ETを製造ニー鵬に示す断面図、第26!0(a)〜(
・)は、本発明の1爽施例であるMOS  FETt−
製造工@珈に示す断薗図である。 JZ、p、il□、2基−”%  J J −810m
膜、23・・・Mo5t膜、25・・・ゲート電極、2
6・・・グー)i、縁膜、21・・・ソース領域、28
・・・ドレイン領域、29・・・多結晶シリコン族、1
0・・・熱歇花−1l J 810層蘭絶縁絶縁sz−
fmm、xx−オーバーハング部。 出願人代理人 ff!±−鈴  江  武  彦第1図 第2IlI
111i 1 m (a) ~ (d) U conventional MOS F
Cross-sectional views showing ET during production, Nos. 26!0(a)-(
・) is a MOS FET which is an example of the present invention.
It is a cutting diagram shown in the manufacturing work @ coffee. JZ, p, il□, 2 groups-”% J J -810m
Film, 23... Mo5t film, 25... Gate electrode, 2
6... goo) i, membrane, 21... source region, 28
...Drain region, 29...Polycrystalline silicon group, 1
0...Temperature flower-1l J 810 layer orchid insulation sz-
fmm, xx-overhang part. Applicant's agent ff! ±- Takehiko Suzue Figure 1 Figure 2 IlI

Claims (2)

【特許請求の範囲】[Claims] (1)  第1導1[mの半導体基板上に絶縁膜及び電
極材料at−馳次形成するニーと、この−極材料展をパ
ターニングしてゲート1に極を形成したてこのゲート、
電極を!スフとして前記絶縁膜を選択エツチングしてゲ
ート絶縁膜を形成する工程と、無用した半導体基板表面
に篤2導電製のソース拳ドレイン執城を形成する工程と
、前記ゲート−極及びソース・ドレイン領域を含む半導
体基板上に非単結シリコン展を形成する工程と、前記非
単結晶シリコン膜を鍍化性雰囲気で熱処理して酸化−に
変換させる工程とを具備したことtitとする半導体装
置の製造方法。  。
(1) An insulating film and an electrode material are sequentially formed on a semiconductor substrate of 1[m], and a lever gate is formed by patterning this electrode material to form a pole on the gate 1;
Electrodes! A step of selectively etching the insulating film as a step to form a gate insulating film, a step of forming a source and drain layer made of high-density conductivity on the surface of the unnecessary semiconductor substrate, and a step of forming the gate-pole and source/drain regions. manufacturing a semiconductor device comprising the steps of: forming a non-single crystal silicon film on a semiconductor substrate containing the silicon film; and converting the non-single crystal silicon film into oxide by heat-treating the non-single crystal silicon film in a chlorinating atmosphere. Method. .
(2)  電極材料膜が為融点金鵬又はこの金塊の珪化
物からなることを特徴とする特許請求p範囲第(1>項
記載の半導体装置の製造方法。 体) 非単結晶シリコン族が550〜650℃のCVD
法に19形成された多結晶シリコン族で、かつこのチ結
晶シリコン膜t−5oo〜1100℃のimt軛囲で熱
鹸化することを特徴とする特許請求の範l!l鉋(1)
項記1の半導体装置の製造方法0
(2) A method for manufacturing a semiconductor device according to claim (1), wherein the electrode material film is made of a metal with a melting point or a silicide of this gold ingot. CVD at 650℃
A polycrystalline silicon film formed by a polycrystalline silicon film according to the method 19 and thermally saponified at imt yoke of t-5oo to 1100°C! l plane (1)
Method 0 of manufacturing a semiconductor device according to Item 1
JP17690981A 1981-11-04 1981-11-04 Manufacture of semiconductor device Pending JPS5878465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17690981A JPS5878465A (en) 1981-11-04 1981-11-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17690981A JPS5878465A (en) 1981-11-04 1981-11-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5878465A true JPS5878465A (en) 1983-05-12

Family

ID=16021868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17690981A Pending JPS5878465A (en) 1981-11-04 1981-11-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5878465A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662370A (en) * 1979-10-26 1981-05-28 Toshiba Corp Manufacturing of semiconductor device
JPS5676537A (en) * 1979-11-27 1981-06-24 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662370A (en) * 1979-10-26 1981-05-28 Toshiba Corp Manufacturing of semiconductor device
JPS5676537A (en) * 1979-11-27 1981-06-24 Fujitsu Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US4551908A (en) Process of forming electrodes and interconnections on silicon semiconductor devices
US7479446B2 (en) Semiconductor device and method of manufacturing same
JPH0576177B2 (en)
EP0603360A1 (en) Methods of forming a local interconnect and a high resistor polysilicon load
JP2689038B2 (en) Semiconductor device and manufacturing method thereof
JP2006345003A (en) Semiconductor device and its manufacturing method
JP2638573B2 (en) Method for manufacturing semiconductor device
JPS5878465A (en) Manufacture of semiconductor device
JPS59195870A (en) Semiconductor device
JPH02271674A (en) Semiconductor device
JP2792459B2 (en) Method for manufacturing semiconductor device
JPS62154784A (en) Semiconductor device
JPS5846651A (en) Structure of electrode wiring and its manufacture
JP3725046B2 (en) Semiconductor device
JP2623711B2 (en) Semiconductor device
JPH0117255B2 (en)
JPS61168266A (en) Manufacture of mis type semiconductor device
JPS6151941A (en) Manufacture of electrode wiring film
JPH02246120A (en) Manufacture of thin film transistor
JPH11307774A (en) Semiconductor device and manufacture thereof
JPH10261646A (en) Semiconductor device and manufacture therefor
JPH0247871A (en) Manufacture of semiconductor device
JPS61172372A (en) Manufacture of semiconductor device
JPH0997771A (en) Manufacture of semiconductor device
JPS62224078A (en) Manufacture of semiconductor device