JPS5877230A - Pattern formation - Google Patents

Pattern formation

Info

Publication number
JPS5877230A
JPS5877230A JP56175661A JP17566181A JPS5877230A JP S5877230 A JPS5877230 A JP S5877230A JP 56175661 A JP56175661 A JP 56175661A JP 17566181 A JP17566181 A JP 17566181A JP S5877230 A JPS5877230 A JP S5877230A
Authority
JP
Japan
Prior art keywords
parts
ultraviolet rays
film
irradiated
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56175661A
Other languages
Japanese (ja)
Inventor
Yasuo Wada
恭雄 和田
Kozo Mochiji
広造 持地
Takeshi Kimura
剛 木村
Masatoshi Utaka
正俊 右高
Hidehito Obayashi
大林 秀仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56175661A priority Critical patent/JPS5877230A/en
Publication of JPS5877230A publication Critical patent/JPS5877230A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/7045Hybrid exposures, i.e. multiple exposures of the same area using different types of exposure apparatus, e.g. combining projection, proximity, direct write, interferometric, UV, x-ray or particle beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • G03F7/2065Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam using corpuscular radiation other than electron beams

Abstract

PURPOSE:To obtain a very fine pattern with high accuracy by a method wherein hydrogen ion beams are selectively implanted in the required parts of a positive- type photoresist film including a diazocompound as sensitive groups and then ultraviolet rays are aimed at the whole face including the required parts of the positive-type photoresist film and next, only the parts irradiated by the ultraviolet rays are developed and eliminated. CONSTITUTION:A positive-type photoresist film 2 including a diazo compound as sensitive groups is applied on an Si wafer 1 with a thickness of about 1mum and prebaking is done at 90 deg.C for about 20min. Next, after irradiating H<+> ions 3 at the required parts 4 of the film 2, the whole face including the required parts is exposed by using ultraviolet rays 5. In this way, sensitive groups at the parts 4 irradiated by the H<+> irons are destructed and the film 2 is changed to the state not exposed by the ultraviolet rays and only the places except the parts 4 are maintained under the condition permitting exposure and development by the ultraviolet rays. After that, the places except the parts 4 are developed and removed and a desired pattern by the parts 4 is left on a substrate 1.

Description

【発明の詳細な説明】 、亨発明はパターン形成方法vc関し、秤しくは。[Detailed description of the invention] The invention relates to a pattern forming method vc.

イオン線による照射と紫外111照射を併用することに
より、極めて微細なパターンt−高い!#度で形成する
ことのできる。パターン形成方法に関する。
By using ion beam irradiation and ultraviolet 111 irradiation in combination, extremely fine patterns can be produced. It can be formed in # degrees. This invention relates to a pattern forming method.

周知のように、各種半導体装置などの微細ノ(ターンは
5通常、ホトリソグラフィーとよばれる技術によって形
成される。
As is well known, the fine turns of various semiconductor devices are usually formed by a technique called photolithography.

この技術は、パターンを形成すべき膜や基板などの上に
被着されたレジスト膜の所ji1部分く、紫外線、#L
子線もしくはX4ii11などを照射した後、現像し、
得られたレジストパターンをマスクに用いてエツチング
を行なうことにより、所Aのバク1ンを形成するもので
ある。
This technique uses ultraviolet rays, #L
After irradiating with a sub-ray or X4ii11, develop it,
By performing etching using the obtained resist pattern as a mask, the back area A is formed.

レジスト膜中で散乱した如、あるいは、加工すべき基板
や膜などから反射するため、得られるレジストパターン
の精度が著しく低丁してしまう。
The accuracy of the obtained resist pattern is significantly reduced because it is scattered in the resist film or reflected from the substrate or film to be processed.

その丸め、従来は、レジスト膜の膜厚を薄くして、上記
散乱や反射の影響を減少させることが、amなレジスト
パターンの形成に必要であった。
Conventionally, in order to form a resist pattern, it was necessary to reduce the thickness of the resist film to reduce the effects of scattering and reflection.

しかし、レジストパターンの膜厚が薄いと、レジストパ
ターンをマスクに用いてエツチングを行なうのが困癲に
なり、とくにドライエツチングを行なう場合は、ドライ
エツチングにx4しC十分な耐性を持つレジストが極め
て少ないため、レジスト膜の膜厚を薄くすると、ドライ
エツチングによる加工が不可能になってしまう。
However, if the film thickness of the resist pattern is thin, it becomes difficult to perform etching using the resist pattern as a mask.Especially when performing dry etching, it is extremely difficult to use a resist that has sufficient resistance to dry etching. Therefore, if the thickness of the resist film is made thin, processing by dry etching becomes impossible.

紫外!−?電子線のかわ〕に、イオン線によってレジス
ト膜の照射を行なうと、紫外線や一子一を用−九場合よ
シも、上記散乱や反射は、はるかに少ないので、レジス
ト膜の膜厚をめまり博くする必要はなく、微細パターン
の形成には極めて有利で娶る。
ultraviolet! −? When a resist film is irradiated with an ion beam (instead of an electron beam), the scattering and reflection described above are much less than when using ultraviolet rays or a single beam. It is not necessary to widen the area, and it is extremely advantageous for forming fine patterns.

たとえば、厚さ125μmのPMMA (ポリメチルメ
タクリレイト)膜にイオン線を照射して、幅が0.57
μmのパターンを形成したとい9報告もりり(R,L、
セリジャー、池、ジャーナルオフバキュームサイエンス
1ンドテクノロジー巻、6号1610頁, l5HIO
年)、厚いレジスト膜を高いアスペクト比で露光するこ
とが可能である。
For example, when a PMMA (polymethyl methacrylate) film with a thickness of 125 μm is irradiated with an ion beam, the width becomes 0.57 μm.
Nine reports have shown that micrometer patterns were formed (R, L,
Seliger, Ike, Journal of Vacuum Science and Technology Vol. 6, p. 1610, l5HIO
), it is possible to expose thick resist films with high aspect ratios.

このような4!i長は、高集積密度の半導体装置の形成
に極めて肩用であるが、イオン線を用いるリソグラフィ
ー技術をA開化するためには、レジストの特性が極めて
iL要で6る。
4 like this! The i length is extremely important for forming semiconductor devices with high integration density, but in order to advance the lithography technology using ion beams, the characteristics of the resist are extremely important.

ナなわら、11it細パターンを形成するためには、エ
ツチング液を用いるウェットエツチングにかわって、エ
ツチング液を用いず,A方性エッチの可能なドライエツ
チングを使用する必要があるが。
However, in order to form an 11-it thin pattern, it is necessary to use dry etching, which allows A-oriented etching, without using an etching liquid, instead of wet etching using an etching liquid.

ドライエッチに対する耐性が十分大きいノジスト材料が
見出されていないため、散乱や反射が少なく,4ILI
aハターン形成に好適でのるという,イオン線のイする
特長を十分に利用するには至っていない。
A nosist material with sufficient resistance to dry etching has not been found, resulting in less scattering and reflection, and 4ILI
The advantage of ion beams, which are suitable for forming a-hatterns, has not yet been fully utilized.

たとえば、上目CPMMAをレジスト膜に用いて、Iル
iニクム膜をドライエッチする1曾.BCj。
For example, a method for dry etching an Irui nicum film using upper grade CPMMA as a resist film. BCj.

を反応ガスとして用い,圧力’0.2)−ル、出力60
0Wという標準的な条件でエッチフグを行なうと.PM
MAは変質して,レジストパ′ターンの形状はくずれて
しttn,ことに、レジスト膜に形成されていた礼状の
バター/の場合は,パターンが全くつぶれてしまうなど
、ナルミニクム成のエツチング用マス)としては、全く
使用で11ないことが確かめられた。
was used as the reaction gas, the pressure was 0.2) -l, the output was 60
When performing etch blowfish under standard conditions of 0W. PM
The MA changes in quality and the shape of the resist pattern is distorted.In particular, in the case of the thank you note butter formed on the resist film, the pattern is completely crushed. It was confirmed that 11 was not used at all.

4:発明の目的はJ上記従来の問題1t4犬し,イオン
線tVシスト旗に照射し、#.細I(ター/をト。
4: The purpose of the invention is to solve the above conventional problem 1t4, irradiate the ion beam tV cyst flag, and #. Thin I (ter/woto).

ライエッチフグによってd度よく形成できるようなパタ
ーン形成方法を提供することでらる。
It is possible to provide a pattern forming method that can be formed with high degree of accuracy using a light-etched blowfish.

王妃目的を達成する丸めに1本発明は、イA°ン線の選
択照射と紫外線の全面照射を併用することにより、ポジ
形レジストを見かけ上%耐ドライエツチング性の大きい
ネガ形レジストとしくijl!用して、パターンを形成
するもので弗る。
To achieve the queen's objective, the present invention uses a combination of selective irradiation with an ion beam and full-surface irradiation with ultraviolet rays to transform a positive resist into a negative resist with apparently high dry etching resistance. ! It is used to form a pattern.

以下,実施例を用いて本−A明を詳細に説明する。Hereinafter, this invention will be explained in detail using examples.

ポジ形レジストで弗るAZ1350J (da&名、シ
ップレイ社製)を1通常の方fzycヨッテV蟲JJ/
ウエーノ1上に,厚さ1μm塗布してとシスト膜を形成
した。
AZ1350J (DA & NAME, manufactured by Shipley) with positive resist
A cyst film was formed by coating Ueno 1 to a thickness of 1 μm.

9(1’.10分間のベークを行1つた醜、180Ke
V&CM速した水素イオyt、3. 2 X 10’ 
C/cm”照射し,さらvC.紫外光を全面に照射した
後、1ルカリ性現像液によって現像して,ネガ形のVシ
ストパターンを形成した・ 入Z1350Jは0.1μm以下というすぐれた分解能
を有しているため、イオン流を細く絞ることによりて、
0.1μm以下の)(ターン1を形成することも一■能
であり,上記処理条件によりC1幅0.5μmのライン
・スペースの微JIL/ジストノ(ターンを。
9 (1'. 1 row of 10 minute bake, 180Ke
V&CM accelerated hydrogen iot, 3. 2 x 10'
After irradiating the entire surface with V C/cm" and then irradiating the entire surface with V C. ultraviolet light, it was developed with a 1-alkaline developer to form a negative V cyst pattern. The Z1350J has an excellent resolution of 0.1 μm or less. By narrowing the ion flow,
It is also possible to form a turn 1 (with a width of 0.1 μm or less), and by using the above processing conditions, a fine JIL/distortion (turn 1) with a line space of C1 width of 0.5 μm can be formed.

高い精度で形成で@た。Formed with high precision.

このようVζ.AZ1350Jなど、7ツプVイ社製の
,いわゆる入Z系各種レジストに1オンミツkm射した
後,現像すれば,微細なレジスト膜くターンを、高い精
度で形成できる。
In this way, Vζ. If a variety of so-called Z-type resists such as AZ1350J manufactured by 7P V Co., Ltd. are irradiated with a 1-on-kilometre beam and then developed, fine resist film turns can be formed with high precision.

周知のように,AZ1350Jなど、シップレイ社Aの
AZ系Vシストは,ポジ形レジストでらるが、本発明で
は、見かけ上、ネガ形レジストとしての特性を示す。
As is well known, AZ series V cysts of Shipley A, such as AZ1350J, are positive resists, but in the present invention, they apparently exhibit characteristics as negative resists.

すなわら、AZ系Vシストを塗布して形成したレジスト
膜に,たとえば水素イオンなどのイオン線を照射すると
,レジストの感光基が破壊され。
That is, when a resist film formed by applying AZ-based V cyst is irradiated with an ion beam such as hydrogen ions, the photosensitive groups of the resist are destroyed.

紫外光に不感となるとともにアルカリ性fA1液に対し
て不溶化する。
It becomes insensitive to ultraviolet light and becomes insoluble in alkaline fA1 liquid.

AZ系ホトレジストの感光剤で必る、オルソナ7トキノ
ンアジドの有するIシト結合は破壊されるが、カルボン
酸の生成が起らない之め、紫外線には感光しなくなると
ともに、アルカリ系m濃液には不溶となる。
Although the I-site bond of orthoquinone azide, which is necessary for the photosensitizer of AZ-based photoresists, is destroyed, since the formation of carboxylic acid does not occur, it becomes insensitive to ultraviolet rays and is not sensitive to alkaline m-concentrated solutions. Becomes insoluble.

一方、イオン?mの照射を受けなかシた部分は、紫外線
の露光によってカルボン酸が生成されるため、アルカリ
性現像i&c町溶となる。
On the other hand, ion? The portions that were not irradiated with ultraviolet rays are exposed to ultraviolet rays to produce carboxylic acid, so that they become soluble in alkaline development.

したがって、レジスト膜の所望部分にイオン線を選択的
に照射した後、紫外光を全面に照射して。
Therefore, after selectively irradiating desired portions of the resist film with ion beams, the entire surface is irradiated with ultraviolet light.

アルカリ性現像液によって現像すれば、イオン線で照射
された部分のみが残!り、dの部分は除去されて、ネガ
形のレジストパターンが形成さ4する。
If you develop with an alkaline developer, only the areas irradiated with the ion beam will remain! Then, the portion d is removed to form a negative resist pattern 4.

イオン線をレジストパターン形成のための照射に用いる
と、レジストによる数置が小さいので、微細加工がoT
能である。厚iレジス14が開用できるなどの利点がめ
り、加えて、成子dAt−用いたときよプも、感度が約
1桁[高いので、走責速Rf:早くできるという%実用
上大暑な特長もMしている。
When an ion beam is used for irradiation to form a resist pattern, the number of resists is small, so microfabrication becomes OT.
It is Noh. It has advantages such as being able to use a thick I-regis 14, and in addition, when using Naruko dAt, the sensitivity is about an order of magnitude [higher, so the running speed Rf: can be faster, which is a great feature in practical terms. I'm also doing M.

また、得られるレジストパターンは、イオン繍照射によ
って、不安定なレジストの1Ill績部分が除去されて
いるため、プラズマなどの#卓に対する耐力が著しく向
上する。しかも、上記のように。
Furthermore, since the resulting resist pattern has an unstable portion of the resist removed by ion embroidery irradiation, its resistance to plasma and other radiation is significantly improved. Moreover, as mentioned above.

厚い膜厚のレジスト膜を使用することが可能なので、上
記レジストパターンは、ドライエツチングにおける極め
てずぐれ九マスクとして使用できる。
Since it is possible to use a thick resist film, the resist pattern described above can be used as an excellent mask in dry etching.

その九め、極めて微細レジストパターンの形成とドライ
エツチングにおける耐力の増大と−う、従来の方法では
解決できなかりたJt要な11題が。
Ninth, the formation of extremely fine resist patterns and increase in proof stress during dry etching are 11 important issues that could not be solved using conventional methods.

本発明によって同時に解決することが可能にな如。The present invention makes it possible to solve both problems at the same time.

ドライエツチングによる微細パターンの形成が、極めて
容易に行なえるようになった。
Formation of fine patterns by dry etching has become extremely easy.

実施ni 本発明において、水素イオンの照射量は、広い輯囲から
選択で龜る。
Implementation In the present invention, the amount of hydrogen ion irradiation can be selected from a wide range.

41図は、基板上に形成された膜厚1μmのAZ135
0Jgに、水素4 オンを180 KeV4C/10速
して照射し、紫外光を全面に照射した・訛に現像したと
きの、水素イオン照射量と現像後(残る膜厚との関係を
示す。
Figure 41 shows AZ135 with a thickness of 1 μm formed on a substrate.
The relationship between the amount of hydrogen ion irradiation and the remaining film thickness after development is shown when the entire surface was irradiated with ultraviolet light at 0 Jg at 180 KeV4C/10 speed and developed.

741図から明らかなように、照射量が、はぼL6X1
0−”C/cWI”以上になると、ijL * 釦こホ
トレジストが残るようにな)、はぼ3.2XIO−・0
7cm” IK−なると、塗布されたホトレジスト膜と
ほぼ等しい膜厚のホトレジスト膜が残るが、ホトレジス
ト膜のはじめの膜厚が異なっても同様で6つた。
As is clear from Figure 741, the irradiation amount is
When it exceeds 0-"C/cWI", ijL * Button photoresist remains), is 3.2XIO-・0
When 7 cm'' IK- was applied, a photoresist film with approximately the same thickness as the coated photoresist film remained, but the same was true even if the initial thickness of the photoresist film was different.

本実4丙では、1.6 X 10−” 07cm”以上
の照射量で、−明なホトレジストパターンを得ることが
でき、はじめの膜厚が異なっても、同様の結果が得られ
た。
In this example, a clear photoresist pattern could be obtained with a radiation dose of 1.6 x 10 cm or more, and similar results were obtained even if the initial film thickness was different.

実施例2 !s2図は、g厚IAmohzlssoamot−tr
am分にイオン線を照射し1照射ji13L2X1G−
@C%cm勺。
Example 2! s2 diagram is g thickness IAmohzlssoamot-tr
Irradiate the ion beam for am minutes and 1 irradiation ji13L2X1G-
@C%cm勺.

全面に紫外光t−照射した後に現像したときに、残った
永トレジスト属〇膜厚とイオン照射量の関係を示す。
The relationship between the thickness of the permanent photoresist group 〇 film remaining when the entire surface is irradiated with ultraviolet light and developed and the amount of ion irradiation is shown.

第2図から明らかなように、イオンエネルギーがほぼ5
0 KeV以上になると、魂像恢にホトレジストが残る
ようになプ、はぼ70 KeV以上の加速エネルギーで
ホトレジスト膜を照射すれば、膜厚の減少は認められず
、塗布さn*ホトレジスト膜がそのまま残る。
As is clear from Figure 2, the ion energy is approximately 5
At 0 KeV or more, the photoresist remains in the image, but if the photoresist film is irradiated with an acceleration energy of 70 KeV or more, no decrease in film thickness is observed, and the applied n*photoresist film is It remains as it is.

現像による膜厚減少を防止するに要するイオンエネルギ
ーは、イオン線を照射す8る前の塗布膜厚にほぼ比例す
る。
The ion energy required to prevent film thickness reduction due to development is approximately proportional to the coating film thickness before ion beam irradiation.

たとえば、イオン照射前の塗布膜厚が1μmのときに1
g厚を減少させずに残すために要するイオンエネルギー
は、上記のように、はぼ70KeV以上であるが、塗布
膜厚がほぼ2μmの場合は。
For example, when the coating film thickness before ion irradiation is 1 μm,
As mentioned above, the ion energy required to maintain the g thickness without reducing it is approximately 70 KeV or more, but when the coating film thickness is approximately 2 μm.

約140 K@V以上のイオン線をホトレジスト−に@
射すれば、現像による膜厚減少を防止できる。
An ion beam of approximately 140 K@V or more is applied to the photoresist.
By irradiating the film, it is possible to prevent the film thickness from decreasing due to development.

実験によれば、塗布されたホ)L/レジスト膜膜厚tr
@mと現像による膜厚減少を防止するのに必要な、水素
イオン加速エネルギーE、lI、の関には。
According to experiments, the applied e)L/resist film thickness tr
Regarding the relationship between @m and the hydrogen ion acceleration energy E and lI required to prevent film thickness reduction due to development.

E @MW (KeyJ 中14 t eta (nm
)      (1)という関係のあることが見出さn
た。
E @MW (KeyJ medium 14 t eta (nm
) (1) It was found that there is a relationship n
Ta.

ナなわら、ホトレジスト膜厚が0.7μm(7QQnm
)であれば、照射エネルギーは、はぼ50 KeVであ
る。
However, the photoresist film thickness is 0.7μm (7QQnm
), the irradiation energy is approximately 50 KeV.

照射されたイオン櫨が、水素イオン以外のものでらると
きは、式(υの係数が変るのみで、同様に比例関係が成
立するから、その4I会の関係も、実験によって容易に
求めることができる。
When the irradiated ion beam contains something other than hydrogen ions, the proportional relationship holds true just by changing the coefficient of equation (υ), so the 4I relationship can also be easily determined by experiment. I can do it.

また、適切な照射量も、イオン檎に工って着干異なるが
、いずれも、第1図に示した水系の揚台に虜似した関係
かめるので、実験によって容易に知ることができる。
Also, the appropriate irradiation dose varies depending on the ionization process, but in both cases it can be easily determined through experimentation, as the relationship is similar to that of the water-based platform shown in Figure 1.

実施例3 まず、第3図囚に示すように、P!!110Ω・副(1
00)面のシリコンウェーハl上に1通常のスピン塗布
によって、AZ135UJJt、厚さ1#miC*布し
てホトレジスト膜2を形成し、90C,20分間プリベ
ークする。
Example 3 First, as shown in Figure 3, P! ! 110Ω・sub(1
A photoresist film 2 of AZ135UJJt with a thickness of 1#miC* is formed on a silicon wafer l having a surface (00) by ordinary spin coating, and prebaked at 90C for 20 minutes.

つぎに%第3図■に示すように、上記ホトレジストg4
2の所望部分4に、水素イオン(8勺3をイオンエネル
ギ−180KeVで3.2 X 10−’ C/lrn
”(2X10”cIn−”)照射した。・″、・第3図
(Qに示すように、上記ホトレジスト膜2の全面に、紫
外線5を照射する。上妃水索イオン3を照射された部分
4は、水系イオン照射にょうて感光基が破壊されている
ので、紫外線照射にぶって溶解度は増大しないが、水素
イオンを照射されていない部分は、#外線に感光して現
1液に可溶となる。
Next, as shown in Figure 3 ■, apply the above photoresist g4.
At the desired portion 4 of 2, hydrogen ions (3.2
"(2X10"cIn-") was irradiated. ・", ・As shown in FIG. 3 (Q), the entire surface of the photoresist film 2 is irradiated with ultraviolet rays 5. In No. 4, the photosensitive groups are destroyed by irradiation with aqueous ions, so the solubility does not increase by UV irradiation, but the part that is not irradiated with hydrogen ions is exposed to #external radiation and can be converted into the current 1 solution. It becomes molten.

この工程における紫外−照射量は、水素イオンを照射さ
れなかった部分が現像によって、完全に除去されればよ
く、はぼ80〜300 J /crs”の範囲から通ば
れる。本、実施例では約100mJ/cIN”とした。
The amount of ultraviolet irradiation in this step is approximately 80 to 300 J/crs, as long as the portions not irradiated with hydrogen ions are completely removed by development. 100 mJ/cIN''.

水系イオン線および紫外線を照射した後、130C13
0分間の露光後ベークを行ない、ME312(商品名、
米1シップVイ社襄)を現儂献に用いてij4像を行な
うと、嬉3図0に示したように、紫外−のかを照射され
先部分Iは?!!解して除去され、水素イオンを照射さ
れた部分4のみがウエーノS1上に残った。
After irradiating with water-based ion beam and ultraviolet rays, 130C13
After 0 minutes of post-exposure baking, ME312 (trade name,
When performing ij4 imaging using rice 1 ship V isha shogi) as a present, as shown in Fig. 3 0, what is the tip part I that is irradiated with ultraviolet light? ! ! Only the portion 4 irradiated with hydrogen ions remained on Ueno S1.

上記実施例では、ホ・、トレジストとして、いずれもA
Z1360Jを用い九が、本発明において使用できるホ
トレジストはムZ1350Jの今ではなく、たとえばA
Z1450など、クツプレイ社製のAZ系ホトレジスト
や0FPR800(商品名、1iIL京追化工業製)な
ど、多くのホトレジストを使用できる。
In the above embodiment, both A and A are used as resists.
However, the photoresist that can be used in the present invention is not that of Z1350J but, for example, A
Many photoresists can be used, such as AZ-based photoresist such as Z1450 manufactured by Kutsuprey Co., Ltd. and 0FPR800 (trade name, manufactured by Kyoi Kakogyo Co., Ltd., 1iIL).

すなわち1本発明は、ホトレジストの有する感光基をイ
オン線照射によって破壊し、*外線に感光しないように
することによって、ポジ形ホトレジストを、見かけ上ネ
ガ形ホ)L/シストのように使用するものであるから、
たとえばジアゾ化合物のよう1こ、イオン線の照射によ
りて破壊さnる感光基を持りた谷櫨ポジ形ホトレジスト
を使用することができる。
That is, 1) the present invention is to destroy the photosensitive groups of the photoresist by ion beam irradiation so that it is not sensitive to external radiation, thereby using a positive photoresist to look like a negative photoresist (e) L/cyst. Because it is,
For example, a Tanizashi positive photoresist having a photosensitive group that can be destroyed by irradiation with an ion beam, such as a diazo compound, can be used.

また、照射するイオンとしては、上−己実施例に用い九
H0のみではなく、H;、s、。もしくはLl、′を用
匹ることができる。これよシ貞いイオンを用−ると、照
射に要するエネルギーが増力口rるなど(たとえばB9
を厚さ1μmのノジスト編に露光するのに、約200 
KeVのエネルギーが必要でめる)、夫用土の問題があ
るが、たとえばB、。B * ’t’ C* 、 N 
* 、 O*イオンなど、上記イオンよシ若干ムいイオ
ンを照射することも可能で心る。
In addition, the ions to be irradiated were not only 9H0 used in the above-mentioned example, but also H; Alternatively, Ll,' can be used. If a more refined ion is used, the energy required for irradiation will increase (for example, B9
It takes about 200
For example, B. B * 't' C * , N
It is also possible to irradiate with ions that are slightly different from the above ions, such as * and O* ions.

上記説明ρ為ら明らかなように1本発明によれば。According to the present invention, as is clear from the above explanation.

数置や反射が少ないイオン線の照射を紫外線の照射と併
用しているため、従来は困−で6″′:)九、膜厚の厚
い微細なホトレジストパターンを形成することができ、
しかも、得られるホトレジストノ(ターンは、耐ドライ
エツチングが極めて大きいので。
Because irradiation with ion beams with low reflection and low reflection is used in conjunction with irradiation with ultraviolet rays, it is possible to form fine photoresist patterns with a thick film thickness, which is difficult to achieve with conventional methods.
Moreover, the resulting photoresist material has extremely high dry etching resistance.

これを用−゛Cドライエツチングを支障54行ない、所
望の微細パターンを高い精度で形成できる。
Using this, a desired fine pattern can be formed with high precision by performing 54 times of dry etching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ水素イオン照射量2よび
イオンエネルギーと現像後に残るホトレジスト膜の膜厚
との関係を示す曲線図、第3図は本発明の一実施例を示
す工楊図でるる。 1・・・クリコンウェーハ、2・・・ホトレジスト膜、
3・・・水素イオン−14・・・水素イオン線で照射さ
れた部分、5・・・紫外線、6・・・紫外線のみで照射
された蔦 1  図 市  Z  図 47嬰エフ1Li”  (ke(1) %、3   図 (Aン 薗 3 図(B) 1〜  3  5g  <cノ +i↓++i++に5
Figures 1 and 2 are curve diagrams showing the relationship between the hydrogen ion irradiation amount 2 and ion energy and the thickness of the photoresist film remaining after development, respectively, and Figure 3 is a diagram showing an embodiment of the present invention. Ruru. 1...Crycon wafer, 2...Photoresist film,
3...Hydrogen ion-14...Part irradiated with hydrogen ion beam, 5...Ultraviolet light, 6...Ivy irradiated only with ultraviolet light 1. 1) %, 3 Figure (A Anzono 3 Figure (B) 1~3 5g <cノ+i↓++i++ to 5

Claims (1)

【特許請求の範囲】 1、下記工程を含むパターン形成方法 (1)ポジ形ホトレジスト膜の所望部分にイア/線を選
択的に照射する工程。 (2)  上記ホトレジスト膜の全面に紫外線を照射す
る工程。 (3)  上記ホトレジスト膜を現像して上記紫外線の
みを照射された部分を除去する工程。 求の範囲第1項もしくは第2項記載のパターン形成方法
[Claims] 1. A pattern forming method including the following steps: (1) A step of selectively irradiating a desired portion of a positive photoresist film with an irradiation line. (2) A step of irradiating the entire surface of the photoresist film with ultraviolet rays. (3) A step of developing the photoresist film and removing the portion irradiated only with the ultraviolet rays. The pattern forming method according to claim 1 or 2.
JP56175661A 1981-11-04 1981-11-04 Pattern formation Pending JPS5877230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56175661A JPS5877230A (en) 1981-11-04 1981-11-04 Pattern formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56175661A JPS5877230A (en) 1981-11-04 1981-11-04 Pattern formation

Publications (1)

Publication Number Publication Date
JPS5877230A true JPS5877230A (en) 1983-05-10

Family

ID=16000002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56175661A Pending JPS5877230A (en) 1981-11-04 1981-11-04 Pattern formation

Country Status (1)

Country Link
JP (1) JPS5877230A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105230A (en) * 1983-11-12 1985-06-10 Fujitsu Ltd Method of pattern formation
JPS63185022A (en) * 1987-01-27 1988-07-30 Fujitsu Ltd Forming method for pattern
JPH0799683B2 (en) * 1986-03-07 1995-10-25 ヒユ−ズ・エアクラフト・カンパニ− Masked ion beam lithography system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105230A (en) * 1983-11-12 1985-06-10 Fujitsu Ltd Method of pattern formation
JPH0799683B2 (en) * 1986-03-07 1995-10-25 ヒユ−ズ・エアクラフト・カンパニ− Masked ion beam lithography system and method
JPS63185022A (en) * 1987-01-27 1988-07-30 Fujitsu Ltd Forming method for pattern
JPH0551169B2 (en) * 1987-01-27 1993-07-30 Fujitsu Ltd

Similar Documents

Publication Publication Date Title
US4165395A (en) Process for forming a high aspect ratio structure by successive exposures with electron beam and actinic radiation
US3987215A (en) Resist mask formation process
US4321317A (en) High resolution lithography system for microelectronic fabrication
US4101782A (en) Process for making patterns in resist and for making ion absorption masks useful therewith
US6420101B1 (en) Method of reducing post-development defects in and around openings formed in photoresist by use of non-patterned exposure
JPS5877230A (en) Pattern formation
JPH03142918A (en) Formation of resist pattern
JP3118887B2 (en) Pattern formation method
JPS58214148A (en) Resist material and formation of micropattern
JPH0290170A (en) Pattern forming method
JPS63254729A (en) Forming method for resist pattern
JP2583892B2 (en) Contrast enhanced material for pattern formation
JPS63109435A (en) Contrast enhanced material for pattern formation
JPH0319217A (en) Fine pattern formation
JPS6188526A (en) Positive type fine processing method
JPS588131B2 (en) Manufacturing method of semiconductor device
JPH01185545A (en) Resist pattern forming method
JPH03269533A (en) Production of photomask and substrate used therein
JPH0416106B2 (en)
JPH03228306A (en) Formation of micropattern
JP2012078552A (en) Photomask producing method
JPH0685070B2 (en) Method of developing resist pattern
JPH07325385A (en) Forming method of photoresist film and photoplate
JPS598336A (en) Forming method for pattern
KUDRYASHOV et al. Sub 0.25 micron resolution and profile control in photoresists under E-beam exposure