JPH0319217A - Fine pattern formation - Google Patents

Fine pattern formation

Info

Publication number
JPH0319217A
JPH0319217A JP15432589A JP15432589A JPH0319217A JP H0319217 A JPH0319217 A JP H0319217A JP 15432589 A JP15432589 A JP 15432589A JP 15432589 A JP15432589 A JP 15432589A JP H0319217 A JPH0319217 A JP H0319217A
Authority
JP
Japan
Prior art keywords
resist
substrate
pattern
beam diameter
focused ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15432589A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Kojima
小島 義克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15432589A priority Critical patent/JPH0319217A/en
Publication of JPH0319217A publication Critical patent/JPH0319217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To enable a pattern finer than a beam diameter to be formed by a method wherein a focussed ion beams making an angle excluding the right angle are exposed to a resist coated on substrate. CONSTITUTION:When a resist pattern in opening width alpha almost equivalent to the beams diameter making an oblique angle theta of substrate 22 or a focussed column with a resist 21 in thickness of t is formed, the effective opening width alphaof the substrate 22 is represented by a formula I. Accordingly, the effective opening width alpha can be made narrower than the beam diameter l by properly selecting the thickness t and the angle theta. That is, when a pattern is transferred to the substrate 22 in the vertical direction by dryethcing process, etc., having anisotropy, the linear width b region masked under the overhung resist 21 is not etched away but a region in the width alpha only is etched away so that a fine pattern narrower than the beam diameter l may be formed on the substrate 22.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子製造工程等に用いる微細パターンの
形成方法に係わり、詳しくは集束イオンビームを用いた
微細パターン形威方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming fine patterns used in semiconductor device manufacturing processes, and more particularly to a method for forming fine patterns using a focused ion beam.

(従来の技術) 集束イオンビームを用いたレジスト露光は、現在微細パ
ターン形威手段として一般的に用いられている電子ビー
ムによるレジスト露光と比較した場合、″前方及び後方
散乱による近接効果の影響を受けにくく、また感度が1
〜2程高いため、チャージアップによる影響も受けにく
い。このように集束イオンビームは電子ビームに比べ、
より微細加工性に優れており、現在集束イオンビーム露
光による、線幅0.1pm程度の微細レジストパターン
形成が行われている。
(Prior art) When compared to resist exposure using an electron beam, which is currently commonly used as a method for forming fine patterns, resist exposure using a focused ion beam is less likely to be affected by the proximity effect caused by forward and backward scattering. It is difficult to receive, and the sensitivity is 1
Since it is about ~2 high, it is not easily affected by charge-up. In this way, compared to electron beams, focused ion beams are
It has better microfabrication properties, and currently a fine resist pattern with a line width of about 0.1 pm is formed by focused ion beam exposure.

第3図は従来技術による基板上への微細パターンの形成
方法を示している。基板32上に塗布されたボジ型レジ
ストボリメチルメタクリレート31(第3図(a))に
ビーム径約0.1pm,加速エネルギー260keVの
Be集束イオンビーム33を用いて露光する(第3図(
b))。ついでメチルイソブチルケトン:イソブロビル
アルコール=1=3の混液中にて3分間現像を行い、イ
ソプロビルアルコールにて1分間リンスを行ウことによ
り、ビーム径とほぼ等しい線幅約0.1pmのレジスト
パターンが形威される(第1図(C))。従ってその後
そのレジストパターンをマスクとして、CF4 RIE
を用いた異方性エッチングにより基板32にパターン転
写を行い(第3図(C))、レジストを除去することに
より、ビーム径とほぼ等しい線幅約0.1llmの微細
パターンを基板上に形成していた(第3図(e))。
FIG. 3 shows a method of forming a fine pattern on a substrate according to the prior art. A positive resist polymethyl methacrylate 31 (FIG. 3(a)) coated on a substrate 32 is exposed using a Be focused ion beam 33 with a beam diameter of approximately 0.1 pm and an acceleration energy of 260 keV (FIG. 3(a)).
b)). Next, development was performed for 3 minutes in a mixed solution of methyl isobutyl ketone and isobrobyl alcohol = 1 = 3, followed by rinsing for 1 minute with isopropyl alcohol, resulting in a resist with a line width of approximately 0.1 pm, which is approximately equal to the beam diameter. The pattern is formed (Fig. 1 (C)). Therefore, using the resist pattern as a mask, CF4 RIE
A pattern is transferred to the substrate 32 by anisotropic etching using a 300 nm (FIG. 3 (C)), and by removing the resist, a fine pattern with a line width of approximately 0.1 llm, which is approximately equal to the beam diameter, is formed on the substrate. (Figure 3(e)).

しかしながらその集束イオンビーム露光を用いても、イ
オン集束系のレンズの収差等により、レジスト露光を行
うために必要なイオン電流量を得ようとすれば、そのビ
ーム径は50nm〜0.1pmが限界である。またその
集束イオンビームによって露光されるレジストのパター
ン幅は基本的にビーム径と同等かそれ以上となり、その
レジストパターンをマスクに基板上に転写されたパター
ンのパターン幅も、ビーム径と同等かそれ以上となる。
However, even when using focused ion beam exposure, the beam diameter is limited to 50 nm to 0.1 pm to obtain the amount of ion current necessary for resist exposure due to aberrations of the ion focusing lens. It is. In addition, the pattern width of the resist exposed by the focused ion beam is basically equal to or greater than the beam diameter, and the pattern width of the pattern transferred onto the substrate using the resist pattern as a mask is also equal to or greater than the beam diameter. That's all.

したがって従来のパターン形成方法では、得られるビー
ムのビーム径以下のパターンを基板上に形威することは
困難であると言う問題を有していた(例えば半導体リン
グラフイ技術:鳳紘一郎著、産業図書P197〜)。
Therefore, conventional pattern forming methods have the problem that it is difficult to form a pattern on a substrate that is smaller than the beam diameter of the obtained beam (for example, semiconductor ring graphing technology: written by Koichiro Otori, Sangyo Tosho P197). ~).

本発明の目的は、微細レジストパターン形成において従
来困難であった、得られるビーム径よりも微細なパター
ンを基板上に形成するパターン形威方法を提供すること
にある。
An object of the present invention is to provide a pattern forming method for forming a finer pattern on a substrate than the beam diameter obtained, which has been difficult in the past in forming fine resist patterns.

(問題を解決するための手段) 本発明によれば、集束イオンビーム露光による基板上へ
の微細パターン形成方法において、基板上にレジストを
塗布する工程と、前記基板およびレジストに対して垂直
以外の角度を持つ集束イオンビームによって前記レジス
トを露光する工程とを具備することを特徴とする微細パ
ターン形成方法によって得られる。
(Means for Solving the Problems) According to the present invention, in a method of forming a fine pattern on a substrate by focused ion beam exposure, there are a step of applying a resist on the substrate, and a step of applying a resist to the substrate and the resist. A method for forming a fine pattern is obtained, which comprises a step of exposing the resist with a focused ion beam having an angle.

(作用冫 本発明の原理を第2図を用いて説明する。(effect medicine The principle of the present invention will be explained using FIG. 2.

通常レジストが塗布された基板と、イオンを集束する集
束カラムおよびそこから得られる集束イオンビームは垂
直の関係に保たれている。ここでいまレジストの塗布さ
れた基板を傾斜させるか、あるいは集束カラムを傾斜さ
せた場合、イオンビームは基板上に塗布されたレジスト
に対して垂直以外の角度で入射する。そのような状態で
露光されたレジストの現像後の部分断面図を第2図(a
)は示している。第2図(a)において、厚さtのレジ
スト21に基板22あるいは集束カラムを角度e傾斜さ
せて、ビーム径とほぼ等しい開口幅1のレジストパター
ンを形威した場合、基板22に対して法線方向から見た
場合の実効的な基板22の開口幅aは次式で示される。
Typically, a resist-coated substrate, a focusing column for focusing ions, and a focused ion beam obtained therefrom are maintained in a perpendicular relationship. If the substrate coated with resist is now tilted or the focusing column is tilted, the ion beam will be incident at an angle other than perpendicular to the resist coated on the substrate. A partial cross-sectional view of the resist exposed in such a state after development is shown in Figure 2 (a).
) is shown. In FIG. 2(a), when a resist pattern with an aperture width 1 approximately equal to the beam diameter is formed on a resist 21 with a thickness t by tilting the substrate 22 or the focusing column at an angle e, The effective opening width a of the substrate 22 when viewed from the linear direction is expressed by the following equation.

a=1−b =1−t−tane よってレジスト21の厚さtおよび傾斜角度0を適当に
選ぶことにより、基板22の実効的な開口幅aはレジス
ト21の開口幅1、すなわち集束イオンビームのビーム
径より狭くすることができる。したがってその後、垂直
方向に異方性を有するドライエッチングなどによって基
板22にパターン転写を行った場合、オーバーハングし
たレジスト21によってマスクされている線幅bの領域
はエッチングされずに、実効的な基板22の開口幅aの
領域のみエッチング除去される(第2図(b))。さら
にその後レジスト21を除去することによって、レジス
トの開口輻1すなわち集束イオンビームのビーム径より
も狭い線幅aの微細パターンが基板上に形威される(第
2図(C))。
a=1-b=1-t-tane Therefore, by appropriately selecting the thickness t of the resist 21 and the inclination angle 0, the effective aperture width a of the substrate 22 can be set to the aperture width 1 of the resist 21, that is, the focused ion beam. can be made narrower than the beam diameter of Therefore, when the pattern is transferred to the substrate 22 by vertically anisotropic dry etching or the like, the area of line width b masked by the overhanging resist 21 is not etched, and the effective substrate Only the area with the opening width a of 22 is etched away (FIG. 2(b)). Furthermore, by subsequently removing the resist 21, a fine pattern with a line width a narrower than the aperture radius 1 of the resist, that is, the beam diameter of the focused ion beam, is formed on the substrate (FIG. 2(C)).

ここで露光手段として集束イオンビーム以外の光あるい
は電子ビーム等の露光方法を用いた場合、回折や前方お
よび後方散乱等の影響により、入射ビームに対して平行
性のよいパターンプロファイルを得ることが困難なため
、本方式に適用することは困難である。
If an exposure method such as light other than a focused ion beam or electron beam is used as the exposure means, it is difficult to obtain a pattern profile with good parallelism to the incident beam due to the effects of diffraction, forward and backward scattering, etc. Therefore, it is difficult to apply this method.

(実施例) 以下、本発明の実施例について第1図を用いて説明する
。まず、基板12上にレジストとしてポリメチルメタク
リレート11を厚さ約1.0pmスピン塗布し、170
°030分間ベイクする(第1図(a))。次いで集束
カラムを7度傾斜させ、Au−Si−Be合金イオン源
から得られる、加速エネルギー260keVのBe集束
イオンビームを用いてレジストの露光を行う(第1図(
b))。
(Example) Hereinafter, an example of the present invention will be described using FIG. 1. First, polymethyl methacrylate 11 was spin-coated as a resist on the substrate 12 to a thickness of about 1.0 pm, and
Bake for 30 minutes (Figure 1(a)). Next, the focusing column is tilted 7 degrees, and the resist is exposed using a Be focused ion beam with an acceleration energy of 260 keV obtained from an Au-Si-Be alloy ion source (see Fig. 1).
b)).

この時Be集束イオンビームのビーム径は約0.1pm
、描画線幅は0.15pmとした。またレジストの露光
量は1.5 X 1013ions/cm2程度とした
。その後メチルイソブチルケトン:イソブロビルアルコ
ール=1:3の混液中にて3分間現像を行い、イソプロ
ビルアルコールにて1分間リンスを行うことにより、第
1図(e)に示したようなレジストパターンが形威され
た。このとき、基板12の法線方向からみた実効的な基
板の開口線幅は約30nmであった。ついでこのレジス
ト11をマスクに異方性ドライエッチングとしてCF4
RIEによりパターン転写を行い(第1図(d))、レ
ジストをメチルエチルケトンにより除去することにより
、第1図(e)に示すような微細パターンが基板12上
に形威された。この時基板12上には集束イオンビーム
のビーム径約0.1¥imに比較してさらに微細な線幅
約30nmの微細パターンを形成することができた。
At this time, the beam diameter of the Be focused ion beam is approximately 0.1 pm.
The drawing line width was 0.15 pm. Further, the exposure amount of the resist was approximately 1.5×10 13 ions/cm 2 . After that, development was performed for 3 minutes in a mixture of methyl isobutyl ketone and isobrobyl alcohol = 1:3, and rinsing was performed for 1 minute with isopropyl alcohol, resulting in a resist pattern as shown in Figure 1(e). Formed. At this time, the effective opening line width of the substrate 12 as viewed from the normal direction was about 30 nm. Then, using this resist 11 as a mask, anisotropic dry etching is performed using CF4.
By performing pattern transfer by RIE (FIG. 1(d)) and removing the resist with methyl ethyl ketone, a fine pattern as shown in FIG. 1(e) was formed on the substrate 12. At this time, it was possible to form a fine pattern on the substrate 12 with a line width of about 30 nm, which was even finer than the beam diameter of the focused ion beam, which was about 0.1 im.

本実施例では傾斜方法として集束カラムを傾斜させる方
法を用いたが、これに限らずレジストが塗布された基板
を傾斜させる方法あるいはこの両方を用いてもよい。ま
た傾斜角度、レジスト膜厚およびレジスト上への描画線
幅は、基板上に所望の線幅を形威できる範囲で自由に設
定することができる。さらに本実施例では集束イオンビ
ーム露光工程にAu−Si−Be合金イオン源から得ら
れる加速エネルギー260keVのBe集束イオンビー
ムを用いたが、他の加速エネルギー及び他のLi, G
a, Au等単体金属イオン源、Au−Si, Pt−
Sb, Pb−Ni−B等合金イオン源、あるいはHe
, H2、02、F2等のガスイオン源から得られるイ
オン種の組合せによる集束イオンビームを用いてもよい
。集束イオンビーム露光の露光量は1.5 X 101
3ions/am2としたが、これは用いるレジストに
像形威反応を起こさせ、かつイオン衝撃によるレジスト
の膜減りが起こらない範囲であれば任意の大きさの露光
量としてもよい。また本実施例ではボジ型レジストおよ
び現像液として、ポリメチルメタクリレートおよびメチ
ルイソブチルケトン:イソプロビルアルコール=1=3
の混液の組合せを用いたが、これに限らずノボラック系
ボジ型レジストとアルカリ水溶液現像液等、他のポジ型
レジストと現像液の組合せあるいは、クルルメチル化ボ
リスチレンと酢酸イソアミル:エチルセロソルブ=:1
5:85の混液等ネガ型レジストと現像液の組合せを用
いてもよい。また異方性ドライエッチングとしてCF4
RIEを用いたが、これに限らず他の異方性が得られる
エッチング方法、例えばSF5、CC12F2などを用
いてもよい。
In this embodiment, a method of tilting a focusing column is used as the tilting method, but the method is not limited to this, and a method of tilting a substrate coated with a resist, or both of these methods may be used. Further, the inclination angle, the resist film thickness, and the line width drawn on the resist can be freely set within a range that allows the desired line width to be formed on the substrate. Furthermore, in this example, a Be focused ion beam with an acceleration energy of 260 keV obtained from an Au-Si-Be alloy ion source was used in the focused ion beam exposure process, but other acceleration energy and other Li, G
a, Single metal ion source such as Au, Au-Si, Pt-
Alloy ion source such as Sb, Pb-Ni-B, or He
A focused ion beam using a combination of ion species obtained from gas ion sources such as , H2, 02, F2, etc. may also be used. The exposure dose of focused ion beam exposure is 1.5 x 101
Although the exposure amount was set at 3 ions/am2, the exposure amount may be any value as long as it causes an image-forming reaction in the resist used and does not reduce the resist film due to ion bombardment. Further, in this example, polymethyl methacrylate and methyl isobutyl ketone:isopropyl alcohol=1=3 are used as a positive resist and a developer.
A combination of other positive resists and developers, such as a novolac positive resist and an alkaline aqueous developer, or a combination of a novolac positive resist and an alkaline aqueous developer, or a mixture of chloromethylated polystyrene and isoamyl acetate: ethyl cellosolve was used.
A combination of negative resist and developer, such as a 5:85 mixture, may also be used. In addition, CF4 is used as an anisotropic dry etching method.
Although RIE is used, the etching method is not limited to this, and other etching methods that can obtain anisotropy, such as SF5 and CC12F2, may be used.

(発明の効果) 以上説明したように、本発明によれば集束イオンビーム
露光による基板上への微細パターン形成において、基板
上にレジストを塗布する工程と、前記基板およびレジス
トに対して垂直以外の角度を持つ集束イオンビームによ
って前記レジストを露光させるので、従来法によっては
得ることのできなかったビーム径より微細なパターンを
形成することが可能となる。
(Effects of the Invention) As described above, according to the present invention, in forming a fine pattern on a substrate by focused ion beam exposure, there are two steps: applying a resist on the substrate, and Since the resist is exposed with a focused ion beam having an angle, it is possible to form a pattern with a finer beam diameter than that which could not be obtained by conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための基板の部分
断面図、第2図は本発明の作用を説明するための基板の
部分断面図、第3図は従来技術を説明するための基板の
部分断面図である。 図において11・・・ポリメチルメタクリレート、12
・・・基板、13・・・Be集束イオンビーム、21・
・・レジスト、22・・・基板、31・・・ポリメチル
メタクリレート、32.・・基板、33・・・Be集束
イオンビームである。 第1図
FIG. 1 is a partial cross-sectional view of a substrate for explaining an embodiment of the present invention, FIG. 2 is a partial cross-sectional view of a substrate for explaining the operation of the present invention, and FIG. 3 is a partial cross-sectional view for explaining the prior art. FIG. 3 is a partial cross-sectional view of the substrate of FIG. In the figure, 11...polymethyl methacrylate, 12
...Substrate, 13...Be focused ion beam, 21.
...Resist, 22...Substrate, 31...Polymethyl methacrylate, 32. . . . Substrate, 33 . . . Be focused ion beam. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)集束イオンビーム露光による基板上への微細パタ
ーン形成方法において、基板上にレジストを塗布する工
程と、前記基板およびレジストに対して垂直以外の角度
を持つ集束イオンビームによって前記レジストを露光す
る工程とを具備することを特徴とする微細パターン形成
方法。
(1) A method for forming a fine pattern on a substrate by focused ion beam exposure, which includes a step of applying a resist onto the substrate, and exposing the resist with a focused ion beam having an angle other than perpendicular to the substrate and the resist. A method for forming a fine pattern, comprising the steps of:
JP15432589A 1989-06-15 1989-06-15 Fine pattern formation Pending JPH0319217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15432589A JPH0319217A (en) 1989-06-15 1989-06-15 Fine pattern formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15432589A JPH0319217A (en) 1989-06-15 1989-06-15 Fine pattern formation

Publications (1)

Publication Number Publication Date
JPH0319217A true JPH0319217A (en) 1991-01-28

Family

ID=15581675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15432589A Pending JPH0319217A (en) 1989-06-15 1989-06-15 Fine pattern formation

Country Status (1)

Country Link
JP (1) JPH0319217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151114A (en) * 2010-01-20 2011-08-04 Tokyo Electron Ltd Method and apparatus for recovering pattern on silicon substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151114A (en) * 2010-01-20 2011-08-04 Tokyo Electron Ltd Method and apparatus for recovering pattern on silicon substrate

Similar Documents

Publication Publication Date Title
US4751169A (en) Method for repairing lithographic transmission masks
JPS6055825B2 (en) Method for forming thin film patterns with large aspect ratio openings in resist structures
JPH04155337A (en) Manufacture of photo mask
JP2000331928A (en) Lithographic method
JPS5922050A (en) Photomask
US6420101B1 (en) Method of reducing post-development defects in and around openings formed in photoresist by use of non-patterned exposure
JPS58124230A (en) Forming method for ultrafine pattern
JPH0319217A (en) Fine pattern formation
JP2001249439A (en) Method for producing mask
US4822722A (en) Process of using high contrast photoresist developer with enhanced sensitivity to form positive resist image
JP2002148809A (en) Method for producing resist substrate and resist substrate
JPH07325382A (en) Production of phase shift mask
JPS63165851A (en) Forming method for photoresist pattern
JPH0290170A (en) Pattern forming method
JPS5877230A (en) Pattern formation
JPH06110214A (en) Formation of resist pattern
JP2548268B2 (en) Method of forming resist pattern
JPS6278550A (en) Developing method for radiation sensitive film
JPH022604A (en) Fine-pattern forming method
JPH02187012A (en) Formation of resist pattern
JPH03269533A (en) Production of photomask and substrate used therein
JP2794116B2 (en) Electron beam exposure method
JPH0611827A (en) Photomask and its correction method
JPH06338452A (en) Formation method of resist pattern
JPH01128433A (en) Formation of reverse image pattern