JPS587712B2 - Metal corrosion prevention method - Google Patents

Metal corrosion prevention method

Info

Publication number
JPS587712B2
JPS587712B2 JP52138958A JP13895877A JPS587712B2 JP S587712 B2 JPS587712 B2 JP S587712B2 JP 52138958 A JP52138958 A JP 52138958A JP 13895877 A JP13895877 A JP 13895877A JP S587712 B2 JPS587712 B2 JP S587712B2
Authority
JP
Japan
Prior art keywords
corrosion
protection
anode
current
cathodic protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52138958A
Other languages
Japanese (ja)
Other versions
JPS5471738A (en
Inventor
海野武人
望月紀保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAGAWA BOSHOKU KOGYO KK
Original Assignee
NAKAGAWA BOSHOKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAGAWA BOSHOKU KOGYO KK filed Critical NAKAGAWA BOSHOKU KOGYO KK
Priority to JP52138958A priority Critical patent/JPS587712B2/en
Publication of JPS5471738A publication Critical patent/JPS5471738A/en
Publication of JPS587712B2 publication Critical patent/JPS587712B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Description

【発明の詳細な説明】 本発明は冷却水系、船舶のバラストタンク、その他腐食
性液体と接触する金属製の容器あるいは機器などを構成
する金属表面の防食法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing corrosion of metal surfaces constituting cooling water systems, ship ballast tanks, and other metal containers or equipment that come into contact with corrosive liquids.

従来、液体を貯蔵あるいは使用する金属製機器表面の防
食には電気防食法、金属被覆、塗装、防食薬剤などの各
種の方法が実用されている。
Conventionally, various methods such as cathodic protection, metal coating, painting, and anticorrosive agents have been put into practical use to prevent corrosion on the surfaces of metal devices that store or use liquids.

金属腐食の進行速度を低下させるためには腐食反応にお
ける陽極過程および陰極過程をともに抑制することが、
理想的であるが、いずれか一方の過程を抑制しても防食
は達成される。
In order to reduce the rate of progress of metal corrosion, it is necessary to suppress both the anodic and cathodic processes in the corrosion reaction.
Although ideal, corrosion protection can be achieved even if either process is suppressed.

電気防食法には防食対象の金属表面に対して、外部の直
流電源を用いて防食電流を流入させる外部電源法のほか
に、腐食性液体と接する金属にこれよりも卑な電極電位
を有する金属を短絡することによって電流を発生させて
防食する流電陽極法とがあり、後者の流電陽極としては
亜鉛、アルミニウム、マグネシウムなどの材料が使用さ
れている。
Cathodic protection methods include an external power supply method in which a corrosion protection current is applied to the metal surface to be protected using an external DC power supply; There is a galvanic anode method which generates an electric current by short-circuiting and prevents corrosion, and materials such as zinc, aluminum, and magnesium are used as the latter galvanic anode.

また防食薬剤のなかには腐食性液体中に適量を添加する
ことによってその環境中における金属の腐食を抑制する
種々の腐食量抑制剤が使用されている。
Also, among the anticorrosion agents, various corrosion inhibitors are used, which suppress the corrosion of metals in the environment by adding an appropriate amount to a corrosive liquid.

腐食抑制剤はすでに数多くの種類にわたって明らかとな
っているが、実用されるものはかなり限定されるうえに
、その作用機構は明確でない場合が多く、防食皮膜の種
類、特徴によって別けると酸化皮膜型、沈殿皮膜型、吸
着皮膜型などの分類が行なわれている。
Many types of corrosion inhibitors have already been identified, but those that are put into practical use are quite limited, and their mechanisms of action are often not clear. It is classified into , precipitation film type, adsorption film type, etc.

酸化皮膜型腐食抑制剤は多くの場合酸化剤で、金属表面
を直接酸化することによって金属酸化物皮膜を形成し腐
食反応を抑制するもので、たとえば亜硝酸塩・クロム酸
塩などがある。
Oxide film-type corrosion inhibitors are often oxidizing agents that directly oxidize the metal surface to form a metal oxide film to inhibit corrosion reactions, such as nitrites and chromates.

この場合金属の腐食電位(自然電位)を貴方向へ移動さ
せるいわゆる不動態化現象によって腐食反応速度が低下
する。
In this case, the corrosion reaction rate decreases due to a so-called passivation phenomenon that moves the corrosion potential (natural potential) of the metal in a noble direction.

沈殿皮膜型腐食抑制剤はそれ自身は水に可溶性で水中の
他の共存イオンと作用して水に難溶あるいは不溶性の塩
を金属表面に形成し、析出あるいは沈殿皮膜によって腐
食反応を抑制するもので、たとえば重合リン酸塩、リン
酸塩、炭酸塩、珪酸塩、安息香酸塩などがある。
Precipitated film-type corrosion inhibitors are soluble in water, but interact with other coexisting ions in the water to form salts that are sparingly soluble or insoluble in water on the metal surface, suppressing corrosion reactions through precipitation or a precipitated film. Examples include polymerized phosphates, phosphates, carbonates, silicates, and benzoates.

吸着皮膜型腐食抑制剤は金属表面に吸着が可能な極性基
を有する有機化合物でアミン類やスルホン酸類や各種の
界面活性剤系統の薬剤がある。
Adsorption film-type corrosion inhibitors are organic compounds with polar groups that can be adsorbed onto metal surfaces, and include amines, sulfonic acids, and various surfactant-based agents.

以上の各種防食法のうち、電気防食法においては防食対
象が比較的簡単な構造、形状の場合は均一な電流分布が
得られて高い防食効果をあげることが可能である。
Among the above-mentioned various corrosion prevention methods, in the cathodic protection method, when the object to be protected against corrosion has a relatively simple structure and shape, a uniform current distribution can be obtained and a high corrosion prevention effect can be achieved.

しかし容器内に各種部材が多く存在したり、電導度が充
分良好でない冷却水系あるいは張水と排水を繰返すバラ
ストタンクなどの場合は、充分に電流が到達しないこと
やあるいは電流が供給されない期間を伴なうことがある
ために満足な防食効果を得られないこともある。
However, in cases where there are many various parts inside the container, a cooling water system with insufficient conductivity, or a ballast tank that is repeatedly filled and drained, the current may not reach a sufficient level, or there may be periods when no current is supplied. In some cases, it may not be possible to obtain a satisfactory corrosion protection effect.

他方、腐食抑制剤による防食においても排水時における
その毒性による環境汚染防止の見地から近年はほとんど
の薬剤が適用中止かまたは使用量低減を余儀なくされて
いる。
On the other hand, even in the case of corrosion protection using corrosion inhibitors, in recent years most of the chemicals have had to be discontinued or their usage has been forced to be reduced in order to prevent environmental pollution due to their toxicity during drainage.

本発明は以上のような背景のもとにおいて最近の防食技
術上の難点の解決を目差してなされた一連の研究の結果
見い出されたものであり、高濃度塩化物溶液において、
亜鉛陽極を使用する電気防食法とともに適切に選定され
た沈殿皮膜型腐食抑制剤を併用することによって腐食抑
制剤の使用量を低減するとともに電気防食電流をも節減
し、しかも防食効果は腐食抑制剤、電気防食法それぞを
単独に使用した場合に比べ一層高い防食効果を得ること
を可能にしたものである。
The present invention was discovered as a result of a series of studies aimed at solving the recent difficulties in corrosion protection technology against the above background.
By using a cathodic protection method using a zinc anode together with an appropriately selected precipitated film type corrosion inhibitor, the amount of corrosion inhibitor used can be reduced, and the cathodic protection current can also be saved. This makes it possible to obtain higher corrosion protection effects than when using either of the cathodic protection methods alone.

腐食抑制剤はその適用に際して充分な濃度を維持すると
きは満足すべき高い防食効果を得ることが可能である。
When a corrosion inhibitor is maintained at a sufficient concentration during its application, it is possible to obtain a satisfactory high corrosion protection effect.

しかし必要濃度限界以下で使用する場合は単に防食効果
が不充分であばかりでなく腐食が局部に偏り、いわゆる
局部腐食をひき起す欠点を持つことが知られている。
However, it is known that when used below the required concentration limit, not only is the anticorrosion effect insufficient, but the corrosion is localized, causing so-called localized corrosion.

ここに腐食抑制剤適用における最大の難点があり、これ
が使用上最も注意を必要とする点である。
This is the most difficult point in applying corrosion inhibitors, and this is the point that requires the most care when using them.

この局部腐食化傾向は状況次第では孔食の成長となって
いわゆる容器系、配管系の防食対象では穿孔の危険をも
たらすものである。
Depending on the situation, this tendency to localized corrosion can lead to the growth of pitting corrosion, which poses the danger of perforation in containers and piping systems that are to be protected against corrosion.

電気防食は、防食対象の金属が材質、環境などを原因と
して表面電位に不同を生じているとき、より貴電位部に
選択的に電流が流入し終局的に全表面を等電位化するこ
とによって腐食の原因である電位差を解消し腐食を抑制
することは周知の通りである。
Cathodic protection is a process in which when the metal to be protected has a difference in surface potential due to material, environment, etc., a current selectively flows into the more noble potential areas and eventually equalizes the potential of the entire surface. It is well known that corrosion is suppressed by eliminating the potential difference that causes corrosion.

この腐食抑制剤と電気防食とを併用する場合、金属表面
が電気防食作用によって負の電位に移行するので陽電気
を帯びた腐食抑制剤がこの陰極化した金属表面に放電な
いし沈着して防食皮膜を形成する。
When this corrosion inhibitor and cathodic protection are used together, the metal surface shifts to a negative potential due to the cathodic protection action, and the positively charged corrosion inhibitor is discharged or deposited on the cathodic metal surface, forming an anticorrosion coating. form.

このときこの陰極表面の陰分極の増大はpHを増大させ
るので保護的皮膜形成には一層有効であることが一般に
知られている。
At this time, it is generally known that an increase in cathode polarization on the surface of the cathode increases the pH and is therefore more effective in forming a protective film.

しかしながら、海水などの高濃度塩化物溶液の環境では
、酸化皮膜型や吸着皮膜型の腐食抑制剤は良好な防食皮
膜がほとんど形成されず、電気防食を併用した場合にお
いても、多量な腐食抑制剤の添加にもかかわらず、顕著
な防食効果は認められなかった。
However, in environments with high concentration chloride solutions such as seawater, corrosion inhibitors of the oxide film type and adsorption film type hardly form a good corrosion protection film, and even when cathodic protection is used together, a large amount of corrosion inhibitor Despite the addition of , no significant anticorrosive effect was observed.

ここに、海水中で有効な防食皮膜の形成が可能な沈殿皮
膜型の腐食抑制剤と電気防食との併用防食法が見い出さ
れるに至った。
Here, a corrosion protection method has been discovered that uses a precipitated film-type corrosion inhibitor and electrolytic protection, which can form an effective corrosion protection film in seawater.

特に、電気防食に亜鉛陽極を用いる流電陽極法を適用す
ると液中の亜鉛が反応に関与し、陰極活性面を覆い腐食
抑制効果を増進することが判明した。
In particular, it has been found that when a galvanic anode method using a zinc anode is applied to cathodic protection, the zinc in the solution participates in the reaction, covering the active surface of the cathode and enhancing the corrosion inhibition effect.

以上の理由から高濃度塩化物溶液の環境において、沈殿
皮膜型腐食抑制剤の使用濃度が単独で防食を達成するに
不十分な濃度の場合でも、これに亜鉛陽極を使用する電
気防食を併用するときは両者は相乗効果を発揮し、前に
述べた局部腐食を消滅させるばかりでなく単独に電気防
食を適用する場合よりも著しく低い電流密度で高い防食
効果が得られる。
For the above reasons, in environments with high concentration chloride solutions, even if the concentration of the precipitated film-type corrosion inhibitor used is insufficient to achieve corrosion protection alone, cathodic protection using a zinc anode should be used in combination. In some cases, the two have a synergistic effect, which not only eliminates the local corrosion mentioned above, but also provides a high corrosion protection effect at a significantly lower current density than when cathodic protection is applied alone.

特に最近の情勢をみるに腐食抑制剤の低濃度使用は環境
汚染や公害防止の見地から不可避の傾向となりつつある
ばかりでなく、防食経費の点からも有利であり、同時に
電気防食所要電流の低減は電源装置および陽極などの規
模の縮小化、寿命の増大の効果をもたらすもので本発明
の防食法は工業的、経済的に得るところは多大である。
In particular, looking at recent developments, the use of low concentrations of corrosion inhibitors is not only becoming an unavoidable trend from the standpoint of preventing environmental contamination and pollution, but is also advantageous in terms of corrosion prevention costs, and at the same time reduces the required current for cathodic protection. The corrosion prevention method of the present invention has the effect of reducing the scale of the power supply device, the anode, etc. and increasing the life span thereof, and the corrosion prevention method of the present invention has great industrial and economic benefits.

次に本発明の併用防食法の実施例を比較例と共に表1に
示す。
Next, Table 1 shows examples of the combined anticorrosion method of the present invention together with comparative examples.

表1は、人工海水を用い、25℃で空気吹込みにより液
に弱い流動を与えた場合の鋼板に対する7日間の電気防
食単独、腐食抑制剤単独および両者併用における腐食抑
制剤濃度、防食電流密度および防食効果をそれぞれ比較
したものである。
Table 1 shows the corrosion inhibitor concentration and corrosion protection current density for 7 days of cathodic protection alone, corrosion inhibitor alone, and both in combination for steel plates using artificial seawater and applying a weak flow to the liquid by blowing air at 25°C. and a comparison of their anti-corrosion effects.

電気防食としては亜鉛陽極のほかに、比較のために流電
陽極法ではアルミニウム陽極およびマグネシウム陽極を
、外部電源法では白金電極を使用した。
For cathodic protection, in addition to a zinc anode, for comparison, an aluminum anode and a magnesium anode were used in the galvanic anode method, and a platinum electrode was used in the external power supply method.

また、腐食抑制剤としては重合リン酸ソーダのほかに、
比較のために酸化皮膜型では亜硝酸ソーダおよびクロム
酸ソーダを、吸着皮膜型ではトリエタノールアミンおよ
びスルホン酸ソーダを使用した。
In addition to polymerized sodium phosphate, corrosion inhibitors include
For comparison, sodium nitrite and sodium chromate were used for the oxide film type, and triethanolamine and sodium sulfonate were used for the adsorption film type.

表1からも明らかのように、90%の防食率を得るため
に、外部電源法による場合は180mA/m2の防食電
流を必要とし、亜鉛陽極による流電陽極法においては1
10mA/m2を必要としている。
As is clear from Table 1, in order to obtain a corrosion protection rate of 90%, a corrosion protection current of 180 mA/m2 is required when using the external power source method, and 180 mA/m2 when using the galvanic anode method using a zinc anode.
It requires 10mA/m2.

また重合リン酸ソーダによる腐食抑制剤添加においては
添加濃度200ppmを必要としている。
Further, when adding a corrosion inhibitor using polymerized sodium phosphate, an addition concentration of 200 ppm is required.

電気防食単独においてはこれらの防食電流値以下では充
分な防食効果が得られないばかりでなく部分的に腐食が
残り、腐食抑制剤単独の場合にも濃度不足の状態では腐
食の局所化をもひき起している。
With cathodic protection alone, if the corrosion protection current is below these values, not only will sufficient corrosion protection not be obtained, but corrosion will remain in some areas, and even with corrosion inhibitors alone, if the concentration is insufficient, corrosion may become localized. It's happening.

また、電気防食法として白金電極を用いた外部電源法と
重合リン酸ソーダによる腐食抑制剤を併用した場合は、
かなりの電流低減が認められるものの亜鉛陽極を併用し
た場合に比較すると3〜4倍の防食電流を必要としてい
る。
In addition, when an external power supply method using platinum electrodes and a corrosion inhibitor using polymerized sodium phosphate are used together as a cathodic protection method,
Although a considerable reduction in current is observed, a corrosion protection current that is 3 to 4 times higher is required compared to when a zinc anode is also used.

亜鉛陽極を併用した場合のこの電流低減は亜鉛陽極から
の溶出亜鉛イオンの腐食抑制効果への寄与を示すもので
ある。
This current reduction when a zinc anode is used together indicates the contribution of zinc ions eluted from the zinc anode to the corrosion inhibiting effect.

同様に、アルミニウム陽極あるいはマグネシウム陽極に
よる電気防食と重合リン酸ソーダによる腐食抑制剤を併
用した場合も亜鉛陽極の場合に比べて電流低減が顕著で
なく、防食皮膜はポーラスで不連続的かつ密着性が悪い
などの欠点を有する。
Similarly, when cathodic protection using an aluminum or magnesium anode is combined with a corrosion inhibitor using polymerized sodium phosphate, the current reduction is not as remarkable as when using a zinc anode, and the anticorrosion film is porous, discontinuous, and adhesive. It has disadvantages such as poor performance.

一方、亜硝酸ソーダ、クロム酸ソーダ、トリエタノール
アミン、スルホン酸ソーダなどの各々と亜鉛陽極による
電気防食を併用した場合は、腐食抑制剤を1000〜2
000ppmと多量に添加しても、20mA/m2の電
流密度では防食率が32〜65%となり防食効果は全く
期待できない。
On the other hand, when cathodic protection using zinc anode is used together with sodium nitrite, sodium chromate, triethanolamine, sodium sulfonate, etc., the corrosion inhibitor
Even if added in a large amount of 000 ppm, the corrosion protection rate will be 32 to 65% at a current density of 20 mA/m2, and no corrosion protection effect can be expected at all.

これに対して、本発明にかかわる重合リン酸ソーダによ
る腐食抑制剤と亜鉛陽極との併用防食法では腐食抑制剤
添加が10〜150ppmの低濃度添加においても80
〜15mA/m2の防食電流を併用すれば95〜100
%の満足すべき防食率を得られると共に、その防食皮膜
は緻密で連続的かつ密着性が良いなどの特長を有する。
On the other hand, in the corrosion prevention method using a corrosion inhibitor using polymerized sodium phosphate and a zinc anode according to the present invention, even when the corrosion inhibitor is added at a low concentration of 10 to 150 ppm,
95-100 if used with ~15mA/m2 anti-corrosion current
%, and the anticorrosive film has features such as being dense, continuous, and having good adhesion.

この併用防食においては腐食抑制剤添加濃度が高いほど
防食所要電流は低減しているが、この中間に最も経済性
の高い併用条件が存在するのはいうまでもない。
In this combined corrosion protection, the higher the concentration of the corrosion inhibitor added, the lower the required current for corrosion protection, but it goes without saying that the most economical combined conditions exist in between.

次に表2には腐食抑制剤と併用したときの亜鉛陽極の性
能に及ぼす影響について示す。
Next, Table 2 shows the effect on the performance of zinc anodes when used in combination with corrosion inhibitors.

人工海水を用い、25℃静止液中において陽極電流密度
0.1mA/m2の低電流を30日間流出させた結果、
亜鉛陽極は電気防食単独の場合と比較して陽極電流効率
が4〜6%向上し、陽極電位が15〜30mV卑牲変化
する。
As a result of flowing a low current with an anode current density of 0.1 mA/m2 for 30 days in a static solution at 25°C using artificial seawater,
The zinc anode improves the anode current efficiency by 4 to 6% compared to the case of cathodic protection alone, and the anode potential changes by 15 to 30 mV.

この場合用いた沈殿皮膜型腐食抑制剤は重合リン酸ソー
ダである。
The precipitated film type corrosion inhibitor used in this case was polymerized sodium phosphate.

この陽極性能向上の原因については、溶出亜鉛が腐食抑
制剤との間の錯体形成に使用されされるため、亜鉛イオ
ンの加水分解が軽減され、陽極近傍のpHの低下を抑制
し、これが陽極の自己腐食低減をもたらし電流効率の向
上に寄与したものと認められる。
The reason for this improvement in anode performance is that the eluted zinc is used to form a complex with the corrosion inhibitor, which reduces the hydrolysis of zinc ions and suppresses the drop in pH near the anode. This is recognized to have contributed to reducing self-corrosion and improving current efficiency.

このとき陽極電位は腐食抑制剤添加濃度が低いとき最も
卑化し、高濃度では卑化の程度が小さい。
At this time, the anode potential becomes the most basic when the concentration of the corrosion inhibitor added is low, and the degree of basification is small when the concentration is high.

多量に添加するときは逆に貴電位を示す。Conversely, when added in large amounts, it exhibits a noble potential.

電位の卑化は自己腐食が軽減するので皮膜抵抗の原因と
なる溶解生成物量が少なくなるため電位貴化を防止する
ものと考えられる。
It is thought that lowering the potential reduces self-corrosion and reduces the amount of dissolved products that cause film resistance, thereby preventing the potential from becoming nobler.

また、高濃度添加との併用においては亜鉛陽極の孔食溶
解が認めらるが低濃度との併用においては均一溶解で孔
食はなく、陽極寿命を短縮させるような懸念はない。
In addition, pitting corrosion and dissolution of the zinc anode is observed when used in combination with high concentration addition, but when used in combination with low concentration, there is uniform dissolution and no pitting corrosion, and there is no concern that the anode life will be shortened.

なお、本発明の防食法は重合リン酸ソーダ以外の沈殿皮
膜型腐食抑制剤、たとえば、リン酸ソーダ、珪酸ソーダ
、安息香酸ソーダ、炭酸ソーダにおいても同様に使用で
きることはもちろん、海水以外の比較的電導度の高い電
解質溶液、たとえば3000Ω・cmの淡水中において
も同様に有効であった。
It should be noted that the corrosion prevention method of the present invention can be similarly used for precipitated film-type corrosion inhibitors other than polymerized sodium phosphate, such as sodium phosphate, sodium silicate, sodium benzoate, and soda carbonate. It was similarly effective in an electrolyte solution with high conductivity, for example, fresh water of 3000 Ω·cm.

以上詳述したように沈殿皮膜型腐食抑制剤と亜鉛陽極を
用いる電気防食法とを併用する本発明の防食法は、腐食
抑制剤を単独使用する場合に比べて著しく低い濃度の使
用を可能とし、かつ電気防食法を単独で使用する場合に
比べて著しく低い電流密度で適用でき、しかもこれらの
各々単独の場合よりも一層高い防食効果をあげ、さらに
腐食の局部化を防止し得るとともに、腐食抑制剤使用時
の環境に及ぼす影響をも減少し得るので、極めて有用に
して経済的、効果的な防食法であり、工業的に益すると
ころは非常に大きいと言える。
As detailed above, the corrosion protection method of the present invention, which uses a precipitated film type corrosion inhibitor in combination with a cathodic protection method using a zinc anode, enables the use of a significantly lower concentration than when a corrosion inhibitor is used alone. , and can be applied at a significantly lower current density than when cathodic protection is used alone, and it can achieve a higher corrosion protection effect than either of these methods alone, and can prevent localized corrosion. Since it can also reduce the impact on the environment when using an inhibitor, it is an extremely useful, economical and effective corrosion prevention method, and can be said to have great industrial benefits.

Claims (1)

【特許請求の範囲】[Claims] 1 海水または比較的電導度の高い電解質において沈殿
皮膜を形成する腐食抑制剤と亜鉛流電陽極による電気防
食とを併用する金属腐食防止法。
1. A metal corrosion prevention method that uses a combination of a corrosion inhibitor that forms a precipitated film in seawater or an electrolyte with relatively high conductivity and cathodic protection using a galvanic zinc anode.
JP52138958A 1977-11-21 1977-11-21 Metal corrosion prevention method Expired JPS587712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52138958A JPS587712B2 (en) 1977-11-21 1977-11-21 Metal corrosion prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52138958A JPS587712B2 (en) 1977-11-21 1977-11-21 Metal corrosion prevention method

Publications (2)

Publication Number Publication Date
JPS5471738A JPS5471738A (en) 1979-06-08
JPS587712B2 true JPS587712B2 (en) 1983-02-10

Family

ID=15234135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52138958A Expired JPS587712B2 (en) 1977-11-21 1977-11-21 Metal corrosion prevention method

Country Status (1)

Country Link
JP (1) JPS587712B2 (en)

Also Published As

Publication number Publication date
JPS5471738A (en) 1979-06-08

Similar Documents

Publication Publication Date Title
CA3004311C (en) Corrosion control for water systems using tin corrosion inhibitor with a hydroxycarboxylic acid
US3885914A (en) Polymer-zinc corrosion inhibiting method
US7708939B2 (en) Cooling water corrosion inhibition method
TWI527933B (en) Composition and method for controlling copper discharge and erosion of copper alloys in industrial systems
US2444174A (en) Galvanic coating process
US5435941A (en) Tobacco extract composition and method
CN105568297A (en) Environment-friendly carbon steel pickling inhibitor and application thereof
JPS5810470B2 (en) Method for preventing metal corrosion in water
US2404031A (en) Corrosion preventing electrode
JPS587712B2 (en) Metal corrosion prevention method
JPH0133552B2 (en)
KR100310168B1 (en) Antiscaling agent and method for treating water using the same
US3651189A (en) Water treatment process
Spacht The corrosion resistance of aluminum and its alloys.
RU2813268C1 (en) Corrosion inhibitor of copper and copper-containing alloys
EP0242532A1 (en) Composition and method for inhibiting corrosion by the use of phytate
El-Sherbini et al. The Corrosion of Copper Metal in HCl Solutions and the effect of Molybdate and Chromate
El Ibrahimi et al. Molybdates as corrosion inhibitors
Zhang et al. Corrosion inhibitors used in alkaline environments
Yanardağ et al. The effect of organic compounds on the corrosion of zinc in aqueous soultions
GB927284A (en) Protection of ferrous metal surfaces
RU2689831C1 (en) Corrosion inhibitors of copper and copper-containing alloys based on 5-alkylsulphonyl-3-amino-1,2,4-triazoles
Barker et al. The Electrolytic Recovery of Nickel from Dilute Solutions
CN107385447A (en) A kind of water process copper compound corrosion inhibitor
RU2679022C2 (en) Corrosion inhibitor for copper and copper-containing alloys in neutral chloride solutions (options)