JPS5810470B2 - Method for preventing metal corrosion in water - Google Patents

Method for preventing metal corrosion in water

Info

Publication number
JPS5810470B2
JPS5810470B2 JP53073759A JP7375978A JPS5810470B2 JP S5810470 B2 JPS5810470 B2 JP S5810470B2 JP 53073759 A JP53073759 A JP 53073759A JP 7375978 A JP7375978 A JP 7375978A JP S5810470 B2 JPS5810470 B2 JP S5810470B2
Authority
JP
Japan
Prior art keywords
corrosion
protection
anode
seawater
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53073759A
Other languages
Japanese (ja)
Other versions
JPS552718A (en
Inventor
海野武人
小熊文雄
望月紀保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAGAWA BOSHOKU KOGYO KK
Original Assignee
NAKAGAWA BOSHOKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAGAWA BOSHOKU KOGYO KK filed Critical NAKAGAWA BOSHOKU KOGYO KK
Priority to JP53073759A priority Critical patent/JPS5810470B2/en
Publication of JPS552718A publication Critical patent/JPS552718A/en
Publication of JPS5810470B2 publication Critical patent/JPS5810470B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/167Phosphorus-containing compounds
    • C23F11/1676Phosphonic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

【発明の詳細な説明】 本発明は水中の金属、とくに船舶のバラストタンクや各
種のタンクなど主として容器系において海水や比較的高
電導度の腐食性液体と接触する金属の防食法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a corrosion protection method for metals in water, particularly metals that come into contact with seawater or corrosive liquids of relatively high conductivity in container systems such as ship ballast tanks and various tanks. .

従来、海水や比較市電導度の高い腐食性液体を一時的も
しくは長期的に貯留し、あるいは張水状態と排水状態を
交互に繰返すような容器において、容器自体あるいは附
属する各種構造材、部材などの金属の腐食防止対策とし
ては電気防食法、塗装法、腐食抑制剤添加法などが用い
られている。
Conventionally, in containers that temporarily or long-term store seawater or corrosive liquids with high comparative conductivity, or that alternately fill with water and drain, the container itself or various attached structural materials, components, etc. Electrolytic protection methods, coating methods, and methods of adding corrosion inhibitors are used as measures to prevent corrosion of metals.

これらのうち、電気防食法はすぐれた防食法であり、現
在量も多用されているが単純な構造を有する容器系では
良好な防食効果が得られるものの、附属部材が多くかつ
複雑な形状の構造物に対しては、部材の裏側、狭隘部な
どにおいて必ずしも充分な防食効果が得られない場合も
ある。
Among these, the cathodic protection method is an excellent corrosion protection method and is currently widely used.Although it can provide a good corrosion protection effect for container systems with a simple structure, For objects, sufficient anticorrosion effects may not always be obtained on the back side of the member, in narrow areas, etc.

また、塗装法は塗料の新規開発や改良により次第に重要
度を高めているものの、上記のような複雑な構造物の場
合塗装作業に困難性があるばかりでなく、塗膜が劣化し
た場合の補修、保全には技術的にも経済的にも十分な方
法とはいえない。
Furthermore, although painting methods are gradually becoming more important due to the development and improvement of paints, in the case of complex structures such as those mentioned above, not only is it difficult to paint, but it is also difficult to repair the paint film if it deteriorates. However, this is not a technically or economically sufficient method for conservation.

これに対して腐食抑制剤は必要にして充分な適正濃度の
含有量を維持すれば継続的な防食効果が得られることか
ら、所要濃度維持のための補給添加作業が可能であれば
効果的、能率的なうえに工法的にも簡便であり経済性な
高い。
Corrosion inhibitors, on the other hand, can provide continuous corrosion protection if the content is maintained at a necessary and sufficient appropriate concentration. It is not only efficient but also simple and economical.

特に、海水令却水系のような一過性の水系に対しては薬
剤使用量が膨大となるため比較的経済性を欠くのでその
適用には困難が伴うが、海水貯留タンクあるいはバラス
トタンクなどでは充分適用可能である。
In particular, it is difficult to apply it to ephemeral water systems such as seawater cooling systems because the amount of chemicals used is enormous and it is relatively uneconomical. Fully applicable.

しかしながら、腐食抑制剤の添加はその薬剤の特性によ
り金属表面に吸着皮膜、あるいは沈殿皮膜などの保護皮
膜を形成して腐食を防止する機構を特徴とするから含有
濃度の不足、あるいは減少は局部的に保護皮膜の形成不
充分あるいは破壊劣化などをもたらし金属体の局部腐食
あるいは孔食の原因となることがある。
However, the addition of corrosion inhibitors is characterized by a mechanism that prevents corrosion by forming a protective film such as an adsorption film or a precipitate film on the metal surface, depending on the properties of the agent. This may lead to insufficient formation of a protective film or destructive deterioration, leading to local corrosion or pitting of the metal body.

最近において、海水や比較市電導度の高い腐食性の強い
環境下では、公害防止、環境保全の見地から腐食抑制剤
は添加量の軽減を余儀なくされ、そのために例えば無機
リン酸塩など沈殿皮膜形成型腐食抑制剤を少量添加し、
かつ電気防食を併用する防食法が研究され実用化されよ
うとしている。
Recently, in highly corrosive environments such as seawater and comparatively high conductivity, it is necessary to reduce the amount of corrosion inhibitors added from the standpoint of pollution prevention and environmental conservation. Add a small amount of mold corrosion inhibitor,
Corrosion prevention methods that combine cathodic protection are being researched and are about to be put into practical use.

しかしながら、無機リン酸塩は水溶液中において時間の
経過、温度やpHの上昇にともなって加水分解すること
がさけられず、腐食抑制効果を維持するには適時補給添
加する必要があるが、特に電気防食と併用する場合は陰
極面のpHが上昇するため、陰極表面において分解速度
が速められる難点があり、この点の改善が望まれていた
However, inorganic phosphates inevitably hydrolyze in aqueous solutions with the passage of time and increases in temperature and pH, and it is necessary to replenish and add them in a timely manner to maintain the corrosion inhibiting effect. When used in conjunction with anticorrosion, the pH of the cathode surface rises, resulting in an accelerated decomposition rate on the cathode surface, which has been desired to be improved.

本願発明者らは、海水その他比較的電導度の高い水溶液
中の金属防食法として、無機リン酸塩など沈殿皮膜を形
成する腐食抑制剤と電気防食を併用することによって防
食効果がきわめて改善されることを見出し、さらにこの
防食法の改善の研究を続けた結果、従来型導度の低い淡
水系にのみ限定使用され、海水環境では防食効果がなく
、その大量添加ではむしろ腐食を促進するため使用が不
可能とされていた、有機リン酸およびその塩基の腐食抑
制剤と電気防食、特に亜鉛陽極による流電陽極法とを併
用することによって腐食抑制剤又は電気防食単独の場合
はもとより従来の腐食抑制剤と電気防食の併用の場合を
功之に止まつる効果的かつ経済的な防食法を開発するに
至ったもので、その要旨とするところは次のとおりであ
る。
The present inventors have discovered that as a method for preventing corrosion of metals in seawater and other relatively highly conductive aqueous solutions, the corrosion protection effect is greatly improved by using a corrosion inhibitor that forms a precipitated film, such as an inorganic phosphate, in combination with cathodic protection. As a result of continuing research to improve this corrosion prevention method, we found that conventional methods are limited to use in freshwater systems with low conductivity, have no corrosion prevention effect in seawater environments, and are used in large quantities because they actually accelerate corrosion. By using corrosion inhibitors such as organic phosphoric acids and their bases in combination with cathodic protection, especially the galvanic anodic method using a zinc anode, it is possible to eliminate corrosion not only with the corrosion inhibitor or cathodic protection alone, but also with conventional corrosion. We have developed an effective and economical corrosion protection method that can be used in combination with inhibitors and cathodic protection.The main points of this method are as follows.

すなわち本発明の防食方法は海水や比較市電導度の高い
水溶液中において、有機リン酸系の腐食抑制剤と亜鉛流
電陽極による電気防食とを併用する金属腐食防止法であ
る。
That is, the corrosion prevention method of the present invention is a method for preventing metal corrosion in seawater or an aqueous solution with comparatively high conductivity, using a combination of an organic phosphoric acid corrosion inhibitor and electrolytic protection using a galvanic zinc anode.

本発明において有機リン酸系腐食抑制剤はホスホン酸類
を主剤とするもので例えば、アミノトリメチレンホスホ
ン酸(ATMP)、1−ヒドロキシエチリデン−1,1
−ジホスホン酸(HEDP)およびその塩類である。
In the present invention, the organic phosphoric acid corrosion inhibitor is based on phosphonic acids, such as aminotrimethylenephosphonic acid (ATMP), 1-hydroxyethylidene-1,1
-diphosphonic acid (HEDP) and its salts.

次に本願発明の構成および作用効果について述べる。Next, the configuration and effects of the present invention will be described.

第1図は25Cの人工海水中に静止開放状態で7日間、
軟鋼片を自然浸漬し各濃度における有機リン酸(HED
P)と無機リン酸塩、すなわち小キサメタリン酸ソーダ
(SHP)との添加による防食効果を比較試験した結果
を示すものである。
Figure 1 shows that the water was immersed in artificial seawater at 25C for 7 days in an open state.
Mild steel pieces were naturally immersed in organic phosphoric acid (HED) at various concentrations.
This figure shows the results of a comparative test on the anticorrosive effect of adding P) and an inorganic phosphate, that is, small sodium xametaphosphate (SHP).

この図から明らかなようにいずれも200ppmの添加
までは腐食速度が次第に減少して防食効果を示す。
As is clear from this figure, the corrosion rate gradually decreases up to the addition of 200 ppm, indicating a corrosion-preventing effect.

200ppmを越えると無機リン酸系では、なお腐食抑
制効果が認められ、11000ppまでの濃度で無添加
の場合の腐食速度に比較して80〜100%の防食率を
示しているのに対し、有機リン酸では防食率50%程度
をピークに添加濃度の増大とともにむしろ腐食が促進さ
れ、添加単独では使用できないことが判る。
When the concentration exceeds 200 ppm, inorganic phosphoric acid still has a corrosion inhibiting effect, and at concentrations up to 11,000 ppm, it shows a corrosion prevention rate of 80 to 100% compared to the corrosion rate when no additive is used. In the case of phosphoric acid, the corrosion protection rate peaks at about 50%, and as the concentration increases, corrosion is rather accelerated, and it can be seen that addition alone cannot be used.

しかしながら、これに電気防食を併用すると、予期し得
ない顕著な作用効果が認められ、併用においては有機リ
ン酸系の方が無機リン酸系より有効であることを多くの
実験の結果見出すことができた。
However, when cathodic protection is used in combination with cathodic protection, unexpected and remarkable effects are observed, and as a result of many experiments, it has been found that organic phosphoric acid systems are more effective than inorganic phosphoric acid systems when used in combination. did it.

しかも腐食抑制剤添加濃度および所要防食電流密度とも
各々単独による防食法よりも併用によって著しく低減で
きるようになることが明らかとなった。
Moreover, it has become clear that both the concentration of the corrosion inhibitor added and the required corrosion protection current density can be significantly reduced by the combination of the two methods, rather than by the corrosion protection methods using each alone.

以下、実施例によってさらに具体的にその効果および特
徴を述べる。
Hereinafter, the effects and characteristics will be described in more detail with reference to Examples.

実施例 1 第2図は亜鉛流電陽極による電気防食と併用したとき、
防食率が95%以上となる場合の腐食抑制剤の濃度と電
気防食の所要防食電流密度との関係を示したもので25
C1人工海水に133rl/minの空気吸込み状態で
7日間軟鋼片を浸漬した結果である。
Example 1 Figure 2 shows that when used in conjunction with cathodic protection using a zinc galvanic anode,
25 shows the relationship between the concentration of corrosion inhibitor and the required corrosion protection current density for cathodic protection when the corrosion protection rate is 95% or more.
This is the result of immersing a mild steel piece in C1 artificial seawater for 7 days while sucking air at 133 rl/min.

腐食抑制剤としては有機リン酸系(HEDPソーダ)お
よび無機リン酸系(SHP)を用いてその結果を比較し
た。
The results were compared using an organic phosphoric acid type (HEDP soda) and an inorganic phosphoric acid type (SHP) as corrosion inhibitors.

図に示すごとく、95%の防食率を得るために必要な腐
食抑制剤濃度と防食電流密度との関係は、有機リン酸系
の方が無機リン酸系よりすぐれており、腐食抑制濃度が
一定であれば所要防食電流密度は約1/2で充分であり
、しかも抑制剤無添加の場合と比べると1/10以下の
電流密度となり、併用による添加濃度の低減効果および
防食電流密度の低減効果は有機リン酸系の方が顕著であ
ることは極めて明瞭である。
As shown in the figure, the relationship between the corrosion inhibitor concentration required to obtain a corrosion protection rate of 95% and the corrosion protection current density is better for organic phosphates than for inorganic phosphates, and the corrosion inhibitory concentration remains constant. If so, the required corrosion protection current density is sufficient to be about 1/2, and the current density is less than 1/10 compared to the case where no inhibitor is added. It is very clear that this is more pronounced in organic phosphates.

一般に高分子量のリン酸系腐食抑制剤は、海水中のカル
シウムと結合してコロイド性陽イオンを形成し、電気防
食を併用している場合は陰極で防食皮膜となりやすいも
のと考えられている。
In general, high molecular weight phosphoric acid corrosion inhibitors combine with calcium in seawater to form colloidal cations, and when electrolytic protection is used together, it is thought that they tend to form an anticorrosive film at the cathode.

とくに有機系のホスホン酸系腐食抑制剤は亜鉛と結合し
て、スケールの結晶成長を阻害し、粗大化を抑止して皮
膜の緻密化を助長するので、被覆効果を増大するととも
に防食率を向上させるのみならず防食電流密度低減を一
層顕著にしている。
In particular, organic phosphonic acid-based corrosion inhibitors combine with zinc to inhibit scale crystal growth, prevent coarsening, and promote densification of the film, increasing coating effectiveness and improving corrosion protection. This not only makes the corrosion prevention current density even more pronounced.

また、有機リン酸系腐食抑制剤は水溶液のpH上昇によ
ってもほとんど分解されることがなく、このことがpH
上昇をともなう電気防食との併用において無機リン酸系
より高い防食率を得る原因となっているものと考えられ
る。
In addition, organophosphate corrosion inhibitors are hardly decomposed even when the pH of the aqueous solution increases;
This is thought to be the reason for obtaining a higher corrosion protection rate than inorganic phosphoric acid systems when used in combination with cathodic protection, which is accompanied by an increase in corrosion protection.

実施例 2 海水バラストタンク環境条件における本願発明の防食法
との効果の比較を表1に示す。
Example 2 Table 1 shows a comparison of the effects with the corrosion prevention method of the present invention under seawater ballast tank environmental conditions.

有機リン酸系腐食抑制剤としては実施例1と同様の1−
ヒドロキシエチリデン−1,1−ジホスホン酸塩(HE
DPソーダ)を用い比較として無機系の重合リン酸塩、
すなわちヘキサメタリン酸ソーダ(SHP)および亜硝
酸ソーダを、また有機系のスルホン酸ソーダおよびトリ
エタノールアミンを用い、人工海水による張水期間10
日(温度40℃)、排水期間10日(温度35℃、湿度
93%)でバラスト率が50係、バラストサイクル5回
計100日間の試験結果である。
As the organic phosphoric acid corrosion inhibitor, 1-
Hydroxyethylidene-1,1-diphosphonate (HE
For comparison, inorganic polymerized phosphate,
Specifically, sodium hexametaphosphate (SHP) and sodium nitrite, as well as organic sodium sulfonate and triethanolamine were used, and artificial seawater was used for a period of 10 days.
These are the test results for a total of 100 days with a ballast ratio of 50 days (temperature 40° C.), a drainage period of 10 days (temperature 35° C., humidity 93%), and 5 ballast cycles.

ここで、電気防食の外部電源法においては白金電極を用
いて外部の直流電源から制御された所定の直流電流を印
加し、才た流電陽極法においては亜鉛陽極、マグネシウ
ム陽極およびアルミニウム陽極から同様に一定電流を所
定の時間通電した。
In the external power source method for cathodic protection, a predetermined DC current controlled from an external DC power source is applied using a platinum electrode, and in the galvanic anode method, a zinc anode, a magnesium anode, and an aluminum anode are used in the same way. A constant current was applied for a predetermined period of time.

この結果から腐食抑制剤単独の防食法の場合は、200
ppmの含有濃度のとき有機系より無機系の方が防食効
果が高いが、防食率はそれぞれ57%と44%でいずれ
も充分とはいえない。
From this result, in the case of a corrosion prevention method using a corrosion inhibitor alone, 200
At a concentration of ppm, the inorganic type has a higher anticorrosion effect than the organic type, but the corrosion protection rates are 57% and 44%, respectively, which cannot be said to be sufficient.

とくに無機系の場合、本願発明者らの既往の実験によれ
ば、常温の静止海水中条件では200ppmの添加で9
5%以上の防食率が得られ、40Cの場合でも85%以
上の防食効果をあげることが明らかとなっている。
In particular, in the case of inorganic systems, according to past experiments by the inventors of the present application, in static seawater conditions at room temperature, addition of 200 ppm will reduce the
It is clear that a corrosion protection rate of 5% or more can be obtained, and even in the case of 40C, a corrosion protection effect of 85% or more can be achieved.

これに対して本試験のようなバラスト海水が張排水を繰
返される腐食条件は苛酷で防食率は44%と極めて低い
On the other hand, the corrosion conditions in this test where ballast seawater is repeatedly filled and drained are severe, and the corrosion protection rate is extremely low at 44%.

また、電気防食性単独の場合は、現行の実船における設
計値80mA/m2の防食電流密度で、亜鉛流電陽極で
は防食率が60%を越えるが、外部電源法では45%と
低い。
In addition, in the case of cathodic protection alone, at a corrosion protection current density of 80 mA/m2, which is the design value for a current actual ship, the corrosion protection rate with zinc galvanic anodes exceeds 60%, but with the external power supply method, the corrosion protection rate is as low as 45%.

しかしながら腐食抑制剤と電気防食法の併用の場合はい
ずれもそれぞれ単独の防食法より防食率が高く、併用に
よる相乗効果が認められ、腐食抑制剤では有機リン酸系
を、電気防食法では亜鉛流電陽極法を適用する併用防食
法がより有効と認められる。
However, when a corrosion inhibitor and cathodic protection method are used in combination, the corrosion protection rate is higher than that of each corrosion protection method alone, and a synergistic effect is recognized by the combination. A combination corrosion prevention method that applies the electrode anodic method is recognized to be more effective.

すなわち、上記本発明の併用防食法において有機リン酸
塩(HEDPソーダ)20ppmと亜鉛流電法40mA
/m2の場合には83%の防食率が得られる。
That is, in the combination corrosion prevention method of the present invention, 20 ppm of organic phosphate (HEDP soda) and 40 mA of zinc galvanic method are used.
/m2, a corrosion protection rate of 83% is obtained.

これに対して他の流電陽極、例えばマグネシウム陽極あ
るいはアルミニウム陽極を併用した場合は、本発明より
防食効果は著しく劣り、マグネシウム陽極で51%、ア
ルミニウム陽極で48%を示すに過ぎず、その防食皮膜
はポーラスで不連続的かつ密着性が悪いなどの欠点を有
する。
On the other hand, when other galvanic anodes, such as magnesium anodes or aluminum anodes, are used together, the corrosion protection effect is significantly inferior to that of the present invention, with the magnesium anode showing only 51% and the aluminum anode 48%. The film has drawbacks such as being porous, discontinuous, and having poor adhesion.

また、外部電源法を併用した場合も皮膜形成が不充分で
防食率は67%であった。
Furthermore, when the external power supply method was also used, film formation was insufficient and the corrosion protection rate was 67%.

一方、亜鉛流電法50mA/n2に各種腐食抑制剤を併
用した比較では、無機系の亜硝酸ソーダとの併用では1
1000ppを添加しても47%の防食率しか得られず
、有機系のスルホン酸ソーダとの併用で30%、トリエ
タノールアミンで33%とほとんど効果はない。
On the other hand, in a comparison using the zinc galvanic method at 50 mA/n2 in combination with various corrosion inhibitors, it was found that when used in combination with inorganic sodium nitrite, 1
Even if 1000 pp is added, only 47% corrosion protection rate is obtained, 30% when used in combination with organic sodium sulfonate, and 33% when triethanolamine is used, which is almost ineffective.

無機系のSHPとの併用の場合に有効性が認められるが
添加濃度、防食電流密度ともHBDPとの併用の場合よ
り高い値の組合せでも本発明の併用効果には及ばない。
Although effectiveness is recognized when used in combination with inorganic SHP, the combined use effect of the present invention cannot be achieved even when the additive concentration and anticorrosive current density are higher than when used in combination with HBDP.

結局、電気防食に用いられている各種の陽極と通常海水
中で有効と考えられている各種の腐食抑制剤とのどの組
合せよりも、亜鉛流電陽極による電気防食と従来海水中
では効果が期待できないとされていた有機リン酸系の腐
食抑制剤とを組合せた本発明の併用防食法が最も高い防
食率を示して最も有利であった。
In the end, electrolytic protection using zinc galvanic anodes is expected to be more effective in conventional seawater than any other combination of various anodes used for cathodic protection and various corrosion inhibitors considered to be effective in normal seawater. The combination corrosion prevention method of the present invention, which combines an organic phosphate corrosion inhibitor, which was thought to be impossible, showed the highest corrosion protection rate and was the most advantageous.

本願発明の防食法が以上のようにタンクに排水期を有す
る腐食環境条件において、従来法よりも高い防食効果を
示すものは防食電流流入のない排水期にも防食皮膜の残
存効果が及ぶことを示すものである。
As described above, the corrosion protection method of the present invention exhibits a higher corrosion protection effect than the conventional method under corrosive environmental conditions in which the tank has a drainage period, and the residual effect of the corrosion protection film extends even during the drainage period when no anticorrosive current flows. It shows.

なお、本試験条件のような一回の張水期間が10日程度
と短かく、かつバラスト率が50%程度のバラストタン
クの腐食環境に対しては、現行の電気防食法では防食率
が約60〜70程度で充分とはいえず、塗装防食では作
業性やコストの面で難点があり改善策は望まれていた。
In addition, in the corrosive environment of a ballast tank where the period of one water filling is as short as about 10 days and the ballast rate is about 50%, as in this test condition, the current cathodic protection method has a corrosion protection rate of about 50%. A value of about 60 to 70 is not sufficient, and anti-corrosion coatings have drawbacks in terms of workability and cost, and improvements have been desired.

また、本発明の有機リン酸系腐食抑制剤が分解を受けに
くいことは前述のとおりであるが、添加量が微量なうえ
に分解が遅いことは排水時における排出リンにもとすく
といわれている河川、港湾海洋における富栄養化傾向の
軽減に大きな利点を有するものといえる。
Furthermore, as mentioned above, the organophosphate corrosion inhibitor of the present invention is not susceptible to decomposition, but the fact that the amount added is small and decomposition is slow is said to reduce the amount of phosphorus discharged during drainage. This can be said to have a great advantage in reducing the tendency towards eutrophication in rivers, ports and oceans.

この点において、本願発明は従来の無機リン酸系腐食抑
制剤の適用に比べて環境保全の立場からみても著しく進
歩した防食法である。
In this respect, the present invention is a corrosion prevention method that is significantly more advanced from the standpoint of environmental conservation than the application of conventional inorganic phosphate corrosion inhibitors.

実施例 3 本発明の有機リン酸系腐食抑制剤と亜鉛流電陽極を併用
する新規防食法において、有機リン酸系腐食抑制剤の添
加濃度を種々変えた場合の亜鉛流電陽極の性能変化の一
例を表2に示す。
Example 3 In a new corrosion prevention method that uses the organophosphate corrosion inhibitor of the present invention in combination with a zinc galvanic anode, change in performance of the zinc galvanic anode when the concentration of the organophosphate corrosion inhibitor is varied An example is shown in Table 2.

人工海水25C1静止状態において陽極電流密度0.1
mA/cmdの低電流を7日間流出させた定電流試験の
結果である。
Artificial seawater 25C1 Anode current density 0.1 in static state
These are the results of a constant current test in which a low current of mA/cmd was applied for 7 days.

腐食抑制剤としては、実施例2と同じ1−ヒドロキシエ
チリデン−1,1−ジホスホン酸塩(HEDPソーダ)
を用いた。
As a corrosion inhibitor, the same 1-hydroxyethylidene-1,1-diphosphonate (HEDP soda) as in Example 2 was used.
was used.

腐食抑制剤無添加の場合に比較し、20〜1100pp
の有機リン酸系腐食抑制剤添加によって、陽極電位は2
5〜45mV卑な値を示し、陽極効率が6%向上した。
20 to 1100pp compared to the case without corrosion inhibitor added
By adding an organic phosphate corrosion inhibitor, the anode potential was increased to 2.
It showed a base value of 5 to 45 mV, and the anode efficiency was improved by 6%.

また、陽極溶解面の付着生成物が著しく減少し相乗効果
として亜鉛流電陽極の性能を高める作用効果のあること
が明らかになった。
It was also revealed that the adhesion products on the anode dissolution surface were significantly reduced, and as a synergistic effect, the performance of the zinc galvanic anode was improved.

これは有機リン酸系腐食抑制剤が溶出亜鉛の加水分解を
抑制して液のpH低下を防ぎ、陽極の自己腐食を抑制し
、陽極効率向上に寄与するためである。
This is because the organic phosphoric acid corrosion inhibitor suppresses hydrolysis of eluted zinc, prevents a drop in pH of the solution, suppresses self-corrosion of the anode, and contributes to improvement of anode efficiency.

また、同時に陽極表面における溶解生成物の沈殿付着を
防止して陽極電位上昇を阻止しているものである。
At the same time, it prevents the dissolved products from depositing on the surface of the anode and prevents the anode potential from increasing.

以上述べたとおり、本願発明は海水や比較的高電導度で
腐食性の強い水溶液中において、従来単独添加では腐食
抑制効果の認められない有機リン酸系腐食抑制剤をきわ
めて低濃度添加し、これに亜鉛流電陽極による低電流密
度の電気防食を組合わせることによって予期し得ない高
い防食率による腐食防止を可能ならしめることを最大の
特徴とする新規防食法で、有機リン酸系腐食抑制剤が広
いpH範囲の水系環境において適用可能となり、電気防
食によってpHが上昇した陰極面において独特な相乗的
防食効果を発揮することを特徴とするとともに、バラス
トタンクのような張排水をくり返す腐食条件下でも防食
効果が大きく、また、静水中で防食効果が大きい電気防
食法と流動条件下で効果的な腐食抑制剤添加防食法を組
合わせることによって各々その特性を発揮し、かつ欠点
を補い、部材の裏側、隙間、流速部などにおいても一様
に高い防食効果を得る特徴を有するものである。
As described above, the present invention adds an extremely low concentration of an organic phosphate corrosion inhibitor, which conventionally has no corrosion inhibiting effect when added alone, to seawater or a relatively highly conductive and highly corrosive aqueous solution. This is a new corrosion protection method whose main feature is that it enables corrosion prevention with an unexpectedly high corrosion protection rate by combining low current density cathodic protection using a zinc galvanic anode. It can be applied in aqueous environments with a wide pH range, exhibiting a unique synergistic corrosion protection effect on the cathode surface where the pH has increased due to cathodic protection, and is also suitable for corrosion conditions such as ballast tanks, which are repeatedly filled and drained. By combining the cathodic protection method, which has a large corrosion protection effect under still water conditions, and the corrosion protection method with corrosion inhibitor addition, which is effective under flowing conditions, each of them exhibits its characteristics and compensates for its shortcomings. It has the characteristic of uniformly obtaining high corrosion prevention effects even on the back side of the member, gaps, flow velocity areas, etc.

しかも本発明の併用防食法では有機リン酸系腐金抑制剤
の添加量が微量でかつ分解しにくいため、排水による水
質汚染や富栄養化の問題をも解消し得る。
Moreover, in the combined corrosion prevention method of the present invention, the amount of the organic phosphate corrosion inhibitor added is very small and is difficult to decompose, so that problems of water pollution and eutrophication caused by wastewater can be solved.

以上のように、本発明は独特の作用効果にもとづく画期
的な複合防食法で広く工業界に有益な技術を提供するも
のである。
As described above, the present invention provides an innovative composite anticorrosion method based on unique functions and effects, and provides a technology widely useful to the industrial world.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、腐食抑制剤の単独添加における腐食抑制剤濃
度と腐食速度との関係図である。 第2図は、腐食抑制剤と亜鉛陽極との併用時における腐
食抑制剤濃度と防食電流密度との関係図である。
FIG. 1 is a diagram showing the relationship between corrosion inhibitor concentration and corrosion rate when a corrosion inhibitor is added alone. FIG. 2 is a diagram showing the relationship between corrosion inhibitor concentration and corrosion protection current density when a corrosion inhibitor and a zinc anode are used together.

Claims (1)

【特許請求の範囲】[Claims] 1 海水または比較市電導度の高い腐食性の水中におい
て有機リン酸系腐食抑制剤を添加するとともに亜鉛流電
陽極による電気防食を併用することを特徴とする金属腐
食防止法。
1. A metal corrosion prevention method characterized by adding an organic phosphate corrosion inhibitor in seawater or corrosive water with high comparative conductivity, and using electrolytic protection using a zinc galvanic anode.
JP53073759A 1978-06-20 1978-06-20 Method for preventing metal corrosion in water Expired JPS5810470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53073759A JPS5810470B2 (en) 1978-06-20 1978-06-20 Method for preventing metal corrosion in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53073759A JPS5810470B2 (en) 1978-06-20 1978-06-20 Method for preventing metal corrosion in water

Publications (2)

Publication Number Publication Date
JPS552718A JPS552718A (en) 1980-01-10
JPS5810470B2 true JPS5810470B2 (en) 1983-02-25

Family

ID=13527470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53073759A Expired JPS5810470B2 (en) 1978-06-20 1978-06-20 Method for preventing metal corrosion in water

Country Status (1)

Country Link
JP (1) JPS5810470B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116774A (en) * 1981-01-14 1982-07-20 Hitachi Ltd Etching method
GB2112370B (en) * 1981-09-04 1984-09-26 Ciba Geigy Ag Inhibition of scale formation and corrosion in aqueous systems
JPS5956066A (en) * 1982-09-22 1984-03-31 株式会社日立製作所 Sealing circulation type absorption system refrigerator
US4501667A (en) * 1983-03-03 1985-02-26 Ciba-Geigy Corporation Process of inhibiting corrosion of metal surfaces and/or deposition of scale thereon
AU572825B2 (en) * 1983-03-03 1988-05-19 Fmc Corporation (Uk) Limited Inhibition of corrosion and scale formation of metal surfaces
DE10118684C1 (en) * 2001-04-14 2003-01-02 Clariant Gmbh Corrosion inhibitor for bath water containing sodium chloride and magnesium sulfate and its use
US9562833B2 (en) 2013-03-15 2017-02-07 Mustang Sampling Llc Composite gas sampling system
CN107675150B (en) * 2017-09-22 2019-04-26 山东天庆科技发展有限公司 A kind of chemical cleaning prefilming method of circulation

Also Published As

Publication number Publication date
JPS552718A (en) 1980-01-10

Similar Documents

Publication Publication Date Title
US3932303A (en) Corrosion inhibition with triethanolamine phosphate ester compositions
US4026815A (en) Method for preventing corrosion in water-carrying systems
US4108790A (en) Corrosion inhibitor
US5130052A (en) Corrosion inhibition with water-soluble rare earth chelates
US3885914A (en) Polymer-zinc corrosion inhibiting method
US3941562A (en) Corrosion inhibition
US5302307A (en) Liquid anticorrosive and antiscaling deicing composition
US5866042A (en) Methods and compositions for inhibiting corrosion
JPS5810470B2 (en) Method for preventing metal corrosion in water
Wachter Sodium Nitrite as Corrosion Inhibitor for Water.
CN104531087A (en) Superpolymer composite antifreezing solution
US3133028A (en) Corrosion inhibition
US11479864B2 (en) Corrosion inhibition treatment for aggressive fluids
El Din Three strategies for combating the corrosion of steel pipes carrying desalinated potable water
CN111472008A (en) Compound metal sustained-release agent suitable for all environments
Rajendran et al. Synergistic effect of Zn exp 2+ and phenyl phosphonic acid in corrosion inhibition of mild steel in neutral environment
US3868217A (en) Corrosion inhibition
CN105063632A (en) Corrosion inhibitor for inhibiting copper corrosion in saline water (seawater) and preparation method of corrosion inhibitor
US2877085A (en) Corrosion inhibiting thiol combination
CN113046753A (en) Compound corrosion inhibitor IM-SN-NaSiC and desalted water containing same
CN102304716A (en) Corrosion inhibitor
Ivušić et al. Aminotris (methylenephosphonic acid) and sodium gluconate as inhibitors of carbon steel corrosion in 3.5% NaCl solution
CA1047755A (en) Corrosion inhibition
US3669615A (en) Corrosion inhibiting method
CA2110461A1 (en) Composition and methods for inhibiting the corrosion of low carbon steel in aqueous systems