US2404031A - Corrosion preventing electrode - Google Patents

Corrosion preventing electrode Download PDF

Info

Publication number
US2404031A
US2404031A US491382A US49138243A US2404031A US 2404031 A US2404031 A US 2404031A US 491382 A US491382 A US 491382A US 49138243 A US49138243 A US 49138243A US 2404031 A US2404031 A US 2404031A
Authority
US
United States
Prior art keywords
zinc
electrode
layers
metal
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US491382A
Inventor
Jr Charles H Bunn
Leo W Schrader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standard Oil Development Co
Original Assignee
Standard Oil Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Oil Development Co filed Critical Standard Oil Development Co
Priority to US491382A priority Critical patent/US2404031A/en
Application granted granted Critical
Publication of US2404031A publication Critical patent/US2404031A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/16Electrodes characterised by the combination of the structure and the material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/30Anodic or cathodic protection specially adapted for a specific object
    • C23F2213/31Immersed structures, e.g. submarine structures

Definitions

  • Thisinvention relates to the electrolytic protectionof metallic surfaces against corrosion, and more particularly, it relates to an improved electrode for use in connection with such an electrolytic system. 7
  • electrolytic protection is to provide an artificial current which overcomes the small circulating current preventing or extinguishing the anodic areas and rendering most or all of the metallic areas cathodic. This can be 5 Claims. (Cl. 204148) heres to the surface of the zinc.
  • Electrodes must be built very light and small so that they can be readily removed from the tank, or the cargo tanks themselves must be completely freed from gas so as to permit a man to enter the tanks and clean the anodes manually. Either of these expedients is diflicult and inefficient as the cleaning must be done at comparatively short intervals. Furthermore, the electrodes may be inaccessible and time may not be available for the necessary gas freeing.
  • Several sheets may be held together by a framework of any suitable material that is not less noble than the material used in the electrode sheets.
  • Steel angles 2 and bolts 3 may be used to form the holding frame.
  • the edges of the thin sheets should preferably be protected wth an insoluble coating of lacquer or varnish.
  • the electrolyte will first attack the two outside sheets. As these are eaten away they become perforated and the next sheets are exposed and attacked in turn.
  • the formation of scale between the outer layers of sheets and the perforations inthe outer sheets combine to remove the remaining portions of the outer sheet in an exfoliating action which is progressive through the layers of thin sheets. This action will continue through the several layers of foil until practically the entire electrode is consumed.
  • an electrode which will remain uniformly active throughout its life can be provided in a galvanic system for the electrolytic protection of metallic surfaces by utilizing as an electrode a multiplicity of thin sheets of a metal which is less noble than the metal to be protected, and which sheets or foils are held together mechanically with no binding material between them. It is also obvious that the electrode forming the subject matter of this invention is self-cleaning and no adjustment is needed until it is necessary to completely replace the anode.
  • the nature and objects of the present invent 4 cause adherent scale formation on zinc which comprises immersing in said solution a plurality of superimposed layers of zinc foil electrically connected to said metal tank and having a thickness between 0.004" and 0.014 whereby the corrosion of the exterior layers of zinc results in the exposing of succeeding layers of Zinc.
  • a device for protecting iron and steel tanks against the corroding influence of solutions contained-therein which cause adherent scale formation on zinc comprising a plurality of layers of zinc foil, each having a thickness between 0.004 and 0.014, and a reinforcing frame for said plurality of layers of zinc foil, said layers of foil being connected to said tank by means of suitable conductors whereby a galvanic circuit is completed, said zinc foils being adapted upon corrosion to exfoliate and expose fresh surfaces of zinc foil to the action of said saline liquid.
  • a device for protecting iron and steel tanks against the corroding influence of solutions contained therein which cause adherent scale formation on zinc comprising a plurality of layers of zinc foil, each having a thickness of 0.01", and a reinforcing frame for said plurality of layers of zinc foil, said layers of foil being connected to said tank by means of suitable conductors whereby a galvanic circuit is completed, said Zinc foils being adapted upon corrosion to exfoliate and expose fresh surfaces of zinc foil to the action of said saline liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

Jy m, 1946. c. H. BUNN, JR, EIAL 2,404,031
CORROSION PREVENTING ELECTRODE Filed June 18, 1945 ANGl-E 'Zmc. FIZAME.
LAMINATION Charles bane, Jr.
Lgo Ukcbrader m% Clbbovrz-q E'xrlvenbors Patented July 16, 1946 CORROSIONPREVENTING ELECTRODE Charles H. Bunn, Jr., Westfield, and Leo W.
Schrader, Elizabeth, N. J., assignors to Standard Oil Development Company, a corporation of Delaware Application June 18, 1943, Serial No. 491,382
Thisinvention relates to the electrolytic protectionof metallic surfaces against corrosion, and more particularly, it relates to an improved electrode for use in connection with such an electrolytic system. 7
In many solutions the corrosion of the common structural metals is associated with the flow of electric currents between various parts of the metal surface. In the case of ordinary carbon steel, the current flow is proportional to the rate of corrosion. In other words, the corrosion of common metals. in solutions is electrochemical in nature rather than a simple dissolution or chemical action.
One of the principal ways by which this action occurs is through the dissimilarity of two metals in electric contact in an electrolyte. This action results from the fact that any metal, when submerged in an electrolyte, tends to assume a potential with respect to the electrolyte. This potential is called solution potential and every kind of metal has a definite and consistent solution potential. If two metals with different solution potentials are placed in contact with an electrolyte and also are connected through a metallic circuit, an electric battery cell is formed and current will flow impelled by a voltage equal to the difference between the solution potentials of the two metals. This current will flow through the electrolyte from the metal with a greater solution pressure, to the metal with the lesser solution potential. This current flow is accompanied by the movement of anions through the electrolyte to the less noble metal and the movement of hydrogen ions to the more noble metal where hydrogen may be liberated from the electrolyte.
It has been found that saline waters have a very great corrosive action on ordinary iron or steel tanks or other apparatus. This is particularly true in the case of cargo tanks in tankers during the ballast voyage. The oil tanks in these tankers are usually filled with sea water as ballast to take the place of the oil carried on the outgoing voyage. The salts contained in the sea water are particularly active in attacking the metal of the tanks. Furthermore, the ferrous products of corrosion themselves hasten the corroding action,
because these products set up new galvanic couples with the surfaces of the tank on which the products of corrosion accumulate.
The purpose of electrolytic protection is to provide an artificial current which overcomes the small circulating current preventing or extinguishing the anodic areas and rendering most or all of the metallic areas cathodic. This can be 5 Claims. (Cl. 204148) heres to the surface of the zinc.
done by providing artificial electrodes of a less noble metal Whose solution potential greater than that of the metal to be protected. Among the common metals whose solution potentials are greater than that of iron may be mentioned zinc and aluminum. Of these, zinc is preferred for the present process and apparatus as it is cheaply obtained, easily worked, and is in other respects particularly adapted to the present invention.
The use of zinc for the galvanic protection of ferrous objects against corrosive action of liquids is not broadly new. For example, one method of protection consists in suspending one or more bars of cast zinc in the corroding medium While maintaining the other end of the bars in direct metallic contact with the ferrous surface to be protected. This method of using cast zinc possesses the disadvantage that the surface of the zinc becomes badly pitted and is soon covered with a hard cement-like coating formed from the products of corrosion of the zinc. This gradually reduces the efficiency of the electrode and necessitates manual cleaning which is almost impossible clue to the tenacity with which the scalead- Furthermore, when the method is applied to cargo tanks the mechanical cleaning of the electrodes is even more expensive and often not feasible. Either the electrodes must be built very light and small so that they can be readily removed from the tank, or the cargo tanks themselves must be completely freed from gas so as to permit a man to enter the tanks and clean the anodes manually. Either of these expedients is diflicult and inefficient as the cleaning must be done at comparatively short intervals. Furthermore, the electrodes may be inaccessible and time may not be available for the necessary gas freeing.
It is therefore one object of this invention to provide an improved electrode of a metal less noble than that to be protected which electrode can be used for long periods Without replacement and without cleaning which will provide the maximum amount of protection per unit weight of zinc.
Thus this invention will provide an etficient method for the electrolytic protection of the interior of cargo tanks in. seagoing oil tankers during the ballast voyage.
Referring to the drawing, the electrode according to the present invention comprises a plurality of thin sheets of zinc foil I held to ether mechanically with no binding material between the layers. The individual zinc foils should be very 3 thin, ranging in thickness between 0.014" and 0.0014", preferably about 0.01".
Several sheets may be held together by a framework of any suitable material that is not less noble than the material used in the electrode sheets. Steel angles 2 and bolts 3 may be used to form the holding frame. The edges of the thin sheets should preferably be protected wth an insoluble coating of lacquer or varnish. In operation, the electrolyte will first attack the two outside sheets. As these are eaten away they become perforated and the next sheets are exposed and attacked in turn. The formation of scale between the outer layers of sheets and the perforations inthe outer sheets combine to remove the remaining portions of the outer sheet in an exfoliating action which is progressive through the layers of thin sheets. This action will continue through the several layers of foil until practically the entire electrode is consumed.
It is therefore obvious that by this invention an electrode which will remain uniformly active throughout its life can be provided in a galvanic system for the electrolytic protection of metallic surfaces by utilizing as an electrode a multiplicity of thin sheets of a metal which is less noble than the metal to be protected, and which sheets or foils are held together mechanically with no binding material between them. It is also obvious that the electrode forming the subject matter of this invention is self-cleaning and no adjustment is needed until it is necessary to completely replace the anode.
This invention has been described in reference to the protection of tanks in seagoing oil tankers, but it should be understood that the novel electrode herein described is suitable for a great many other industrial applications. For instance, aluminum tanks used for crystallizing tartaric acid from solutions can be protected by a galvanic method using the laminated electrode of the present invention. Storage tanks, boiler and refinery equipment, cast iron gas coolers, condensers, power plant equipment and, in general, any metal subject to the corrosive action of an electrolyte can be protected in a like manner.
The nature and objects of the present invent 4 cause adherent scale formation on zinc which comprises immersing in said solution a plurality of superimposed layers of zinc foil electrically connected to said metal tank and having a thickness between 0.004" and 0.014 whereby the corrosion of the exterior layers of zinc results in the exposing of succeeding layers of Zinc.
' 2. A method for protecting a tank composed of a metal more noble than zinc against the corroding influence of solution contained therein which cause adherent scale formation on zinc which comprises immersing in said liquid a plurality of superimposed layers of zinc foil electrically connected to said tank and having a thickness of 0.01 whereb the corrosion of the exterior laysuitable conductors whereb an electrical circuit is completed, said layers of zinc being adapted upon corroding to expose fresh surfaces.
. 4. A device for protecting iron and steel tanks against the corroding influence of solutions contained-therein which cause adherent scale formation on zinc comprising a plurality of layers of zinc foil, each having a thickness between 0.004 and 0.014, and a reinforcing frame for said plurality of layers of zinc foil, said layers of foil being connected to said tank by means of suitable conductors whereby a galvanic circuit is completed, said zinc foils being adapted upon corrosion to exfoliate and expose fresh surfaces of zinc foil to the action of said saline liquid.
5. A device for protecting iron and steel tanks against the corroding influence of solutions contained therein which cause adherent scale formation on zinc comprising a plurality of layers of zinc foil, each having a thickness of 0.01", and a reinforcing frame for said plurality of layers of zinc foil, said layers of foil being connected to said tank by means of suitable conductors whereby a galvanic circuit is completed, said Zinc foils being adapted upon corrosion to exfoliate and expose fresh surfaces of zinc foil to the action of said saline liquid.
CHARLES H. BUNN, JR. LEO W. SCI-IRADER.
US491382A 1943-06-18 1943-06-18 Corrosion preventing electrode Expired - Lifetime US2404031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US491382A US2404031A (en) 1943-06-18 1943-06-18 Corrosion preventing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US491382A US2404031A (en) 1943-06-18 1943-06-18 Corrosion preventing electrode

Publications (1)

Publication Number Publication Date
US2404031A true US2404031A (en) 1946-07-16

Family

ID=23951973

Family Applications (1)

Application Number Title Priority Date Filing Date
US491382A Expired - Lifetime US2404031A (en) 1943-06-18 1943-06-18 Corrosion preventing electrode

Country Status (1)

Country Link
US (1) US2404031A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2444174A (en) * 1943-08-24 1948-06-29 Standard Oil Dev Co Galvanic coating process
DE1077555B (en) * 1956-03-13 1960-03-10 Sentralinst For Ind Forskning Method and device for protection against corrosion in the tanks of tankers by means of externally fed anodes
DE973861C (en) * 1953-01-27 1960-06-30 Hughes & Co Device for protecting iron devices immersed in aqueous electrolytes against corrosion
US3109510A (en) * 1959-08-11 1963-11-05 Muffler Corp Of America Exhaust muffler
US5512149A (en) * 1994-09-01 1996-04-30 Mackenna Iv; Gilbert J. Sacrificial anode device with optimized anode/cathode interface surface contact area
US6214203B1 (en) 1999-12-06 2001-04-10 United States Pipe Foundry Anodic encasement corrosion protection system for pipe and appurtenances, and metallic components thereof
US6331242B1 (en) 1999-12-06 2001-12-18 United States Pipe And Foundry Company, Inc. Anodic encasement corrosion protection system for underground storage tanks, and metallic components thereof
EP2300638A4 (en) * 2008-06-25 2016-09-21 Volvo Penta Ab An auxiliary device, a marine surface vessel and a method for a sacrificial anode in a marine construction

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2444174A (en) * 1943-08-24 1948-06-29 Standard Oil Dev Co Galvanic coating process
DE973861C (en) * 1953-01-27 1960-06-30 Hughes & Co Device for protecting iron devices immersed in aqueous electrolytes against corrosion
DE1077555B (en) * 1956-03-13 1960-03-10 Sentralinst For Ind Forskning Method and device for protection against corrosion in the tanks of tankers by means of externally fed anodes
US3109510A (en) * 1959-08-11 1963-11-05 Muffler Corp Of America Exhaust muffler
US5512149A (en) * 1994-09-01 1996-04-30 Mackenna Iv; Gilbert J. Sacrificial anode device with optimized anode/cathode interface surface contact area
US6214203B1 (en) 1999-12-06 2001-04-10 United States Pipe Foundry Anodic encasement corrosion protection system for pipe and appurtenances, and metallic components thereof
US6331242B1 (en) 1999-12-06 2001-12-18 United States Pipe And Foundry Company, Inc. Anodic encasement corrosion protection system for underground storage tanks, and metallic components thereof
EP2300638A4 (en) * 2008-06-25 2016-09-21 Volvo Penta Ab An auxiliary device, a marine surface vessel and a method for a sacrificial anode in a marine construction

Similar Documents

Publication Publication Date Title
US2444174A (en) Galvanic coating process
US3240688A (en) Aluminum alloy electrode
US3189486A (en) Primary electric cell
US4203810A (en) Electrolytic process employing electrodes having coatings which comprise platinum
US2404031A (en) Corrosion preventing electrode
US3102086A (en) Method of improving the corrosion resistance of titanium metals
US3368958A (en) Aluminum alloy for cathodic protection system and primary battery
GB869711A (en) Improvements relating to electrolytic systems especially for the cathodic protection of metal structures and to anodes therefor
US2856342A (en) Anti-corrosion anode
CA2204239C (en) Method for inhibition of growth of organisms on faces of constructions submerged in a liquid
CA1070985A (en) Electrochemically active aluminum alloy
US3461051A (en) Method and apparatus for protecting walls of a metal vessel against corrosion
Brown et al. Cathodic protection
GB1597305A (en) Marine potentiometric antifouling and anticorrosion device
US1512557A (en) mills
US3033775A (en) Anode for cathodic protection
US3321335A (en) Sea water battery
Mrdović et al. Applications Impressed Current Cathodic Protection of the Ship Hull
US3410771A (en) Treatment of lead alloy anodes
RU2113544C1 (en) COMPLEX RUST AND FOULING PROTECTION (Variants)
US3376209A (en) Anode formed of lead base and duriron
Gee Electrolytic methods for preventing corrosion
US4173523A (en) Cathodic protection of a structure in the sea by sacrificial anodes
US3956095A (en) Sacrificial anode
RU191508U1 (en) FLOATING MARINE OBJECT