JPS5876751A - Electrophoresis apparatus - Google Patents

Electrophoresis apparatus

Info

Publication number
JPS5876751A
JPS5876751A JP56176112A JP17611281A JPS5876751A JP S5876751 A JPS5876751 A JP S5876751A JP 56176112 A JP56176112 A JP 56176112A JP 17611281 A JP17611281 A JP 17611281A JP S5876751 A JPS5876751 A JP S5876751A
Authority
JP
Japan
Prior art keywords
current
sample
electrophoresis
component zone
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56176112A
Other languages
Japanese (ja)
Other versions
JPS6334427B2 (en
Inventor
Shoichi Kobayashi
章一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP56176112A priority Critical patent/JPS5876751A/en
Priority to US06/361,738 priority patent/US4459198A/en
Priority to DE8282102577T priority patent/DE3270957D1/en
Priority to EP82102577A priority patent/EP0070963B1/en
Publication of JPS5876751A publication Critical patent/JPS5876751A/en
Publication of JPS6334427B2 publication Critical patent/JPS6334427B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/4473Arrangements for investigating the separated zones, e.g. localising zones by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44743Introducing samples

Abstract

PURPOSE:To enable an accurate detection of the front end of each ion component zone reaching the desired position of a migration path by hourly integration of a migration current detected. CONSTITUTION:When a composition of a leading liquid is provided to a computer 9 through a console 11, a corresponding quantity Q of electricity is read out of a memory and set internally. Then, a boundary is produced between the terminal liquid and the leading liquid in a sample injecting section 5 and a sample is injected. A computer 9 controls a d.c. high voltage power source circuit 2 so that a relatively large emigration current i1 is fed back to the computer 9 through a current detection circuit 10 for hourly integration thereof whose results, the quantity q, is compared with the value Q. When they coincide, the current i1 is switched to a relatively small emigration current i2. At this point, the rear end of the ion component zone of the leading liquid reaches a stepped section 7c and the sample emigrates through a capillary tube 7b.

Description

【発明の詳細な説明】 この発明は電気泳動装置に関し、さらに詳しくは、泳動
路の任意位置を試料のイオン成分ゾーンの前端が通過し
ていることを検知しうる手段を備えた電気泳動装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrophoresis apparatus, and more particularly, to an electrophoresis apparatus equipped with means capable of detecting that the front end of an ionic component zone of a sample is passing through an arbitrary position of an electrophoresis path. .

電気泳動装置において泳動路の所定の位置を試料のイオ
ン成分ゾーンの前端が通過していること1− を検知する必要性は、特に試料からト1的成分を分取す
るとき、あるいは逆に目的外の成分を除去するときなど
に生じる。従来、この検知手段としては、特許庁文献&
76−5884911 (Journalofohro
matography、  119 *  1976 
)+用+SIO頁に記載のように電気泳動分析装置が本
来備えている検出器に前記検知手段の機能を兼ねさ・(
tだもの、あるいは特公昭56−8ao2に↓に記載の
ように泳動路の所定の位置に本来の検出器とは別個に同
様の検出器を設けたものが知られている、。
In an electrophoresis device, it is necessary to detect that the front end of the ionic component zone of the sample passes through a predetermined position of the electrophoresis path, especially when separating ionic components from the sample, or conversely, when This occurs when removing external components. Conventionally, this detection means is based on patent office literature &
76-5884911 (Journalofofohro
matography, 119 * 1976
) + As described on the SIO page, the detector that is originally included in the electrophoresis analyzer also has the function of the detection means.
It is known that a similar detector is installed at a predetermined position in the migration path separately from the original detector, as described in Japanese Patent Publication No. 1986-8AO2 (↓).

しかしながら、前者の場合には、検出器か本来設置され
る位置での検知しかできないので用途が限定されており
、後者の場合には、泳!IIJIyjS中にもうひとつ
の検出器を設置Hせねばならないので装置C°1が複雑
になる。
However, in the former case, the application is limited because detection can only be performed at the position where the detector is originally installed, and in the latter case, the use of the detector is limited. Since another detector must be installed in IIJIyjS, the apparatus C°1 becomes complicated.

さらに、検出器の出力信号は試ネS(の組成や鼠によっ
て変動するので、その出力信号の意味を判別する条件を
試料ごとに選定してやる必要があり、そうしなければ正
確な検知を行えないことがJ)る。
Furthermore, since the output signal of the detector varies depending on the composition of the sample S and the mouse, it is necessary to select conditions for determining the meaning of the output signal for each sample, otherwise accurate detection will not be possible. That is J).

この発明は、このような状況に鑑みてなされたもので、
上記のような問題点を解消した電気泳動装置を提供する
ものである。
This invention was made in view of this situation,
An object of the present invention is to provide an electrophoresis device that solves the above-mentioned problems.

すなわち、この発明は、高電圧電源回路の両端にそれぞ
れ接続されたターミナル液電極槽とリーディング液電極
槽の間に連結した泳動路にて試料を電気泳動させる電気
泳動装置において、泳動電流を検出する電流検出手段お
よび検出された電流を時間的に積算する電流積算手段を
設けてなる電気泳動装置を提供する。
That is, the present invention detects electrophoresis current in an electrophoresis apparatus in which a sample is electrophoresed in an electrophoresis path connected between a terminal liquid electrode tank and a leading liquid electrode tank connected to both ends of a high voltage power supply circuit. An electrophoresis apparatus is provided which includes a current detection means and a current integration means for temporally integrating the detected current.

上記電流検出手段は、具体的には例えば高電圧電源回路
の一端と電極槽の一つとを接続する接続線に小抵抗を介
設することで得られ、また上記電流積算手段は前記小抵
抗の両端電圧を積分する積分器を設けることで得られる
Specifically, the current detecting means can be obtained by, for example, inserting a small resistance in the connection line connecting one end of the high voltage power supply circuit and one of the electrode tanks, and the current integrating means can be obtained by interposing a small resistance in the connecting line connecting one end of the high voltage power supply circuit and one of the electrode tanks. This can be obtained by providing an integrator that integrates the voltage across both ends.

公知のように、電気泳動において供給された電気量と一
つのイオン成分ゾーンの泳動距離とは正比例するもので
ある。そこで電気量を知ることにより泳動距朧を知るこ
とかできる。今、リーディング液のイオン成分ゾーンに
着目すれば、その泳動路1iIILと屯気緘の関係は、
リーディング液の組成のみによってきまる。ところがリ
ーディング液のイオン成分ゾーンの後端は試料のイオン
成分ゾーンの前端に他ならないから、試料のイオン成分
ゾーンの前端の泳動距離もリーディング液のイオン成分
ゾーンの泳動距顯Fと電気量の関係にJ:つて知ること
ができる。つまり、リーディング液が同一であるかぎり
、同一の判断条件を用いで、=気量から試料のイオン成
分ゾーンの泳動路l1111を知ることができ、試料の
組成や星を名産しなくてもよいことになる。
As is well known, the amount of electricity supplied during electrophoresis is directly proportional to the migration distance of one ionic component zone. Therefore, by knowing the amount of electricity, it is possible to know the electrophoretic distance. Now, if we focus on the ionic component zone of the leading liquid, the relationship between the migration path 1iIIL and the ton Qi band is as follows.
It depends only on the composition of the leading fluid. However, since the rear end of the ionic component zone of the leading liquid is nothing but the front end of the ionic component zone of the sample, the migration distance of the front end of the ionic component zone of the sample is also related to the electrophoretic distance F of the ionic component zone of the leading liquid and the amount of electricity. NiJ: You can know that. In other words, as long as the leading liquid is the same, the migration path of the ionic component zone of the sample can be determined from the air volume using the same judgment conditions, and there is no need to specify the composition of the sample or the stars. become.

前記電流積算手段の出力はまさにl= ijl !電気
量に他ならないから、結局、この発明の″電気泳動装置
によれば、電流積算手段の出ノ月rJ゛つて試料のイオ
ン成分ゾーンの前端がどの位ti’trトで泳動し/Z
かを知ることができることとなる。しかも、検知位置は
任意であり、また出力信号の判別条件を試ネS]によっ
て変える必要もない。
The output of the current integration means is exactly l=ijl! After all, according to the "electrophoresis apparatus of the present invention," the front end of the ion component zone of the sample migrates at a maximum speed of 1/Z when the current integrating means is launched.
This means that you will be able to know what is going on. Moreover, the detection position is arbitrary, and there is no need to change the output signal discrimination condition depending on the test S].

ところで、細管弐等速電気泳ur分析において分析時間
の短縮と精度のよい検出という2−〕の目的を同時に達
成するために、分析の初期には泳動m流を大きくとって
イオンの泳動速度を大にして時間の短縮を図り、分析の
後期には泳動電流を小さくしてジュール熱の発生をおさ
えて精度よく検出するという方法がよく用いられる。こ
の方法で重要なことは、泳動m流を切換えるタイミング
を適切にすることである。
By the way, in order to simultaneously achieve the objective 2-] of shortening analysis time and detecting with high accuracy in capillary 2 isokinetic electrophoresis ur analysis, the ion migration speed is increased by increasing the ion flow at the beginning of the analysis. A method often used is to reduce the electrophoresis current in the latter stages of the analysis to suppress the generation of Joule heat and to achieve accurate detection. What is important in this method is appropriate timing for switching the electrophoresis flow.

このために、従来装置では、泳動路の所だ位置に別個の
検出器を設けて、それにより試料のイオン成分ゾーンの
通過時刻を検知することが行われていたが、前記したよ
うに、検出器の出力信号は試料の組成や輩によってそれ
ぞれ異なるので、試料のイオン成分ゾーンの通過を判別
する条件を試料ごとに適切に選定しなければならないと
いう問題かあった。
For this purpose, in conventional devices, separate detectors were installed at various positions along the migration path to detect the time when the sample passed through the ion component zone. Since the output signal of the instrument differs depending on the sample composition and type, there was a problem in that the conditions for determining whether the sample passed through the ionic component zone had to be appropriately selected for each sample.

この発明の電気泳動装置Wでは、前記したように、判別
条件を試料ごとに変更する必要がない。
In the electrophoresis apparatus W of the present invention, as described above, there is no need to change the discrimination conditions for each sample.

従って、この発明の電気泳動装置を利用してその電流積
算手段の出力信号に基づき泳動電流を切換えるようにす
れば、試料の如伺にかかわらず、一定の判別条件だけで
正確なタイミングで泳動電流の切換を行いうるようにな
る。
Therefore, if the electrophoresis apparatus of the present invention is used to switch the electrophoresis current based on the output signal of the current integration means, the electrophoresis current can be changed at an accurate timing under certain discrimination conditions, regardless of the condition of the sample. It becomes possible to switch between

以下、図に示す一実施例に基づいてこの発明を詳説する
が、ここで示される装置は上記のごとく泳動電流を切換
えるように構成した細管式等速電気泳動分析装置である
Hereinafter, the present invention will be explained in detail based on an embodiment shown in the drawings, and the apparatus shown here is a capillary type isotachophoresis analyzer configured to switch the electrophoresis current as described above.

(1)は細管式等速電気泳動分析装置117で、直流1
晶Vlj圧電源回路(2)の両端にそれぞれターミナル
液市、糊槽(3)とリーディング液電極槽(4)とが接
続され、これら両mai槽(3)(4)の聞に試和1注
入部(5)と検出+!:+、(6)とが管路(7)にて
連結されている1、試料注入部(5)と検出器(6)の
間の管路(7)は、管路径の太い一ノ°レチュ−フ(?
a)と管路径の細いキャビラリーチニ1−ブ(7b)が
段状部(7c)を介して直列にJ!J味11された2段
チューブである。直流高41■−電紬回路(2)の出力
は、ItIN回路(8)を介してマイクロコンピュータ
(9)により制御される。直流高電圧電m 1ttl路
(2)とターミナル液電極槽(3)の間の接続線に介設
されている(11)は電流検出回路であり、その出力か
マイク1」:1ンビユータ(9)に入力されている。、
 (II)は操作中である。
(1) is a capillary type isotachophoresis analyzer 117, with a direct current of 1
A terminal liquid tank, a glue tank (3), and a leading liquid electrode tank (4) are connected to both ends of the crystal Vlj pressure power supply circuit (2), and a trial liquid electrode tank (1) is connected between these two mai tanks (3) and (4). Injection part (5) and detection +! : +, (6) are connected by a pipe line (7) 1. The pipe line (7) between the sample injection part (5) and the detector (6) is a pipe with a large diameter. Retuffe (?
a) and a cabillary reach pipe (7b) with a small pipe diameter are connected in series via a stepped portion (7c). It is a two-tiered tube with J flavor. The output of the DC high voltage 41 - electric pongee circuit (2) is controlled by the microcomputer (9) via the ItIN circuit (8). (11) installed in the connection line between the DC high voltage electric m1ttl path (2) and the terminal liquid electrode tank (3) is a current detection circuit, and its output is ) is entered. ,
(II) is in operation.

さて、この装f!(1)のように分析用泳動路が2段チ
ューブである場合には、試料のイオン成分ゾーンがプレ
チューブ(7a)を泳動するときに大電流を供給し、試
料のイオン成分ゾーンがキャピラリーチューブ(7b)
を泳動するときに小m流を供給するようにすることが、
分析時間の短縮と精度のよい検出を行う上で好ましいこ
とである3、そこで、試料のイオン成分ゾーンの前端が
段状部(7C)に到達した時刻を知り、その時刻に泳i
1!II電流を大電流から小電流に切換えるようにする
のがよい。
Now, this outfit! When the analysis migration path is a two-stage tube as in (1), a large current is supplied when the ionic component zone of the sample migrates through the pretube (7a), and the ionic component zone of the sample migrates through the capillary tube. (7b)
Supplying a small m flow when electrophoresing
This is desirable in terms of shortening analysis time and performing accurate detection3.Therefore, it is important to know the time when the front end of the ion component zone of the sample reaches the stepped portion (7C), and to start swimming at that time.
1! It is preferable to switch the II current from a large current to a small current.

このために、あらかじめこの装ff+;t[)では、リ
ーディング液の組成とそのリーディング液を使用したと
きにリーディング液のイオン成分ゾーンの後端が試料注
入部(5)から段状部(7G)まで泳動するのに要する
電気量とが対応づけられてマイクロコンピュータ(9)
に記憶されている。
For this purpose, in advance, in this setup ff+;t[), we have determined the composition of the leading liquid and the rear end of the ion component zone of the leading liquid when used. Microcomputer (9)
is stored in

分析に当っては、ます、操作卓αυを介してリーディン
グ液の組成をマイクロコンピュータ(9)に入力する。
For analysis, the composition of the leading liquid is input into the microcomputer (9) via the operator console αυ.

そうすると、マイクロコンピュータ(9)ハそれに対応
した電気量Qをメモリーから読み出して内部的に設定す
る。次に、通常の手順により試料注入部(5)にターミ
ナル液とリーディング液の境界面を作り、試料を注入し
、操作卓(10からスタート指令を入力する。この指令
によりマイクロコンピュータ(9)は制御回路(8)を
介して1自流1晴′I”1を圧11f: 帥回路(2)
を制御し、比較的に大きな泳動1ノイ流11(t、:と
えば200〜300μA)を供給する5、泳!l1Jl
 li’lf流11は流電1検出回路01歩でマイクロ
−1゛ノビ′ユータ(9)にフィードバックされている
。マイク1】7Iンビユータ(9)は、この泳動電流1
1を時四的に積算するとともに、積算によつC得られる
電気iit qと前記電気量Qとを比較し、一致したと
きに泳!l1II電流i1を比較的に小さな泳動電流1
2(7,7とえtr 211〜100μA)に切換える
。m気h(qが1)【気シ「((に一致しすこときは、
先述したようにリーディング液のイオン成分ゾーンの後
端が段状部(70)に来たときであり、すなわち試料の
イオン成分ゾーンの曲端が段状部(7c)に到達したと
きである。。
Then, the microcomputer (9) reads out the corresponding quantity of electricity Q from the memory and sets it internally. Next, create an interface between the terminal liquid and the leading liquid in the sample injection part (5) using the usual procedure, inject the sample, and input a start command from the operation console (10).This command causes the microcomputer (9) to Pressure 11f of 1 current 1'I"1 via control circuit (8): Control circuit (2)
5. Control the electrophoresis and supply a relatively large electrophoresis 1 noise current 11 (t, for example, 200 to 300 μA). l1Jl
The li'lf flow 11 is fed back to the micro-1 'novi' user (9) by the current 1 detection circuit 01 step. Microphone 1] The 7I viewer (9) uses this electrophoretic current 1
1 from time to time, compare the electricity iit q obtained by the integration with the electricity quantity Q, and when they match, swim! l1II current i1 is a relatively small electrophoretic current 1
2 (7,7 and tr 211 to 100 μA). mkih (q is 1)
As described above, this is when the rear end of the ionic component zone of the leading liquid reaches the stepped portion (70), that is, when the curved end of the ionic component zone of the sample reaches the stepped portion (7c). .

従って、試料はまず大きな泳動14イ流、11にJ: 
−:)てプレチューブ(7a)内を泳動し、次に小さな
泳!1iJJ車流12によってキャピラリチューブ(7
b)内を泳動することになる。しかも、これは試料の組
成や量にかかわりなく正確に行われる。
Therefore, the sample is first subjected to a large electrophoresis flow of 14 I, and then to 11 J:
-:) and migrate in the pretube (7a), then a small swim! 1iJJ flow 12 capillary tube (7
b) will migrate within. Moreover, this is done accurately regardless of the composition or amount of the sample.

以上の説明から理解されるように、この発明の電気泳動
装置によれば、試料のイオン成分ゾーンの前端が泳動路
の任意のある位置に到達したことを、試料の組成や量を
光感することなく正確に検知することができろ。そこで
未知試料の分析に極めて有用である。また、泳動電流の
積算値のみを問題にし瞬時値は問題にしないから、泳動
電流が定電流であれ刻々変化する電流であれ、いずれの
場合でも正確に−1−記検知を行いうる利点もある。
As can be understood from the above description, the electrophoresis apparatus of the present invention detects when the front end of the ion component zone of the sample has reached an arbitrary position in the migration path and detects the composition and amount of the sample. be able to detect accurately without any Therefore, it is extremely useful for analyzing unknown samples. In addition, since only the integrated value of the electrophoretic current is considered and the instantaneous value is not a problem, there is an advantage that accurate detection can be performed in both cases, whether the electrophoretic current is a constant current or a current that changes every moment. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の電気泳動装fMの一実施例の構成説
明図である。 (1)・・・細管式等速電気泳動分析装置G、(2)・
・・直流高電圧電綜回路、 (3)・・・ターミナル液電極槽、 (4)・・・リーディング成型81!僧、(7)・・・
管路、      (8)・・・制御回路、(9)・・
・マイクロコンピュータ、
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the electrophoresis device fM of the present invention. (1)... Capillary isotachophoresis analyzer G, (2)...
...DC high voltage electrical circuit, (3)...Terminal liquid electrode tank, (4)...Leading molding 81! Monk, (7)...
Conduit, (8)...Control circuit, (9)...
・Microcomputer,

Claims (1)

【特許請求の範囲】 1、高電圧電源回路の両端にそれぞれ接続されたターミ
ナル液車極槽とリーディング液電極槽の間に連結した泳
動路にて試料を電気泳動させる電気泳動装置において、 泳動電流を検出する電流検出手段および検出された電流
を時間的に積算する電流積算手段を設けたことを特徴と
する電気泳動装置。
[Claims] 1. In an electrophoresis device that electrophores a sample in a migration path connected between a terminal liquid wheel electrode tank and a leading liquid electrode tank connected to both ends of a high voltage power supply circuit, What is claimed is: 1. An electrophoresis apparatus comprising: a current detecting means for detecting current; and a current integrating means for temporally integrating the detected current.
JP56176112A 1981-07-27 1981-10-31 Electrophoresis apparatus Granted JPS5876751A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56176112A JPS5876751A (en) 1981-10-31 1981-10-31 Electrophoresis apparatus
US06/361,738 US4459198A (en) 1981-07-27 1982-03-23 Electrophoretic apparatus
DE8282102577T DE3270957D1 (en) 1981-07-27 1982-03-26 Electrophoretic apparatus
EP82102577A EP0070963B1 (en) 1981-07-27 1982-03-26 Electrophoretic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56176112A JPS5876751A (en) 1981-10-31 1981-10-31 Electrophoresis apparatus

Publications (2)

Publication Number Publication Date
JPS5876751A true JPS5876751A (en) 1983-05-09
JPS6334427B2 JPS6334427B2 (en) 1988-07-11

Family

ID=16007892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56176112A Granted JPS5876751A (en) 1981-07-27 1981-10-31 Electrophoresis apparatus

Country Status (1)

Country Link
JP (1) JPS5876751A (en)

Also Published As

Publication number Publication date
JPS6334427B2 (en) 1988-07-11

Similar Documents

Publication Publication Date Title
Foret et al. On‐line isotachophoretic sample preconcentration for enhancement of zone detectability in capillary zone electrophoresis
Huang et al. Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis
Deml et al. Electric sample splitter for capillary zone electrophoresis
US4459198A (en) Electrophoretic apparatus
JPS6325300B2 (en)
Busnel et al. Electrokinetic supercharging for highly efficient peptide preconcentration in capillary zone electrophoresis
US5358613A (en) Method and apparatus for injecting liquid into a capillary tube
JPS5876751A (en) Electrophoresis apparatus
Thormann et al. Detection of transient and steady states in electrophoresis: Description and applications of a new apparatus with 255 potential gradient detectors along the separation trough
US4416762A (en) Electrophoretic apparatus
JPH0342369Y2 (en)
JPH04120461A (en) Analyzing apparatus of sf6 gas
JPS6260021B2 (en)
Bowerbank et al. Comprehensive isotachophoresis–capillary zone electrophoresis using directly inserted columns having different diameters with a periodic counterflow and dual ultraviolet detectors
JPH03118463A (en) Electrophoresis apparatus
JPS62257055A (en) Equal velocity electrophoretic apparatus
JPS6258460B2 (en)
JPS63234145A (en) Method and apparatus for electrophoretic analysis
JPS5832177A (en) Measuring method for temperature in mosfet channel part
JP2940211B2 (en) Capillary electrophoresis device
JPS6258462B2 (en)
JPS61144556A (en) Capillary type isokinetic electrophoresis device
JPH0666769A (en) Capillary electrophoresis device
JPS58130Y2 (en) Isokinetic electrophoresis analyzer
JPS5839405Y2 (en) Capillary type isotachophoresis analyzer