JP2940211B2 - Capillary electrophoresis device - Google Patents
Capillary electrophoresis deviceInfo
- Publication number
- JP2940211B2 JP2940211B2 JP3093563A JP9356391A JP2940211B2 JP 2940211 B2 JP2940211 B2 JP 2940211B2 JP 3093563 A JP3093563 A JP 3093563A JP 9356391 A JP9356391 A JP 9356391A JP 2940211 B2 JP2940211 B2 JP 2940211B2
- Authority
- JP
- Japan
- Prior art keywords
- elution time
- electroosmotic flow
- capillary
- peak
- calculating means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はアミノ酸、蛋白質、核酸
など電荷をもつ物質を分離分析するキャピラリ電気泳動
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capillary electrophoresis apparatus for separating and analyzing charged substances such as amino acids, proteins and nucleic acids.
【0002】[0002]
【従来の技術】キャピラリ電気泳動装置ではキャピラリ
の両端に印加された電圧によってキャピラリ中を電気泳
動する物質を検出器で検出し、その検出信号からデータ
処理装置で各ピークの溶出時間を検出し、その溶出時間
から各ピークの成分を同定する。各ピーク成分の移動度
は成分の種類と置かれている状況によって決まることか
ら、保持時間はクロマトグラフィの場合と同様に同定の
ための指標となる。溶出時間は変動するので、クロマト
グラフィの場合と同様に標準物質を用いて溶出時間の比
をとって補正を行ない、溶出時間の変動をキャンセルす
る方法が採られている。2. Description of the Related Art In a capillary electrophoresis apparatus, a substance to be electrophoresed in a capillary is detected by a detector by a voltage applied to both ends of the capillary, and the elution time of each peak is detected by a data processor from the detection signal. The component of each peak is identified from the elution time. Since the mobility of each peak component is determined by the type of the component and the situation in which the component is placed, the retention time is an index for identification as in the case of chromatography. Since the elution time fluctuates, a method has been adopted in which, as in the case of chromatography, correction is performed by taking the ratio of the elution time using a standard substance to cancel the fluctuation of the elution time.
【0003】[0003]
【発明が解決しようとする課題】キャピラリ電気泳動の
溶出時間の変動の要因としては種々のものが考えられ
る。変動要因には電気浸透と電気泳動の両方の影響を受
けるものの他に、電気浸透のみが大きく作用するものが
ある。溶出時間は電気浸透と電気泳動の両者の和で表わ
されるので、単に標準物質の溶出時間との比をとるだけ
では変動分を除去することができない。例えば、溶液の
温度が変化した場合は電気浸透と電気泳動がともに各物
質について同様の割合で変動するので、変動分を除去す
ることが可能である。しかし、汚れなどによりキャピラ
リの内面状態が変化した場合には、電気浸透流の要因が
独立に変動するため、標準物質を用いる従来の方法では
その変動を除去することはできない。本発明は電気浸透
による溶出時間の変動を除去して正しく同定を行なうこ
とのできるキャピラリ電気泳動装置を提供することを目
的とするものである。Various factors can be considered as causes of the change in the elution time of capillary electrophoresis. Some of the fluctuation factors are affected by both electroosmosis and electrophoresis, and others are only affected by electroosmosis. Since the elution time is represented by the sum of both electroosmosis and electrophoresis, the fluctuation cannot be removed simply by taking the ratio with the elution time of the standard substance. For example, when the temperature of the solution changes, both electroosmosis and electrophoresis fluctuate at the same rate for each substance, so that the fluctuation can be removed. However, when the inner surface state of the capillary changes due to dirt or the like, the factor of the electroosmotic flow changes independently, and the change cannot be removed by the conventional method using the standard substance. SUMMARY OF THE INVENTION An object of the present invention is to provide a capillary electrophoresis apparatus capable of performing correct identification by removing fluctuations in elution time due to electroosmosis.
【0004】[0004]
【課題を解決するための手段】本発明では中性物質の溶
出時間を測定して電気浸透流速を求める。それを用いて
各イオン成分の溶出時間から電気浸透の寄与している部
分を取り除き、電気浸透流速が0と仮定した場合の溶出
時間を求める。In the present invention, the elution time of a neutral substance is measured to determine the electroosmotic flow rate. Using this, the portion that contributes to electroosmosis is removed from the elution time of each ion component, and the elution time when the electroosmosis flow rate is assumed to be 0 is determined.
【0005】図1により本発明を説明する。溶出時間検
出手段2はキャピラリの両端に印加された電圧によって
キャピラリ中を電気泳動する物質の検出信号から各ピー
クの溶出時間を検出する。電気浸透流速算出手段4は中
性物質のピークの溶出時間から電気浸透流速を求める。
電気泳動速度算出手段6は各ピークに対して溶出時間検
出手段2で検出された溶出時間と電気浸透流速算出手段
4で求められた電気浸透流速とから電気泳動速度を求め
る。溶出時間補正手段8は電気浸透流速を0として補正
した各ピークの溶出時間を求める。The present invention will be described with reference to FIG. The elution time detecting means 2 detects an elution time of each peak from a detection signal of a substance which electrophoreses in the capillary by a voltage applied to both ends of the capillary. The electroosmotic flow rate calculating means 4 calculates the electroosmotic flow rate from the elution time of the peak of the neutral substance.
The electrophoretic velocity calculating means 6 determines the electrophoretic velocity from the elution time of each peak detected by the elution time detecting means 2 and the electroosmotic flow velocity calculated by the electroosmotic flow velocity calculating means 4. The elution time correction means 8 determines the elution time of each peak corrected by setting the electroosmotic flow rate to 0.
【0006】[0006]
【作用】キャピラリ電気泳動装置において、キャピラリ
中のイオン種aの速度Vaは、 Va=Vo+Vea で表わされる。ここで、Voは電気浸透流(エレクトロ
オズモシス)の速度、Veaはイオン種aの電気泳動速
度であり、Vo,Veaはそれぞれ Vo=μo・E Vea=μea・E と表わされる。μoは電気浸透の移動度、μeaはイオ
ン種aの移動度、Eは電場の強さである。In the capillary electrophoresis apparatus, the velocity Va of the ionic species a in the capillary is represented by Va = Vo + Vea. Here, Vo is the speed of the electroosmotic flow (electroosmosis), Vea is the electrophoresis speed of the ionic species a, and Vo and Vea are respectively expressed as Vo = μo · E Vea = μea · E. μo is the mobility of electroosmosis, μea is the mobility of ionic species a, and E is the strength of the electric field.
【0007】試料注入部から検出器までの距離をLとす
ると、試料中のイオン種aが検出されるまでの時間(溶
出時間)taは次のように表わされる。 ta=L/Va =L/{(μo+μea)・E} 試料中の中性物質又は添加された中性物質の溶出時間を
tsとすると、予め設定したL又は架空のLにより、 Vo=L/ts となる。イオン種aの溶出時間taに対しては (Vo+Vea)・ta=L であるので、これから Vea=L/ta−Vo が求められる。電気浸透流速を0と仮定したときの相対
溶出時間ta’は ta’=L/Vea により求めることができる。各イオン種について相対溶
出時間を求め、これを溶出時間として標準物質を用いた
通常の補正を行なう。Assuming that the distance from the sample injection section to the detector is L, the time (elution time) ta until the ion species a in the sample is detected is expressed as follows. ta = L / Va = L / {(μo + μea) · E} Assuming that the elution time of the neutral substance or the added neutral substance in the sample is ts, Vo = L / ts. Since (Vo + Vea) · ta = L for the elution time ta of the ion species a, Vea = L / ta−Vo is obtained from this. Assuming that the electroosmotic flow rate is 0, the relative elution time ta 'can be obtained by ta' = L / Vea. The relative elution time is determined for each ion species, and normal correction using a standard substance is performed using this as the elution time.
【0008】図2により各ピークの溶出時間の検出から
相対溶出時間を算出するまでの手順をフローチャートと
して示す。各ピークの溶出時間が検出されると、その中
から中性成分の溶出時間を選んで電気浸透流速Voを求
め、このVoを用いて各ピーク成分の電気泳動速度V
a,Vb,……を求める。次に、各ピーク成分の電気泳
動速度Va,Vb,……を用い、各ピーク成分に対して
相対溶出時間ta’,tb’,……を求めると、これは
電気浸透の変動に依存しない溶出時間となる。その後、
標準物質を用いて相対溶出時間で同定を行なう。FIG. 2 is a flowchart showing the procedure from the detection of the elution time of each peak to the calculation of the relative elution time. When the elution time of each peak is detected, the elution time of the neutral component is selected therefrom to determine the electroosmotic flow velocity Vo, and the electrophoretic velocity V of each peak component is determined using this Vo.
a, Vb,... Next, relative elution times ta ′, tb ′,... Are determined for each peak component using the electrophoretic velocities Va, Vb,. Time. afterwards,
Identification is performed using the standard substance and the relative elution time.
【0009】[0009]
【実施例】図3に一実施例を表わす。キャピラリ12の
両端がそれぞれリザーバ14と16のバッファ液に浸さ
れ、両バッファ液には高圧電源18から泳動電圧が印加
される。キャピラリ12のリザーバ14側の端部に試料
が注入され、その試料がリザーバ16方向に電気泳動す
るものとする。リザーバ16側にはキャピラリ12中を
泳動してきた成分を検出する検出器20が設けられてお
り、検出器20で検出された信号から各成分の溶出時間
がデータ処理装置22で検出され、中性物質の溶出時間
を基に各ピーク成分の相対溶出時間がデータ処理装置2
2で求められる。FIG. 3 shows an embodiment. Both ends of the capillary 12 are immersed in buffer solutions in the reservoirs 14 and 16, respectively, and a migration voltage is applied to both buffer solutions from a high voltage power supply 18. A sample is injected into the end of the capillary 12 on the reservoir 14 side, and the sample is electrophoresed in the direction of the reservoir 16. On the reservoir 16 side, a detector 20 for detecting components migrating in the capillary 12 is provided. From a signal detected by the detector 20, the elution time of each component is detected by a data processing device 22, Relative elution time of each peak component based on the elution time of the substance
Required by 2.
【0010】図1における溶出時間検出手段2、電気浸
透流速算出手段4、電気泳動速度算出手段6及び溶出時
間補正手段8はデータ処理装置22により実現される。
データ処理装置22は例えばパーソナルコンピュータや
マイクロコンピュータにより実現される。The elution time detecting means 2, the electroosmotic flow velocity calculating means 4, the electrophoretic velocity calculating means 6 and the elution time correcting means 8 in FIG.
The data processing device 22 is realized by, for example, a personal computer or a microcomputer.
【0011】[0011]
【発明の効果】本発明では中性物質の溶出時間から電気
浸透流の流速を求め、各ピーク成分の検出された溶出時
間から電気浸透流の影響を取り除いた相対溶出時間を求
めるようにしたので、例えばキャピラリ内面の変化など
に起因する溶出時間の変動要因を除去し、温度変化など
に伴う溶出時間変動の補正をより正確に行なって正確な
同定を行なうことができるようになる。According to the present invention, the flow rate of the electroosmotic flow is obtained from the elution time of the neutral substance, and the relative elution time excluding the influence of the electroosmotic flow is obtained from the detected elution time of each peak component. For example, it is possible to remove a variation factor of the elution time due to, for example, a change in the inner surface of the capillary, and to more accurately correct the variation of the elution time due to a change in temperature, thereby performing accurate identification.
【図1】本発明を示すブロック図である。FIG. 1 is a block diagram illustrating the present invention.
【図2】本発明の動作を示すフローチャート図である。FIG. 2 is a flowchart showing the operation of the present invention.
【図3】一実施例を示す略線図である。FIG. 3 is a schematic diagram showing one embodiment.
2 溶出時間検出手段 4 電気浸透流速算出手段 6 電気泳動速度算出手段 8 溶出時間補正手段 12 キャピラリ 20 検出器 22 データ処理装置 2 Elution time detecting means 4 Electroosmotic flow velocity calculating means 6 Electrophoretic velocity calculating means 8 Elution time correcting means 12 Capillary 20 Detector 22 Data processing device
Claims (1)
ってキャピラリ中を電気泳動する物質を検出器で検出
し、その検出信号からデータ処理装置で各ピークの溶出
時間を測定するキャピラリ電気泳動装置において、前記
データ処理装置は溶出時間を検出する溶出時間検出手段
の他に、中性物質のピークの溶出時間から電気浸透流速
を求める電気浸透流速算出手段と、各ピークに対して前
記溶出時間検出手段で検出された溶出時間と前記電気浸
透流速算出手段で求められた電気浸透流速とから電気泳
動速度を求める電気泳動速度算出手段と、電気浸透流速
を0として補正した各ピークの溶出時間を求める溶出時
間補正手段とを備えたキャピラリ電気泳動装置。1. A capillary electrophoresis apparatus for detecting a substance to be electrophoresed in a capillary by a voltage applied to both ends of the capillary with a detector, and measuring the elution time of each peak by a data processor from the detection signal. In addition to the elution time detecting means for detecting the elution time, the data processing device is an electroosmotic flow velocity calculating means for obtaining the electroosmotic flow velocity from the elution time of the neutral substance peak, and the elution time detecting means for each peak. An electrophoresis speed calculating means for obtaining an electrophoretic speed from the detected elution time and the electroosmotic flow speed obtained by the electroosmotic flow speed calculating means, and an elution time for obtaining an elution time of each peak corrected by setting the electroosmotic flow speed to 0. A capillary electrophoresis device comprising a correction unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3093563A JP2940211B2 (en) | 1991-03-29 | 1991-03-29 | Capillary electrophoresis device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3093563A JP2940211B2 (en) | 1991-03-29 | 1991-03-29 | Capillary electrophoresis device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04303757A JPH04303757A (en) | 1992-10-27 |
JP2940211B2 true JP2940211B2 (en) | 1999-08-25 |
Family
ID=14085720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3093563A Expired - Fee Related JP2940211B2 (en) | 1991-03-29 | 1991-03-29 | Capillary electrophoresis device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2940211B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3709123B2 (en) * | 2000-06-20 | 2005-10-19 | 独立行政法人科学技術振興機構 | Electrophoretic analysis method |
KR102198936B1 (en) * | 2019-08-06 | 2021-01-05 | 경희대학교 산학협력단 | Micro-capillary electrophoresis system using step-up converter device |
-
1991
- 1991-03-29 JP JP3093563A patent/JP2940211B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04303757A (en) | 1992-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chien et al. | On-column sample concentration using field amplification in CZE | |
Bruin et al. | Theoretical and experimental aspects of indirect detection in capillary electrophoresis | |
Otsuka et al. | Chiral separations by micellar electrokinetic chromatography with sodium N-dodecanoyl-L-valinate | |
EP0410810A1 (en) | System for measuring electrokinetic properties and for characterizing electrokinetic separations by monitoring current in electrophoresis | |
CA2069031C (en) | Identification of sample constituents utilizing capillary electrophoresis | |
Hjertén et al. | High-performance displacement electrophoresis in 0.025-to 0.050-mm capillaries coated with a polymer to suppress adsorption and electroendosmosis | |
US9964509B2 (en) | Drift compensated ion sensor | |
Reijenga et al. | Computational simulation of migration and dispersion in free capillary zone electrophories: II. Results of simulation and comparison with measurements | |
US5932080A (en) | Mobility-based and normalized capillary electrophoresis | |
Busnel et al. | Electrokinetic supercharging for highly efficient peptide preconcentration in capillary zone electrophoresis | |
Cifuentes et al. | Effect of pH and ionic strength of running buffer on peptide behavior in capillary electrophoresis: theoretical calculation and experimental evaluation | |
Kilár | Determination of pI by measuring the current in the mobilization step of high-performance capillary isoelectric focusing: analysis of transferrin forms | |
KR880002019A (en) | How to measure heating power | |
Righetti et al. | Capillary electrophoresis of peptides in isoelectric buffers | |
JP2940211B2 (en) | Capillary electrophoresis device | |
Vespalec et al. | Identification of peaks in capillary zone electrophoresis based on actual mobilities | |
Koval et al. | Determination of pKa values of diastereomers of phosphinic pseudopeptides by CZE | |
Thormann et al. | Focusing counterparts of electrical field flow fractionation and capillary zone electrophoresis: Electrical hyperlayer field flow fractionation and capillary isoelectric focusing | |
Survay et al. | Oligoglycines and oligoalanines as tests for modelling mobility of peptides in capillary electrophoresis | |
Beckers | Steady‐state models in electrophoresis: From isotachophoresis to capillary zone electrophoresis | |
Harms et al. | Comparison between capillary electrophoresis and ion-chromatography for analysis of inorganic anions | |
Beckers | Determination of absolute mobilities and pK values by isotachophoresis | |
Glukhovskiy et al. | A simple method for the determination of isoelectric points of ampholytes with closely spaced pKa values using pressure‐mediated capillary electrophoresis | |
Ackermans et al. | Isotachophoresis in open systems: problems in quantitative analysis | |
Carchon et al. | Isotachophoretic determination of a relative apparent mobility as an estimate of the electrophoretic mobility of ions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100618 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |