JPS63234145A - Method and apparatus for electrophoretic analysis - Google Patents

Method and apparatus for electrophoretic analysis

Info

Publication number
JPS63234145A
JPS63234145A JP62068388A JP6838887A JPS63234145A JP S63234145 A JPS63234145 A JP S63234145A JP 62068388 A JP62068388 A JP 62068388A JP 6838887 A JP6838887 A JP 6838887A JP S63234145 A JPS63234145 A JP S63234145A
Authority
JP
Japan
Prior art keywords
current
electrode
analysis
sample
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62068388A
Other languages
Japanese (ja)
Inventor
Takashi Hine
隆 日根
Takao Yagi
八木 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62068388A priority Critical patent/JPS63234145A/en
Publication of JPS63234145A publication Critical patent/JPS63234145A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To execute an analysis with high accuracy even with a sample having a high migration speed by stopping analysis current once and releasing the electric charge in a capillary tube then supplying the analysis current again in a stage when sepn. current is changed over to the analysis current. CONSTITUTION:While the sample is separated to respective components, the sample starts migrating toward an auxiliary electrode 9 when large current is supplied between a terminal electrode 2a and the electrode 9 in the open state of a switch 11. The current supply is stopped in the stage when the front end of the sample arrives at the capillary tube 6. The analysis current is then supplied to the electrode 2a and a leading electrode 5a and thereafter, the current is once stopped. The sample, etc., in a migration pipeline 1 release electric charge when an electrode 10 is grounded after the switch 11 is turned on. The switch 11 is thereafter turned off and the analysis current is supplied between the electrodes 2a and 5a. Then, the respective separated components move toward a potential gradient detector 4 while the components are subjected to the migration in the tube 6. Since the tube 6 has a small diameter, the components are migrated successively with a long zone length and are admitted into the detector 4, by which the respective components are detected with high accuracy.

Description

【発明の詳細な説明】 (技術分野) 本発明は、細管式電気泳動分析装置、より詳しくは分離
用キャピラリカラムと分析用キャピラリカラムを直列接
続してなる細管式電気泳動装置における泳動電流供給技
術に関する。
Detailed Description of the Invention (Technical Field) The present invention relates to a capillary electrophoresis analyzer, more specifically, a capillary current supply technology in a capillary electrophoresis device in which a separation capillary column and an analytical capillary column are connected in series. Regarding.

(従来技術) 分離精度と測定精度の向上を図るため、通常、第4図に
示したように内径の大きなキャピラリーチューブAと内
径の小ざいキャピラリーチューブBとを直列に接続し、
大径のチューブAにより試料を分M′2!せた後、小径
側のチューブ已により分離ゾーン長を大きくして分析精
度の向上を図ることが行なわれている。
(Prior art) In order to improve separation accuracy and measurement accuracy, normally a capillary tube A with a large inner diameter and a capillary tube B with a small inner diameter are connected in series, as shown in Fig. 4.
Sample size M'2 using large diameter tube A! After that, the length of the separation zone is increased by using the tube on the small diameter side to improve analysis accuracy.

このような装置においては、分析時間を短縮するため、
2種類のチューブの接続点近傍Cに補助電極Dv!設ゆ
、最初はターミナル電極部と補助電極りとの闇に大電流
を流して試料を高速度で分離し、試料が接続点近傍Cに
到達した段階で、ターミナル電E極とリーディング電極
F間に分析電流を流すことが行なわれている。なお、図
中符号Hは、試料注入機構を示す。
In such a device, in order to shorten analysis time,
Auxiliary electrode Dv near the connection point C of the two types of tubes! At first, a large current is passed between the terminal electrode and the auxiliary electrode to separate the sample at high speed, and when the sample reaches the connection point C, a large current is applied between the terminal electrode E and the leading electrode F. An analytical current is applied to the Note that the symbol H in the figure indicates a sample injection mechanism.

しかしながら、分離電流から分析電流への切換え時には
、第5図に示したように電位勾配検出器Gのベースライ
ンが大きく変化して定常状態に復帰するまでに長時闇を
要し、特に泳動速度の速い試料に対しては測定結果に誤
差を生じる虞れがあるという不都合があった。
However, when switching from the separation current to the analysis current, the baseline of the potential gradient detector G changes significantly as shown in Figure 5, and it takes a long time to return to a steady state. There is a disadvantage that there is a risk of errors in the measurement results for samples that move quickly.

(目的) 本発明はこのような問題に鑑みてなされたものであって
、その目的とするところはベースラインの変動中を可及
的に小さくして、ベースラインを速やか安定化させるこ
とができる細管式電気泳動分析方法を提案することにあ
る。
(Purpose) The present invention was made in view of these problems, and its purpose is to minimize fluctuations in the baseline so that the baseline can be quickly stabilized. The purpose of this paper is to propose a capillary electrophoresis analysis method.

また本発明の他の目的は、上記方法に使用する装Mを提
供することにある。
Another object of the present invention is to provide a device M for use in the above method.

(発明の概要) すなわち、本発明が特徴とするところは、分離電流から
分析電流に切換える段階で一旦分析電流を停止古せて、
キャピラリーチューブ内の電荷を放出古せ、その後再び
分析電流を供給するようにした点にある。
(Summary of the Invention) That is, the present invention is characterized in that at the stage of switching from the separation current to the analysis current, the analysis current is temporarily stopped and
The point is that the charge in the capillary tube is discharged, and then the analysis current is supplied again.

(実施例) そこで以下に本発明の詳細を図示した実施例に基づいて
説明する。
(Example) The details of the present invention will be described below based on illustrated examples.

第1図は本発明の一実施例を示したものであって、図中
符号]は泳動管路で、一端がターミナル電極槽2に連通
する大径のキャリラリ−チューブ3の他端と、一端が電
位勾配検出器4を介してリーディング電極槽5に連通す
る小径のキャピラリーチューブ6の他端ヲ接続し、ター
ミナル電極槽2の近傍に試料注入機構7を、また2つの
チューブ3.6の接続点近傍に分岐管87i!介して補
助電極9が配設されている。10は、キヤとラリ−チュ
ーブ3内の試料注入機構7近傍に配設された電極で、ス
イッチ11を介して選択的に接地可能とされている。
FIG. 1 shows an embodiment of the present invention, in which reference numerals in the figure denote a migration tube, one end of which is connected to a large diameter carrier tube 3 that communicates with a terminal electrode tank 2, and the other end of which is connected to a terminal electrode tank 2. is connected to the other end of a small-diameter capillary tube 6 that communicates with the leading electrode tank 5 via the potential gradient detector 4, and a sample injection mechanism 7 is connected near the terminal electrode tank 2, and the two tubes 3.6 are connected. Branch pipe 87i near the point! An auxiliary electrode 9 is disposed therebetween. Reference numeral 10 denotes an electrode disposed near the sample injection mechanism 7 in the carrier and rally tube 3, and can be selectively grounded via a switch 11.

12は、泳動電流発生回路で、分離時にはターミナル電
極2aと補助電極9間に分離用の大電流、例えば400
uAの電流を、また分析時にはターミナル電極2aとリ
ーディング電極5aとの間に分析用の小電流、例えば2
0uA程度の電流を選択的に供給するように構成されて
いる。
Reference numeral 12 denotes a migration current generating circuit, which generates a large current for separation between the terminal electrode 2a and the auxiliary electrode 9 during separation, e.g.
A current of 2 uA is applied between the terminal electrode 2a and the leading electrode 5a during analysis.
It is configured to selectively supply a current of about 0 uA.

この実施例において、シリンジにより試料を注入機構7
から所定量注入してスイッチ11を開放した状態で、タ
ーミナル電極2aと、補助電極9間に分離用の大電流を
供給すると、試料は、キャピラリーチューブ3の管径に
反比例して極めて短いゾーン長でもって各成分に分離さ
れながら補助電極9に向けて泳動を開始する。このよう
にして、試料の先端が小径のキヤとラリ−チューブ6に
到達した段階で、補助電極9とターミナル電極2aへの
通電を停止し、ついでターミナル電極2aとリーディン
グ電極5aに分析用電流を供給する。この分析用電流が
流れた時点で、分析電流を一旦停止させ、ついでスイッ
チ11%ONにして電極10を接地する。これにより、
泳動管路1内のターミナル液、試料、及びリーディング
液は、分離時の高電界を受けて帯電していた電荷をアー
スに放出してアース電位になる。
In this embodiment, the sample is injected into the mechanism 7 by a syringe.
When a large current for separation is supplied between the terminal electrode 2a and the auxiliary electrode 9 with the switch 11 open after injecting a predetermined amount from As a result, the electrophoresis begins toward the auxiliary electrode 9 while being separated into each component. In this way, when the tip of the sample reaches the small-diameter carrier and rally tube 6, the supply of current to the auxiliary electrode 9 and the terminal electrode 2a is stopped, and then the analytical current is applied to the terminal electrode 2a and the leading electrode 5a. supply When this analysis current flows, the analysis current is temporarily stopped, and then the switch is turned on 11% to ground the electrode 10. This results in
The terminal liquid, sample, and leading liquid in the electrophoresis tube 1 are exposed to a high electric field during separation, and release their electrical charges to the ground, thereby becoming at ground potential.

このようにして、アース電位にさせた段階で、再びスイ
ッチ11をOFFにして、ターミナル電極2aとリーデ
ィング電極5a間に分析電流を供給すると、前記分層工
程により分離されていた各成分は、小径のキャピラリー
チュー6内で泳動を受けながら電位勾配検出器4に向か
って移動する。言うまでもなく、このキャピラリチュー
ブ6は、管径が極めて小さいため、分離用チューブによ
り分離された各成分を長いゾーン長をもって引続き泳動
して電位勾配検出器4に流入させ、各成分が高い精度で
定量的を検出される。
In this way, when the switch 11 is turned OFF and an analysis current is supplied between the terminal electrode 2a and the leading electrode 5a at the stage where the ground potential is set to the ground potential, each component separated by the layer separation step is separated into small diameters. The capillary tube 6 moves toward the potential gradient detector 4 while being subjected to electrophoresis. Needless to say, this capillary tube 6 has an extremely small diameter, so each component separated by the separation tube is continuously migrated with a long zone length and flows into the potential gradient detector 4, so that each component can be quantified with high precision. Target is detected.

[実施例] 内径0.7mm、長さ80mmのチューブと、内径0.
2mm、長さ160mmのフユーズドシリ力チューブを
直列接続して泳動管路を形成し、分離電流として300
uAを流して分離を行なわせた後、ターミナル電極とリ
ーディング電極間に分析電流として15uAを流し、こ
れの直後に電極10を接地し、その後15uAの分析電
流を流して分析を行なったところ、第2図の実線でに示
したように、分析電流を継続的に供給し始めてから4分
後にはベースラインが平担となり、目的成分に°よる電
位の変化を確実に検出することができた。
[Example] A tube with an inner diameter of 0.7 mm and a length of 80 mm, and a tube with an inner diameter of 0.7 mm and a length of 80 mm.
2 mm, 160 mm long fused cylinder tubes were connected in series to form an electrophoresis channel, and the separation current was 300 mm.
After passing uA to perform separation, 15uA was passed as an analysis current between the terminal electrode and the leading electrode, and immediately after this, the electrode 10 was grounded. As shown by the solid line in Figure 2, the baseline leveled off 4 minutes after the analysis current began to be continuously supplied, making it possible to reliably detect changes in potential due to the target component.

一方、比較のため、上記泳動管路を用いて分離電流を停
止させた時点で接地を行ない、ついで分析電流を供給し
たところ、第2図の点線で示したように、従来方法(第
5図)と同様に検出器のベースラインが大幅に変動する
とともに、目的成分の検出が始まった段階、つまり分析
電流を継続的に供給してから8分後においてもベースラ
インが変動していた。
On the other hand, for comparison, when the above-mentioned electrophoresis tube was grounded at the point when the separation current was stopped and then the analysis current was supplied, as shown by the dotted line in Fig. 2, the conventional method (Fig. 5) ), the baseline of the detector fluctuated significantly, and the baseline fluctuated even at the stage when detection of the target component began, that is, 8 minutes after the analysis current was continuously supplied.

これらのことから、分離用電流から分析電流に切換えた
直後に、泳動管内のターミナル液、試料、及びリーディ
ング液の残留電荷をアースに逃がすことがベースライン
の安定化に極めて有効であることが判明した。
From these results, it has been found that immediately after switching from the separation current to the analysis current, it is extremely effective to release the residual charge in the terminal liquid, sample, and leading liquid in the electrophoresis tube to the ground to stabilize the baseline. did.

第3図は、本発明の第2実施例を示すもので、シリンジ
の針が挿通可能な通孔13aを穿設した接地電極板13
を試料注入機構7の前方側に配設し、分離電流から分析
電流に切換えた時点で、一旦分析電流を停止させて、シ
リンジの注射針や金属線を電極板13に接触させながら
チューブ内のターミナル液まで挿通して、泳動管路内液
体の電荷を電極板13によりアースに逃がすようにした
ものである。
FIG. 3 shows a second embodiment of the present invention, in which a ground electrode plate 13 is provided with a through hole 13a through which a syringe needle can be inserted.
is placed on the front side of the sample injection mechanism 7, and when the separation current is switched to the analysis current, the analysis current is temporarily stopped and the injection needle or metal wire of the syringe is brought into contact with the electrode plate 13 while the inside of the tube is The terminal liquid is inserted through the electrophoresis tube so that the electric charge of the liquid in the migration pipe is released to the ground by the electrode plate 13.

この実施例によれば、試料注入機構の前方に電極を配設
するという簡単な構成で、電流切換え時におけるベース
ラインの安定化を図ることができる。
According to this embodiment, the baseline can be stabilized at the time of current switching with a simple configuration in which the electrode is disposed in front of the sample injection mechanism.

なお、この実施例においては、接地電極を別設としてい
るが、試料注入機構に一体的に組込むことや、試料注入
機構そのものを導電材料により構成して接地電極を兼ね
古せても同様の作用を奏することは明らかである。
In this example, the ground electrode is provided separately, but the same effect can be achieved even if it is integrated into the sample injection mechanism, or the sample injection mechanism itself is made of a conductive material and can also serve as the ground electrode. It is clear that it will play.

(効果) 以上、説明したように本発明によれば、分離電流から分
析電流に切換えた段階で一旦分析電流を停止してキャピ
ラリーチューブ内の電荷を放出させ、その後再び分析電
流を供給するようにしたしたので、分離時に発生した大
量の電荷を速やかに放出させて電位勾配検出器のベース
ラインを安定化させることができ、泳動速度の高い試料
に対しても高い精度で分析を可能ならしめる。
(Effects) As explained above, according to the present invention, when the separation current is switched to the analysis current, the analysis current is temporarily stopped to release the charge in the capillary tube, and then the analysis current is supplied again. Therefore, the large amount of charge generated during separation can be quickly released to stabilize the baseline of the potential gradient detector, making it possible to analyze with high accuracy even samples with high electrophoresis speeds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す装置の構成図、第2図
は同上製雪による分析結果を示す図、第3図は本発明の
他の実施例を示す説明図、第4図は従来の細管式電気泳
動装置の一例を示す構成図、第5図は従来装置による分
析結果の一例を示す図である。 ]・・・・泳動管路   2・・・・ターミナル電極槽
2a・・・・クーミナル電極 3.6・・・・キャピラリーチューブ 4・・・・電位勾配検出器 5・・・・リーディング電極槽 5a・・・・リーディング電極 7・・・・試料注入機構 9・・・・補助電極
Fig. 1 is a configuration diagram of an apparatus showing one embodiment of the present invention, Fig. 2 is a diagram showing the analysis results of the same snowmaking process, Fig. 3 is an explanatory diagram showing another embodiment of the present invention, and Fig. 4 5 is a block diagram showing an example of a conventional capillary electrophoresis device, and FIG. 5 is a diagram showing an example of analysis results by the conventional device. ]...Migration tube 2...Terminal electrode tank 2a...Cuminal electrode 3.6...Capillary tube 4...Potential gradient detector 5...Leading electrode tank 5a ... Leading electrode 7 ... Sample injection mechanism 9 ... Auxiliary electrode

Claims (2)

【特許請求の範囲】[Claims] (1)ターミナル電極と補助電極間に分離電流を流して
成分に分離させる工程と、分離後にターミナル電極とリ
ーディング電極間に分析電流を短時間流す工程と、分析
電流の停止後、泳動管内の液体を接地する工程と、接地
解除後ターミナル電極とリーディング電極間に分析電流
を流す工程からなる電気泳動分析方法。
(1) A step in which a separation current is passed between the terminal electrode and the auxiliary electrode to separate the components; a step in which an analysis current is passed between the terminal electrode and the leading electrode for a short period of time after separation; An electrophoretic analysis method consisting of the step of grounding the terminal electrode and the step of flowing an analytical current between the terminal electrode and the leading electrode after the grounding is removed.
(2)泳動管路にターミナル電極、補助電極、リーディ
ング電極及び電位勾配検出手段を配設するともに、前記
泳動管路内の液体を選択的に接地可能とする電極部材を
配設してなる細管式電気泳動分析装置。
(2) A thin tube formed by disposing a terminal electrode, an auxiliary electrode, a leading electrode, and a potential gradient detection means in the migration conduit, and also disposing an electrode member that enables the liquid in the migration conduit to be selectively grounded. electrophoresis analyzer.
JP62068388A 1987-03-23 1987-03-23 Method and apparatus for electrophoretic analysis Pending JPS63234145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62068388A JPS63234145A (en) 1987-03-23 1987-03-23 Method and apparatus for electrophoretic analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62068388A JPS63234145A (en) 1987-03-23 1987-03-23 Method and apparatus for electrophoretic analysis

Publications (1)

Publication Number Publication Date
JPS63234145A true JPS63234145A (en) 1988-09-29

Family

ID=13372283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62068388A Pending JPS63234145A (en) 1987-03-23 1987-03-23 Method and apparatus for electrophoretic analysis

Country Status (1)

Country Link
JP (1) JPS63234145A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9649631B2 (en) 2009-06-04 2017-05-16 Leidos Innovations Technology, Inc. Multiple-sample microfluidic chip for DNA analysis
US9988676B2 (en) 2012-02-22 2018-06-05 Leidos Innovations Technology, Inc. Microfluidic cartridge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9649631B2 (en) 2009-06-04 2017-05-16 Leidos Innovations Technology, Inc. Multiple-sample microfluidic chip for DNA analysis
US9656261B2 (en) 2009-06-04 2017-05-23 Leidos Innovations Technology, Inc. DNA analyzer
US9988676B2 (en) 2012-02-22 2018-06-05 Leidos Innovations Technology, Inc. Microfluidic cartridge

Similar Documents

Publication Publication Date Title
Von Brocke et al. Recent advances in capillary electrophoresis/electrospray‐mass spectrometry
US5141621A (en) Capillary electrophoresis injection device and method
EP0355546A2 (en) A method and device for the control of gaschromatographic functions
JPH02114171A (en) Capillary device and manufacture thereof
KR910004157A (en) Electrode Regeneration Method of Biological Sensing Device and Its Apparatus
NL8602393A (en) SOLUBILIZATION CHROMATOGRAPH.
WO1988007888A1 (en) Combined electrophoresis-electrospray interface and method
Wallingford et al. Characterization of a microinjector for capillary zone electrophoresis
JPS57108660A (en) Apparatus for evaporatively injecting sample into gaschromatograph column
WO2022052855A1 (en) Combined device of liquid mass spectrometry sampling and electrospray
CN103972019A (en) Non-contact direct-current induction electrospray ionization device and method
US5762877A (en) Chemical sample concentrating device
DE3669402D1 (en) METHOD AND DEVICE FOR AUTOMATICALLY CONVERSING SMALL QUANTITIES OF LIQUID SAMPLES IN GAS CHROMATOGRAPHY.
JPH07505721A (en) Method and apparatus for separating and mobilizing solutes in solute mixtures
CN109444247B (en) Transient capillary isotachophoresis-electrospray-mass spectrometry combined device and method
Šlampová et al. Injections from sub-μL sample volumes in commercial capillary electrophoresis
JPS63234145A (en) Method and apparatus for electrophoretic analysis
US3118300A (en) Liquid sampling apparatus for gas chromatography
Weng et al. A sheath flow gating interface for the on-line coupling of solid-phase extraction with capillary electrophoresis
Tsuda et al. Electrochromatography with continuous sample introduction
JPH0298662A (en) Ion extracting and analyzing apparatus
Bowerbank et al. Comprehensive isotachophoresis–capillary zone electrophoresis using directly inserted columns having different diameters with a periodic counterflow and dual ultraviolet detectors
JPH04127049A (en) Capillary electrophoretic apparatus
JPS58134Y2 (en) Isokinetic electrophoresis analyzer
JPH03118463A (en) Electrophoresis apparatus