JPS58130Y2 - Isokinetic electrophoresis analyzer - Google Patents

Isokinetic electrophoresis analyzer

Info

Publication number
JPS58130Y2
JPS58130Y2 JP1109578U JP1109578U JPS58130Y2 JP S58130 Y2 JPS58130 Y2 JP S58130Y2 JP 1109578 U JP1109578 U JP 1109578U JP 1109578 U JP1109578 U JP 1109578U JP S58130 Y2 JPS58130 Y2 JP S58130Y2
Authority
JP
Japan
Prior art keywords
detector
electrolyte
target substance
electrophoresis
electrolyte tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1109578U
Other languages
Japanese (ja)
Other versions
JPS54114993U (en
Inventor
純一 秋山
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP1109578U priority Critical patent/JPS58130Y2/en
Publication of JPS54114993U publication Critical patent/JPS54114993U/ja
Application granted granted Critical
Publication of JPS58130Y2 publication Critical patent/JPS58130Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は等速電気泳動分析装置に関する。[Detailed explanation of the idea] This invention relates to an isotachophoresis analyzer.

更に詳しくは、この考案はターミナル電解液槽と、試料
注入口及び検出器を設置した泳動管路と、リーディング
電解液槽とを順に備えた等速電気泳動分析装置において
、検出器からリーディング電解液槽側へ距離A離れた泳
動管路に分取手段を設けると共に検出器とリーディング
電解液槽との間の泳動管路又はリーディング電解液槽に
電解液押し込み手段を設け、且つ、検出器による目的物
質の最初の検出に基づき前記電解液押し込み手段を作動
させて目的物質を検出器より距離Bだけ試料注入口側に
押しもどして電気泳動を継続し、最初の検出信号を受け
てから時間T後の再検出信号に基づいて、その再検出信
号を受けてから時間(A/B)T後に前記分取手段させ
るよう制御する自動制御手段を設けてなる等速電気泳動
分析装置に関する。
More specifically, this invention is an isotachophoresis analyzer equipped with a terminal electrolyte tank, an electrophoresis tube in which a sample injection port and a detector are installed, and a leading electrolyte tank in order. A separation means is provided in the migration pipe a distance A away from the tank side, and an electrolyte pushing means is provided in the migration pipe or the leading electrolyte tank between the detector and the leading electrolyte tank, and the purpose of the detector is Based on the first detection of the substance, the electrolyte pushing means is activated to push the target substance back toward the sample injection port by a distance B from the detector to continue electrophoresis, and after a time T after receiving the first detection signal. The present invention relates to an isotachophoresis analyzer comprising automatic control means for controlling the fractionation means to operate based on a re-detection signal after a time (A/B)T after receiving the re-detection signal.

等速電気泳動分析法は、一定向径の泳動管路、例えばキ
ャピラリチューブ(細管)内にターミナル電解液とリー
ディング電解液とを充填し、その境界面に荷電状態にな
る物質(アミノ酸類、ペプチド類、生体物質など)の試
料を入れ、定電流による等速電気泳動を行い被検出物を
分離し、定性及び/又は定量するものである。
In isotachophoresis analysis, a terminal electrolyte and a leading electrolyte are filled in a migration tube with a fixed diameter, such as a capillary tube, and charged substances (amino acids, peptides, etc.) are filled at the interface between them. In this method, a sample of biological materials, etc.) is placed, and isokinetic electrophoresis is performed using a constant current to separate the substance to be detected for qualitative and/or quantitative analysis.

しかしながら、定性は標準品と比較して決定するが、標
準品がない場合には定性ができないので、通常は被検出
物が分離されたゾーンを分取し、改めて別途に定性及び
/又は定量を行っていた。
However, although the quality is determined by comparing it with a standard, it cannot be determined if the standard is not available, so the zone where the analyte has been separated is usually sampled and qualitative and/or quantitative analysis is performed separately. I was going.

このような分取を具体的に行う装置としては、例えば、
特開昭50−81397号のごとく、試料を分離するた
めに分岐管を設け、リーディング電解液を強制的に分岐
管に流入させて分離された試料を分取する装置が知られ
ている。
Examples of devices that specifically carry out such fractionation include:
As disclosed in Japanese Patent Laid-Open No. 50-81397, an apparatus is known in which a branch pipe is provided to separate a sample, and a leading electrolyte is forced to flow into the branch pipe to collect the separated sample.

ところが、一般に等速電気泳動分析における目的物質の
泳動速度はきわめて低速であり、たとえ検出器の位置と
分取位置との距離を前記特開昭50−81397号のご
とく近接させたとしても、目的物質が検出器で検知され
てから分取位置に至るまでに相当の時間を要し、従って
目的物質を正確に分取できない場合があった。
However, in general, the migration speed of the target substance in isotachophoresis analysis is extremely slow, and even if the distance between the detector position and the preparative collection position is made close as in the above-mentioned Japanese Patent Application Laid-Open No. 50-81397, It takes a considerable amount of time from when a substance is detected by a detector until it reaches a collection position, and therefore, there are cases where the target substance cannot be collected accurately.

この考案はこれらの問題点を解決するためになされたも
のであり、その特徴の一つは、目的物質の検出と同時に
その目的物質を一定距離押しもどして再び泳動させ、再
検出するところにあり、もう−つの特徴は、その再検出
によって求められた泳動速度に基づいて目的物質が分取
位置に到達する時間、つまり分取する時間を求めるとこ
ろにある。
This invention was devised to solve these problems, and one of its features is that at the same time as the target substance is detected, the target substance is pushed back a certain distance, made to migrate again, and redetected. Another feature is that the time for the target substance to reach the collection position, that is, the time for collection, is determined based on the migration speed determined by redetection.

この考案の具体的な構成上の特徴及びその利点は以下の
説明によって明らかになろう。
The specific structural features of this invention and its advantages will become clear from the following description.

以下図に示す実施例に基づいてこの考案を詳述する。This invention will be explained in detail below based on the embodiments shown in the figures.

なお、これによってこの考案が限定されるものではない
Note that this invention is not limited by this.

第1図において、細管式等速電気泳動分析装置1は、タ
ーミナル電解液槽2と、試料注入口3、電位勾配検出器
4、電解液押し込み、分取手段5を備えた一定内径(例
えだ約Q、5mmφ)の泳動細管、つまりキャピラリチ
ューブ6と、リーディング電解液槽7と、自動制御装置
8とから主として構成されている。
In FIG. 1, a capillary type isotachophoresis analyzer 1 has a constant inner diameter (for example, It mainly consists of a capillary tube 6, a leading electrolyte tank 7, and an automatic control device 8.

前記泳動細管6の電解液押し込み・分取手段5は、押し
込み・分取用シリンジポンプ9と、泳動細管6のセプタ
ム10と、その泳動細管内よりこのセプタムを通り抜は
前記シリンジポンプ9に連通ずる分岐管11とから構成
され、この分岐管11の泳動細管6内開口12は傾斜カ
ットされてその開口方向を検出器4側にしている。
The electrolyte pushing/separating means 5 of the electrophoresis tube 6 is connected to a syringe pump 9 for pushing/separating, a septum 10 of the electrophoresis tube 6, and a device for passing through the septum from inside the electrophoresis tube to the syringe pump 9. The opening 12 in the electrophoresis tube 6 of the branch tube 11 is cut at an angle so that the opening direction is on the detector 4 side.

前記押し込み・分取用シリンジポンプ9はリーディング
電解液を一定量だけ泳動管6の検出器4の方向へ強制的
に押し込むことができる。
The pushing/separating syringe pump 9 can forcibly push a certain amount of the leading electrolyte toward the detector 4 of the migration tube 6.

前記自動制御装置8は、前記電位勾配検出器4による目
的物質の検出信号の増巾器、継電器、前述のシリンジポ
ンプ9などの電源回路、開閉器、その他の電気回路を備
えている。
The automatic control device 8 includes an amplifier for the detection signal of the target substance by the potential gradient detector 4, a relay, a power supply circuit for the syringe pump 9 described above, a switch, and other electric circuits.

次に以上のような構成からなる細管式等速電気泳動分析
装置1の作動を説明する。
Next, the operation of the capillary isotachophoresis analyzer 1 having the above configuration will be explained.

まず、泳動細管6の試料注入口3に試料より易動度の大
きい陰イオンを含む電解液(リーディング電解液)と易
動度の小さい陰イオンを含む電解液(ターミナル電解液
)の境界面を作り、その境界面に試料を注入し定電流高
圧電源(図示省略)より一定電流を供給して電気泳動(
等速)を行う。
First, the interface between an electrolyte containing anions with higher mobility than the sample (leading electrolyte) and an electrolyte containing anions with lower mobility (terminal electrolyte) is inserted into the sample injection port 3 of the electrophoresis tube 6. A sample is injected into the interface, and a constant current is supplied from a constant current high voltage power supply (not shown) to perform electrophoresis (
constant velocity).

かくして試料イオン(陰イオン)は易動度の大きさの順
に泳動細管部で単−成分イオンのゾーン(バンド)に分
離され、互いに明確な境界面を保持しながら各ゾーンが
イオン量で決まる一定の幅をもって等速度で矢印の方向
に移動を始める。
In this way, the sample ions (anions) are separated into zones (bands) of single component ions in the electrophoresis tube in order of their mobility, and each zone maintains a clear boundary with each other, while each zone has a constant density determined by the amount of ions. Start moving at a constant speed in the direction of the arrow with a width of .

この場合基ゾーンには易動度に応じてそれぞれ違った固
有の電位勾配が形成されるのでこの電位勾配を検出器4
によって検出し分離された単一成分イオンを知ることが
できる。
In this case, different unique potential gradients are formed in the base zone depending on the mobility, and this potential gradient is detected by the detector 4.
Single component ions detected and separated can be known.

すなわち、その電位勾配値から目的物質イオンを検知す
ることができる。
That is, target substance ions can be detected from the potential gradient value.

このように目的物質イオン、つまりこのイオンの境界面
を検出器4が検知すると、その瞬間にその検出信号が自
動制御装置9に伝えられ、その信号に基づいて電解液押
し込み・分取手段5のシリンジポンプ9が押し込み作動
し、一定量のリーディング電解液を開口12を通じて検
出器4の方向へ強制的に押し込み、それによって目的物
質イオンの境界面を検出器4より距離Bの位置まで押し
もどし電気泳動(等速を続ける。
When the detector 4 detects the target substance ion, that is, the boundary surface of this ion, the detection signal is transmitted to the automatic controller 9 at that moment, and the electrolyte pushing/separating means 5 is activated based on the signal. The syringe pump 9 is actuated to force a certain amount of the leading electrolyte through the opening 12 toward the detector 4, thereby pushing the interface of the target substance ions back to a distance B from the detector 4. Electrophoresis (continue at constant speed).

かくして検出器4は最初の検出信号を受けてから時間T
後に目的物質イオン(の境界面)を再検出し、その再検
出信号が自動制御装置8に伝達されると、再検出信号を
受けてから時間(A/B)T後に前記電解液押し込み・
分取手段5のシリンジポンプ9を分取作動させ、目的物
質を分取する。
Thus, the detector 4 receives the first detection signal at a time T
Later, when the target substance ion (interface) is re-detected and the re-detection signal is transmitted to the automatic control device 8, the electrolyte is pushed in and out after a time (A/B) T after receiving the re-detection signal.
The syringe pump 9 of the fractionation means 5 is activated to fractionate the target substance.

すなわち、目的物質イオンは、距離Bを時間Tにて移動
したわけであり、再検出後も同じ速度で移動すると見な
せるので、分取位置までの距離Aを時間(A/B)Tに
て移動する。
In other words, the target substance ions have traveled a distance B in a time T, and can be considered to continue moving at the same speed even after re-detection, so they must be moved a distance A to the separation position in a time (A/B)T. do.

従ってその時間に分取操作を行うことによって正確に目
的物質を分取できるわけである。
Therefore, by performing the fractionation operation at that time, the target substance can be accurately fractionated.

また目的物質がシリンジポンプ9に直接分取されるので
、微量の場合は、分取回数を多くすることによって多量
に集めることができ、それによって分析精度を上げるこ
とができる。
Further, since the target substance is directly collected into the syringe pump 9, even if the amount is small, a large amount can be collected by increasing the number of times the target substance is collected, thereby increasing the accuracy of analysis.

以上の実施例とは異なり、電解液押し込み・分取手段を
別個に設けることもできる。
Different from the above embodiments, an electrolyte pushing/separating means may be provided separately.

つまり電解液押し込み手段を分取位置と異なる位置(泳
動管路又はリーディング電解液槽)に設けることができ
る。
That is, the electrolyte pushing means can be provided at a position different from the separation position (in the migration conduit or the leading electrolyte tank).

また分取手段は、泳動細管路を分断し、その分断対向端
面にそれぞれフランジを形成し、これらのフランジ間に
摺動自在に分取板(回転又は往復移動)を介設し、その
分取板に泳動管路と同径の少なくとも1以上の連通孔を
泳動管路と平行又は同軸に穿設したものでもよい。
In addition, the preparative separation means divides the electrophoresis narrow channel, and forms flanges on the opposite end faces of the separation, and a preparative plate (rotating or reciprocating) is slidably interposed between these flanges. The plate may be provided with at least one communication hole having the same diameter as the migration pipe and bored in parallel or coaxially with the migration pipe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案に係る等速電気泳動分析装置の一実施
例を示す機能説明図である。 1・・・・・・細管式等速電気泳動分析装置、2・・・
・・・ターミナル電解液槽、3・・・・・・試料注入口
、4・・・・・・電位勾配検出器、5・・・・・・電解
液押し込み・分取手段、6・・・・・・泳動細管、7・
・・・・・リーディング電解液槽、8・・・・・山動制
御装置。
FIG. 1 is a functional explanatory diagram showing one embodiment of the isotachophoresis analyzer according to this invention. 1... Capillary type isotachophoresis analyzer, 2...
... Terminal electrolyte tank, 3 ... Sample injection port, 4 ... Potential gradient detector, 5 ... Electrolyte pushing/separating means, 6 ... ...Migration tubule, 7.
...Leading electrolyte tank, 8...Mountain motion control device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ターミナル電解液槽と、試料注入口及び検出器を設置し
た泳動管路と、リーディング電解液槽とを順に備えた等
速電気泳動分析装置において、検出器からリーディング
電解液槽側へ距離A離れた泳動管路に分取手段を設ける
と共に検出器とリーディング電解液槽との間の泳動管路
又はリーディング電解液槽に電解液押し込み手段を設け
、且つ、検出器による目的物質の最初の検出に基づき前
記電解液押し込み手段を作動させて目的物質を検出器よ
り距離Bだけ試料注入口側に押しもどして電気泳動を継
続し、最初の検出信号を受けてから時間T後の再検出信
号に基づいて、その再検出信号を受けてから時間(A/
B)T後に前記分取手段を作動させるよう制御する自動
制御手段を設けてなる等速電気泳動分析装置。
In an isokinetic electrophoresis analyzer equipped in this order with a terminal electrolyte tank, a migration conduit in which a sample injection port and a detector are installed, and a leading electrolyte tank, a distance A is provided from the detector to the leading electrolyte tank. A separation means is provided in the electrophoresis channel, and an electrolyte pushing means is provided in the migration channel or the leading electrolyte tank between the detector and the leading electrolyte tank, and based on the first detection of the target substance by the detector, The electrolyte pushing means is operated to push the target substance back from the detector to the sample injection port side by a distance B to continue electrophoresis, and based on the re-detection signal after a time T after receiving the first detection signal. , the time (A/
B) An isotachophoresis analyzer comprising an automatic control means for controlling the separation means to operate after T.
JP1109578U 1978-01-31 1978-01-31 Isokinetic electrophoresis analyzer Expired JPS58130Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1109578U JPS58130Y2 (en) 1978-01-31 1978-01-31 Isokinetic electrophoresis analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1109578U JPS58130Y2 (en) 1978-01-31 1978-01-31 Isokinetic electrophoresis analyzer

Publications (2)

Publication Number Publication Date
JPS54114993U JPS54114993U (en) 1979-08-13
JPS58130Y2 true JPS58130Y2 (en) 1983-01-05

Family

ID=28824889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1109578U Expired JPS58130Y2 (en) 1978-01-31 1978-01-31 Isokinetic electrophoresis analyzer

Country Status (1)

Country Link
JP (1) JPS58130Y2 (en)

Also Published As

Publication number Publication date
JPS54114993U (en) 1979-08-13

Similar Documents

Publication Publication Date Title
US5009760A (en) System for measuring electrokinetic properties and for characterizing electrokinetic separations by monitoring current in electrophoresis
Foret et al. On‐line isotachophoretic sample preconcentration for enhancement of zone detectability in capillary zone electrophoresis
US5208458A (en) Interface device to couple gel electrophoresis with mass spectrometry using sample disruption
US5245185A (en) Interface device and process to couple planar electrophoresis with spectroscopic methods of detection
JPH09510792A (en) Capillary electrophoresis of glycosylated proteins
GB1194375A (en) A method of introducing Samples into Chromatographic separating Systems and Apparatus for Liquid Chromatography
DE60025119D1 (en) Method for gas removal before sample detection
EP0617048A1 (en) Method of capillary isoelectric focusing of proteins and peptides with fraction collection for post-run analysis
JPS58130Y2 (en) Isokinetic electrophoresis analyzer
EP0183950A1 (en) Method of processing liquid within a tube
JPS58129Y2 (en) Isokinetic electrophoresis analyzer
US10514358B2 (en) Method and device for two-dimensional separation of ionic species
Kriikku et al. Isotachophoresis of β‐blockers in a capillary and on a poly (methyl methacrylate) chip
Kuldvee et al. Nonconventional samplers in capillary electrophoresis
JPS6029729Y2 (en) Isokinetic electrophoresis analyzer
GB1049364A (en) An apparatus for and a method of automatically analyzing a plurality of samples
JPH03118463A (en) Electrophoresis apparatus
JPS58134Y2 (en) Isokinetic electrophoresis analyzer
JPS5841478Y2 (en) electrophoresis analyzer
EP0479137A2 (en) Capillary electrophoresis sample injection technique
JPH06174693A (en) Dividing and fractionating device
US20070039823A1 (en) Fluid injection system
EP0297149A1 (en) Method and apparatus for separating mixtures of substances
WO1996013724A1 (en) A sample holder
JP2943271B2 (en) Capillary electrophoresis device