JPS5874018A - Magnetization distribution control for cylindrical rare-earth cobalt magnet - Google Patents

Magnetization distribution control for cylindrical rare-earth cobalt magnet

Info

Publication number
JPS5874018A
JPS5874018A JP14528082A JP14528082A JPS5874018A JP S5874018 A JPS5874018 A JP S5874018A JP 14528082 A JP14528082 A JP 14528082A JP 14528082 A JP14528082 A JP 14528082A JP S5874018 A JPS5874018 A JP S5874018A
Authority
JP
Japan
Prior art keywords
magnetic
magnetization distribution
magnet
magnetic field
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14528082A
Other languages
Japanese (ja)
Inventor
Itaru Okonogi
河西一和
Ichikazu Kasai
小此木格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP14528082A priority Critical patent/JPS5874018A/en
Publication of JPS5874018A publication Critical patent/JPS5874018A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To provide any required magnetization distribution pattern easily, by a method wherein a magnetic material that has satulating magnetic flux density required for the magnetization distribution is used for a core. CONSTITUTION:A lower punch 4 is fixed into a mortar 1, and material powder 8 is put into a through-hole 2 in which an inner rod 5 is projected. Then, an upper punch 3 is inserted in the mortar 1 up to 2-4mm., turning on electricity for a coil 6 to form a magnetic field. After this, the upper punch 3 is moved downward, while the lower punch 4 is moved upward to press the magnetic powder 8, which a cylinder magnet is formed. At this time, by changing the magnetic characteristics of the core 5, the magnetization distribution of the cylinder magnet in the diameter direction can be controlld. The magnetic characteristics can be changed according to the required magnetization distribution by selecting a material among the ones having various satulating magnetic flux density. Thus, any required pattern of the magnetization distribution can be provided.

Description

【発明の詳細な説明】 本発明は、円筒状で直径方向に異方性を有する希土類、
コバルト永久磁石の磁化分布制御方法に関する。希土類
コ/(ルト磁石は、従来のフェライト、アルニコ磁石と
比lくて、すぐれた磁気特性を有している。現在では粉
末焼結型及び粉末結合型(ポンド磁石)の2つの製造方
法でつくられ、材質の上ででもROO@  化合物(但
しRは希土類元素の一種以上の組み合わせ)を主成分と
する磁石のみならずOe(0oOuFe )@ 、 S
m2 (Co 0uPeZr )By 。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a rare earth material having a cylindrical shape and anisotropy in the diametrical direction,
This invention relates to a method for controlling magnetization distribution of cobalt permanent magnets. Rare earth magnets have superior magnetic properties compared to conventional ferrite and alnico magnets.Currently, there are two manufacturing methods: powder sintering type and powder bonding type (pound magnet). Not only magnets whose main component is ROO@ compound (where R is a combination of one or more rare earth elements) but also Oe (0oOuFe)@, S
m2 (Co0uPeZr)By.

(8m(38)H(n Onu lFeZr )tts
 8ml (0o()ulPeHf )ly糸系統nu
添加型析出硬化磁石島広く実用されている。なかでも粉
末焼結型希土類コバルト磁石は、高性能化の411頭で
祉あるが、その製造工程から生じる不具合点も多い。特
に台1f1tを粉末にして、磁場中成形し、1100〜
1200℃で焼結、組成にLつては90t)℃〜400
℃の時効処理を加えるため、熱歪みと、配向性による結
晶の収縮率の差によって1円筒状磁石では、直径方向に
異方性を付与すると1割れを生じる欠点がある。また近
時用途に応じて種々の形状で適当な配向性(磁化方向)
をもつものが要求されるが、その配向性の制御は形状に
工っては容易ではない。特に径方向の円筒状磁石では磁
化方向のみならず磁化分布の制御が一錆されている。不
発明は上記欠点を除去した、磁化方向が砥ぼ径方向の円
筒状希土類コバルト磁石をを磁場中成形する場合におい
て所望の磁化分布を簡単に得ることを可能にした希土類
コバルト磁石の磁化分布制御方法を提供するものである
(8m(38)H(n Onu lFeZr)tts
8ml (0o()ulPeHf)ly thread system nu
Additive precipitation hardening magnets are widely used in practice. Among them, powdered sintered rare earth cobalt magnets have high performance and are very useful, but they also have many defects that arise from the manufacturing process. In particular, the table 1f1t is made into powder, molded in a magnetic field, and 1100 ~
Sintered at 1200℃, composition L = 90t)℃~400℃
C. aging treatment is applied, so a single cylindrical magnet has the disadvantage that one crack occurs when anisotropy is imparted in the diametrical direction due to thermal strain and the difference in shrinkage rate of crystals due to orientation. In addition, suitable orientation (magnetization direction) is now available in various shapes depending on the application.
However, it is not easy to control the orientation by modifying the shape. In particular, in radial cylindrical magnets, not only the magnetization direction but also the magnetization distribution is controlled. The present invention is to control the magnetization distribution of a rare earth cobalt magnet, which eliminates the above drawbacks and makes it possible to easily obtain a desired magnetization distribution when forming a cylindrical rare earth cobalt magnet whose magnetization direction is in the radial direction of the grindstone in a magnetic field. The present invention provides a method.

本発明において、希土類コバルト磁石は、樹脂結合型、
あるいはメタル結合型磁石でつくられたものである。す
なわち、希土類コバルト合金インゴットをROO5系は
そのまま粉砕しs R1COH系化合物は溶体化、時効
処理を行った後に粗粉砕し続いて粒度2μ〜60μに微
粉砕してから、樹脂を加えて混線し磁場中圧縮成形し径
方向の磁化分布を自由に制御しLうとするものである。
In the present invention, the rare earth cobalt magnet is a resin bonded type magnet,
Or they are made with metal bonded magnets. In other words, rare earth cobalt alloy ingots are crushed as they are for ROO5 series, and R1COH compounds are subjected to solution treatment and aging treatment, then coarsely crushed, and then finely crushed to a particle size of 2μ to 60μ, and then resin is added and cross-wired to generate a magnetic field. The aim is to freely control the magnetization distribution in the radial direction by medium compression molding.

従って、径方向(a界印加の方向)と直角な方向から加
圧成形加熱固化することに工ってつくられる。
Therefore, it is produced by pressing, heating and solidifying from a direction perpendicular to the radial direction (direction of application of the a-field).

本発明において、磁場中成形は第1図のLすな金型、i
h鴨発生装置管用いて行う。
In the present invention, molding in a magnetic field is performed using the L mold shown in FIG.
This is done using a duck generator tube.

IN1図は本発明の実施−に用いた磁−成形装置1′□
:111 及び金型の縦断面図を示す。臼1の中心部には円柱状の
貫通大2に上方xD嵌合するように上バンチ5が上下移
動自在に配設され、劫配貰通穴2に下方より嵌合する工
うに下バンチ4の中心に、中心軸棒5を設けである。5
は上下移動自由となっている。臼1の側方には、横力間
の平行磁界を発生するためのヨー77及びコイル6が配
置される。
Figure IN1 shows the magnetic forming apparatus 1'□ used for carrying out the present invention.
:111 and a vertical cross-sectional view of the mold. An upper bunch 5 is disposed at the center of the die 1 so as to be vertically movable so as to fit upwardly into the cylindrical through hole 2, and a lower bunch 4 is disposed at the center of the die 1 to fit into the cylindrical through hole 2 from below. A central shaft rod 5 is provided at the center of the shaft. 5
can be moved up and down freely. A yaw 77 and a coil 6 are arranged on the side of the mill 1 to generate a parallel magnetic field between lateral forces.

成形型は1,5,4.5は非磁性材で、Sue、 Bs
Molding molds 1, 5, and 4.5 are made of non-magnetic material, Sue, Bs
.

ステライト等でつくられる。コアー5の磁気的特性は、
必要とする磁化分布に応じて種々の飽和磁束密度(Be
)’eもり材料が4択出来る。例えばB8=O,(非磁
性材)B8=≦4(弱磁性材)又#iBs ≧7KG(
強磁性材)が選択される。
It is made from stellite etc. The magnetic properties of core 5 are
Various saturation magnetic flux densities (Be
)'e You can choose from four materials. For example, B8=O, (non-magnetic material) B8=≦4 (weakly magnetic material) or #iBs≧7KG (
ferromagnetic material) is selected.

第1図の場合臼1内に下バンチ4を嵌入させかつ中棒5
を突出させた状態で材料粉末(、ここでは希土類コバル
ト粉末と樹脂の混練したもの)8を貫通大2に入れ、上
パンチ5を、2の白に2〜4%嵌合させ、τから6のコ
イルに直流通電し、7のヨークを介して磁場を加えてか
ら5の上パンチを下方に4の乍Iパンチを上方に移動さ
せながら811 の磁性粉末を、加□圧成形し、第2図に示した斜視図の
円筒状磁石を得る。本発明者はコアー5の磁気的特性を
変化させることV、工り径方向円筒状磁石の着磁役の磁
化分布を制御出来ることを見出した。以下、本発明に係
る樹脂結合型希土類コバルト円筒状磁石の磁化分布制御
方法を実施例で詳述する。
In the case of Fig. 1, insert the lower bunch 4 into the mortar 1 and insert the middle rod 5.
Insert the material powder (in this case, a mixture of rare earth cobalt powder and resin) into the through hole 2 with the upper punch 5 protruding, and fit the upper punch 5 into the white part of 2 by 2 to 4%. DC current is applied to the coil, a magnetic field is applied through the yoke 7, and the magnetic powder 811 is pressed and molded while moving the upper punch 5 downward and the I punch 4 upward. A cylindrical magnet of the perspective view shown in the figure is obtained. The present inventor has discovered that by changing the magnetic properties of the core 5, the magnetization distribution of the magnetized radial cylindrical magnet can be controlled. Hereinafter, the method for controlling the magnetization distribution of a resin-bonded rare earth cobalt cylindrical magnet according to the present invention will be described in detail using Examples.

実施例1 8m(Co、 746 t3uα08 Ire(L22
 Zr1026)a5組成の合、金f:高周波溶解炉を
用いて溶製し、金型に鋳造した。合金イン′ゴツトはは
ぼ柱状晶でめった。次に、該合金インゴットをAm” 
ガス雰曲気炉で1170℃×5時間溶体化処理し冷却は
、 Arガス冷却した。次に800℃×2時間+720
℃×4時間時効処理を行ない磁気的硬化を行った。
Example 1 8m (Co, 746 t3uα08 Ire (L22
Zr1026) alloy with a5 composition, gold f: It was melted using a high frequency melting furnace and cast into a mold. The alloy ingots were filled with columnar crystals. Next, the alloy ingot is
Solution treatment was performed at 1170° C. for 5 hours in a gas atmosphere furnace, and cooling was performed using Ar gas. Next, 800℃ x 2 hours + 720℃
Aging treatment was performed at ℃ for 4 hours to perform magnetic hardening.

合金塊状で必要な熱処理を行ったインゴットをハフマー
ク2ツシヤーで粗粉砕し、続いて、ジェットミルで粒度
1μ〜40μに微粉砕を行つ次。こうして得られた微粉
末98重量部と液状エポキシ樹脂2型緻部を混練し、第
1図に示し友、磁場成形装置を用いて、磁場中加圧成形
を行った。
The ingot, which is in the form of an alloy block and has been subjected to the necessary heat treatment, is coarsely pulverized using a Huffmark 2 shear, and then finely pulverized using a jet mill to a particle size of 1 μm to 40 μm. 98 parts by weight of the fine powder thus obtained and the liquid epoxy resin Type 2 were kneaded and subjected to pressure molding in a magnetic field using a magnetic field molding apparatus as shown in FIG.

得られた円筒状磁石の形状は、第2図斜視図様のもので
、φ10×φ5×5h%の薄肉状の本のである。第5図
は、コアー5の材質t−(A)−ステライト(非磁性)
(B)−磁性超硬(Be  4 K G )(0)−8
Uろ(Bs13KG)を朗いた時、金型内8の磁性粉末
の挙動すなわち印加磁@15KOe  の磁界分布を示
した。こうして得た円筒状磁石を純鉄製のシールドケー
ス内に装着し磁石とケースのギャップ(空l!ll)の
着磁波形を測定した結果を第4泡に示した。
The shape of the obtained cylindrical magnet is as shown in the perspective view of FIG. 2, and is a thin book with dimensions of φ10×φ5×5h%. Figure 5 shows the material of the core 5: t-(A)-Stellite (non-magnetic)
(B)-Magnetic carbide (Be4KG) (0)-8
When the U roller (Bs13KG) was used, the behavior of the magnetic powder in the mold 8, that is, the magnetic field distribution of the applied magnetism @15KOe was shown. The cylindrical magnet thus obtained was mounted in a shield case made of pure iron, and the magnetization waveform of the gap (empty 1!ll) between the magnet and the case was measured, and the results are shown in the fourth bubble.

jill 4 @(A)は非―性コアーを用いて作られ
九時の円筒状磁石の着磁波形でサイン波形で、か゛つピ
ーク松尖った様相を呈している。ピーク値はガワスメー
ター測定にLれば5200Gであった。同様(B)はコ
アーに磁性超硬を用゛いたものであるが、やや台形状の
サインカーブでピーク値は、480LIGであり危。(
O)けコアーに13U、T、 f:用いた例で、台形状
のサインカーブでピーク値は4500Gとやや低いが、
磁界面積はかなり拡大されて来た。
jill 4 @ (A) is a 9 o'clock magnetization waveform of a cylindrical magnet made using a non-conductive core, and has a sine waveform with a sharp peak. The peak value was 5200G when measured by a gas meter. Similarly (B) uses magnetic carbide for the core, but it has a slightly trapezoidal sine curve with a peak value of 480LIG, which is dangerous. (
O) In the example using 13U, T, f for the core, it has a trapezoidal sine curve and the peak value is a little low at 4500G, but
The magnetic field area has been expanded considerably.

このように、・°樹脂結合型磁石では、磁界分布を任意
に制御されたままの、配向磁界を有した円筒状磁石を容
易に提供出来る。本実施例では、R300にマ系化合物
罠ついて述べ九がもちろん他の組成でも全く四様の効果
を得られるものである。
In this manner, the resin-bonded magnet can easily provide a cylindrical magnet having an orienting magnetic field with the magnetic field distribution arbitrarily controlled. In this example, we have described the trapping of a M-based compound in R300, but it is of course possible to obtain all four different effects with other compositions.

比較例t smoos*釡を溶解、鋳造し粉末にし良後、!1図磁
場成形装置t−柑い1実施例1と同一形状の円筒状磁石
をつくった。なおファーは磁性超硬(Bs4KG)を用
いた0次に1150℃X1.#I#間焼結した。焼結上
りの外I!図Fi第5図様のもので9の1うなり2ツク
の発生、及び変形を生じるものが大手であった。これは
異方性方向と直角方向の収縮率が違うために避けられな
い欠陥である。
Comparative Example t smooth Fig. 1 Magnetic field forming device T-1 A cylindrical magnet having the same shape as in Example 1 was made. The fur is made of magnetic carbide (Bs4KG) and heated at 1150°C x 1. Sintered between #I#. Outside of sintering! In the case of the one shown in Fig. 5 of Fig. 5, the most common cases were those that caused one beat and two cracks of 9 and deformation. This is an unavoidable defect because the shrinkage rates in the anisotropic direction and the perpendicular direction are different.

以上詳記し+2うに、本発明によれば、径方向円筒状樹
脂結合型希土類コバルト磁石を磁場成形する場合に、そ
の磁石の磁化分布を容易K !IJ IIでき、所望の
磁化分布を簡単に実現できる。
As detailed above, according to the present invention, when a radial cylindrical resin-bonded rare earth cobalt magnet is subjected to magnetic field forming, the magnetization distribution of the magnet can be easily changed. IJ II, and the desired magnetization distribution can be easily achieved.

本発明方法は、小型マイクロモーター、コアーレスモー
ター、ステッパーモーターのJ41化、低消費電力化に
特に有効であり、その他磁気センサー、回転針0等工業
的用途は大きい。
The method of the present invention is particularly effective for making small micro motors, coreless motors, and stepper motors J41 and reducing power consumption, and has many other industrial applications such as magnetic sensors and rotating needles.

【図面の簡単な説明】[Brief explanation of the drawing]

IIi図は本発明方法で用い次磁場成形装置金型の断面
崗、 1・・・臼       2・・・貫通穴5・・・上ハ
ンチ    4・・・下ハンチ5・・・フ7−    
 6・・・コイル7・・・鉄ヨーク    8・・・磁
性粉末第2図は円筒状磁石の斜視図 縞3図(A)# (B)# (0)は、樹脂結合希土類
コバルト粉末の磁化分布を示す平面図、 ス内のギャップ磁束の変化を示す着磁波形図、第5図は
、比較例で作られたs BmCO@  焼結円筒状磁石
の斜視図で9は焼結後の割れを示す。 以   上 第1図 第2図 第5図
Figure IIi shows the cross section of the mold of the magnetic field forming apparatus used in the method of the present invention.
6... Coil 7... Iron yoke 8... Magnetic powder Figure 2 is a perspective view of a cylindrical magnet. Figure 3 (A) # (B) # (0) shows magnetization of resin-bonded rare earth cobalt powder. A plan view showing the distribution, a magnetization waveform diagram showing changes in the gap magnetic flux in the s BmCO, and Fig. 5 a perspective view of a s BmCO@ sintered cylindrical magnet made in a comparative example, and 9 shows cracks after sintering. shows. Above Figure 1 Figure 2 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 臼訃工びこれに対し嵌入するよノくンチ及び下ノくンチ
、該下パンチの内at摺動するコアーを備えた金INK
て1.磁界を印加した状態で、希土類コノ(ルト磁性粉
末゛を磁場中成形し、円筒状永久磁石を製造する場合に
、前記コアーに飽和磁束密度(以下Beと呼ぶ)が、4
KG以上の磁性材料を用いて前記磁石の磁化分布を制御
することを特徴とする円筒状希土類コバルト磁石の磁化
分布制御方法。
A gold INK with a top punch and a bottom punch that fit into the mill, and a core that slides inside the bottom punch.
1. When manufacturing a cylindrical permanent magnet by molding rare earth magnetic powder in a magnetic field while a magnetic field is applied, the core has a saturation magnetic flux density (hereinafter referred to as Be) of 4.
A method for controlling the magnetization distribution of a cylindrical rare earth cobalt magnet, comprising controlling the magnetization distribution of the magnet using a magnetic material of KG or more.
JP14528082A 1982-08-20 1982-08-20 Magnetization distribution control for cylindrical rare-earth cobalt magnet Pending JPS5874018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14528082A JPS5874018A (en) 1982-08-20 1982-08-20 Magnetization distribution control for cylindrical rare-earth cobalt magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14528082A JPS5874018A (en) 1982-08-20 1982-08-20 Magnetization distribution control for cylindrical rare-earth cobalt magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50102422A Division JPS5226498A (en) 1975-08-22 1975-08-22 Permanent magnet and its manufactured process

Publications (1)

Publication Number Publication Date
JPS5874018A true JPS5874018A (en) 1983-05-04

Family

ID=15381481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14528082A Pending JPS5874018A (en) 1982-08-20 1982-08-20 Magnetization distribution control for cylindrical rare-earth cobalt magnet

Country Status (1)

Country Link
JP (1) JPS5874018A (en)

Similar Documents

Publication Publication Date Title
JP2010199222A (en) Method of manufacturing anisotropic bond magnet, magnetic circuit, and anisotropic bond magnet
Lalana Permanent magnets and its production by powder metallurgy
US7166171B2 (en) Longitudinal magnetic field compacting method and device for manufacturing rare earth magnets
JPH0369981B2 (en)
JPS5874018A (en) Magnetization distribution control for cylindrical rare-earth cobalt magnet
JP6618836B2 (en) Manufacturing method of rare earth sintered magnet
JPS63110605A (en) Method and apparatus for manufacturing magnet
JP4370877B2 (en) Method for orienting permanent magnet powder and method for producing permanent magnet
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JPH0997731A (en) Manufacture of anisotropic sintered magnet
JP2003328009A (en) Method for manufacturing magnetic material with high performance, and compact thereof
JP3526493B2 (en) Manufacturing method of anisotropic sintered magnet
KR930011237B1 (en) Re-magnetic materials
JPH0997730A (en) Manufacture of sintered permanent magnet
JPS6088418A (en) Manufacture of cylindrical permanent magnet
JPH02139908A (en) Manufacture of pole anisotropic rare earth magnet
JP2006328517A (en) Method for producing rare earth alloy powder molding
JPH05140671A (en) Manufacture of alloy for permanent magnet
JPS62263947A (en) Manufacture of magnet
JPH0734206A (en) Rare earth magnet and method and device for manufacturing it
JPS5874007A (en) Permanent cylinder magnet
JPS62262403A (en) Manufacture of rare earth permanent magnet
JPH0641655A (en) Rare earth metal alloy for magnet and production thereof
JPH09162055A (en) Manufacture of anisotropic sintered magnet
JPH03151612A (en) Manufacture of resin-bonded type permanent magnet molded object