JP2003328009A - Method for manufacturing magnetic material with high performance, and compact thereof - Google Patents

Method for manufacturing magnetic material with high performance, and compact thereof

Info

Publication number
JP2003328009A
JP2003328009A JP2002133000A JP2002133000A JP2003328009A JP 2003328009 A JP2003328009 A JP 2003328009A JP 2002133000 A JP2002133000 A JP 2002133000A JP 2002133000 A JP2002133000 A JP 2002133000A JP 2003328009 A JP2003328009 A JP 2003328009A
Authority
JP
Japan
Prior art keywords
sintering
magnetic material
magnetic field
magnetic
anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002133000A
Other languages
Japanese (ja)
Other versions
JP4714839B2 (en
Inventor
Koyo Ozaki
公洋 尾崎
Keizo Kobayashi
慶三 小林
Kotaro Kikuchi
光太郎 菊池
Hikari Kikuchi
光 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SS ALLOY KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
SS ALLOY KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SS ALLOY KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical SS ALLOY KK
Priority to JP2002133000A priority Critical patent/JP4714839B2/en
Publication of JP2003328009A publication Critical patent/JP2003328009A/en
Application granted granted Critical
Publication of JP4714839B2 publication Critical patent/JP4714839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a magnetic material with a high performance in a more simplified manufacturing process and with less energy than before, by imparting it anisotropy just during sintering, and to provide a compact thereof. <P>SOLUTION: The method for compacting a magnetic material or a composite material containing the magnetic material into a fixed form by sintering, comprises sintering a pulverized material M of a nonequilibrium state filled in a sintering mold 1 by supplying a current to it, and applying a magnetic field thereon from the outside while sintering it. By thus sintering the magnetic material or the composite material in the magnetic field while electrifying it, the method molds it into a fixed shape so as to develop the anisotropy. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は磁性材料の高性能化
を行う製造方法とその成形体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing method for improving the performance of magnetic materials and a molded product thereof.

【0002】[0002]

【従来の技術】近年、磁性材料は様々な用途で使用され
ており、自動車用モーターなど大型・軽量かつ高性能な
磁石材料や、通信機器のブロードバンド化に伴う高周波
用の超小型コアなど高性能な軟磁性材料のように、ます
ますその用途が拡大することが予想できる。このような
高性能な磁性材料はNd-Fe-B系やSm-Fe-N系のように希土
類元素を含む材料を超急冷して作製しており、磁石にす
る場合には超急冷粉末を焼結したのち、外部から磁場を
与えて磁化するようにしている。
2. Description of the Related Art In recent years, magnetic materials have been used in a variety of applications, such as large-sized, lightweight and high-performance magnetic materials for automobile motors and high-performance ultra-small cores for high frequencies accompanying the broadbandization of communication equipment. It can be expected that its applications will be expanded more and more like various soft magnetic materials. Such high-performance magnetic materials are produced by ultra-quenching materials containing rare earth elements such as Nd-Fe-B and Sm-Fe-N systems. After sintering, a magnetic field is applied from outside to magnetize.

【0003】ところで、一般的に磁石の磁力を高めるた
めには、結晶方向を一方向にそろえることにより異方性
を持たせて、その方向への磁力を高めることが行われ
る。従来、非希土類系の磁石の場合にはその手法とし
て、磁場中で熱処理することにより特定方向に結晶成長
させることにより異方性を発現させていた。
Generally, in order to increase the magnetic force of a magnet, the crystal directions are aligned in one direction to give anisotropy, and the magnetic force in that direction is increased. Conventionally, in the case of a non-rare earth magnet, as a method thereof, heat treatment in a magnetic field was performed to cause crystal growth in a specific direction to develop anisotropy.

【0004】しかし、超急冷によって作製する希土類系
の磁石の場合、微細結晶粒であることが高い磁力を生み
出しているため、熱処理をすることができず、非希土類
系の磁石の場合と同様の手法を用いて異方性を発現させ
ることができない。そのため、粉末を押し出し等によっ
て機械的に配向させることにより異方性を発現させた後
焼結する方法、あるいは磁場中で圧粉体を作製した後焼
結する方法が用いられる。いずれの手法も異方性を出す
プロセスと粉末を固めるプロセスの2つのプロセスが必
要となる。
However, in the case of a rare earth magnet produced by ultra-quenching, since the fine crystal grains produce a high magnetic force, heat treatment cannot be performed, which is the same as in the case of a non-rare earth magnet. Anisotropy cannot be developed using the technique. Therefore, there is used a method of exhibiting anisotropy by mechanically orienting the powder by extrusion or the like and then sintering, or a method of producing a green compact in a magnetic field and then sintering. Both methods require two processes, a process of producing anisotropy and a process of solidifying powder.

【0005】[0005]

【発明が解決しようとする課題】上記のように、高性能
磁性材料を製造する場合に、従来では異方性を出すプロ
セスと粉末を固めるプロセスの2つのプロセスを必要と
し、製造工程が複雑になっていた。
As described above, in the case of producing a high-performance magnetic material, conventionally, two processes, that is, a process for producing anisotropy and a process for hardening powder are required, which complicates the production process. Was becoming.

【0006】そこで、上記両プロセスを同時に行うこと
ができれば、製造工程を簡略化することができ、これに
伴って、トータルコストを低くすることができる。ま
た、常温で圧粉体を作製する際に必要な、あるいは、異
方性を出すために行う押し出しの際に必要な、大きなプ
レス圧力が不要になるため、省エネルギー化が可能であ
る。さらに製品形状の複雑化等にも対応することが可能
となる。
Therefore, if both of the above processes can be performed at the same time, the manufacturing process can be simplified, and the total cost can be reduced accordingly. Further, since a large pressing pressure required for producing a green compact at room temperature or for extrusion for producing anisotropy is unnecessary, energy can be saved. Further, it becomes possible to deal with the complicated product shape.

【0007】本発明はこれらの事情に鑑み、異方性の発
現と粉末の焼結を同時に行うことができて、製造工程の
簡略化及び省エネルギー化が可能な製造方法を提供する
とともに、これにより作製した高性能磁性材料の成形体
を提供することを目的とするものである。
In view of these circumstances, the present invention provides a manufacturing method capable of simultaneously exhibiting anisotropy and sintering of powder, simplifying the manufacturing process and saving energy, and by doing so, It is an object of the present invention to provide a produced high-performance magnetic material compact.

【0008】[0008]

【課題を解決するための手段】本発明の高性能磁性材料
の製造方法は、磁性材料もしくは磁性材料を含む複合材
料を焼結により一定形状に成形する方法であって、粉末
材料に電流を供給して通電焼結を行い、その焼結中に外
部から磁場を与えながら上記磁性材料もしくは上記複合
材料を成形することを特徴とするものである。
The method for producing a high-performance magnetic material according to the present invention is a method of forming a magnetic material or a composite material containing a magnetic material into a constant shape by sintering, and supplying an electric current to a powder material. Then, electric current sintering is performed, and the magnetic material or the composite material is molded while applying a magnetic field from the outside during the sintering.

【0009】本発明の方法によると、磁性粉末あるいは
それを含む混合粉末の焼結中に外部から磁場を与えるこ
とで異方性を発現させることができ、異方性を発現させ
るプロセスと焼結により成形するプロセスとを同時に行
うことができる。
According to the method of the present invention, anisotropy can be exhibited by externally applying a magnetic field during the sintering of the magnetic powder or the mixed powder containing the magnetic powder. The molding process can be performed simultaneously.

【0010】とくに、高性能磁性材料の原料となる粉末
はその多くが超急冷法や機械的合金化法などにより作製
され、ナノ結晶やアモルファス相といった非平衡な状態
にある。このような非平衡状態にある磁性材料は熱を与
えることで簡単に結晶成長や結晶の析出が生じる。この
ような結晶成長あるいは結晶析出の際に磁場を与えるこ
とで、特定の方向を向いた結晶の成長あるいは析出を起
こすことができる。
In particular, most of powders used as raw materials for high-performance magnetic materials are produced by the ultraquenching method or mechanical alloying method, and are in a non-equilibrium state such as nanocrystals or amorphous phases. The magnetic material in such a non-equilibrium state easily causes crystal growth and crystal precipitation by applying heat. By applying a magnetic field during such crystal growth or crystal precipitation, crystal growth or precipitation oriented in a specific direction can occur.

【0011】そして、結晶の成長あるいは析出が加熱に
よって簡単に発生するが、成長あるいは析出した結晶が
大きくなりすぎると磁気特性が急激に低下するため、焼
結は短時間で終了する必要がある。そのため、焼結方法
は高速で昇温できる方法を採用することが要求される。
この要求を満足する焼結方法として、焼結型と粉末に直
接電流を流して昇温する通電焼結を行うこととし、例え
ばパルス電流を供給するパルス通電焼結(放電焼結)を
行う。
Then, crystal growth or precipitation easily occurs by heating, but if the grown or precipitated crystal becomes too large, the magnetic properties sharply deteriorate, and therefore the sintering must be completed in a short time. Therefore, it is required to adopt a sintering method that can raise the temperature at high speed.
As a sintering method that satisfies this requirement, electric current sintering is performed in which a current is directly applied to the sintering mold and powder to raise the temperature, and, for example, pulse current sintering (discharge sintering) in which a pulse current is supplied is performed.

【0012】また、本発明の成形体は、上記のような製
造方法により得られる。すなわち、焼結により成形され
た磁性材料もしくは磁性材料を含む複合材料を焼結した
成形体であり、粉末材料に直接電流を供給することによ
る通電焼結で成形され、かつ、焼結中に外部から磁場が
与えられることにより異方性が付与されているものであ
る。
Further, the molded product of the present invention is obtained by the above manufacturing method. That is, it is a molded body obtained by sintering a magnetic material or a composite material containing a magnetic material, which is molded by sintering, and is molded by energization sintering by directly supplying an electric current to the powder material, Anisotropy is imparted by applying a magnetic field from.

【0013】この成形体は、焼結中に外部から磁場が与
えられることにより充分に大きい異方性が付与され、そ
の方向への磁力が高められる等、磁性材料としての特性
が向上される。
This molded body is given a sufficiently large anisotropy by being externally applied with a magnetic field during sintering, and the magnetic force in that direction is increased, and the characteristics as a magnetic material are improved.

【0014】なお、上記製造方法及び成形体において、
焼結される材料としては、例えば、鉄、ニッケル、コバ
ルト等の強磁性元素を含む合金あるいは化合物あるいは
複合材料がある。あるいは、針状あるいは繊維状の磁性
材料と樹脂もしくはセラミックスまたはこれらの混合物
との複合材料であってもよい。
In the above manufacturing method and molded body,
The material to be sintered is, for example, an alloy or compound containing a ferromagnetic element such as iron, nickel or cobalt, or a composite material. Alternatively, it may be a composite material of a needle-shaped or fibrous magnetic material and a resin or ceramics or a mixture thereof.

【0015】[0015]

【発明の実施の形態】本発明の高性能材料の製造方法に
おいて焼結は通電発熱により行い、特に好ましくはパル
ス通電焼結(放電焼結)法を使用する。この焼結方法は
焼結型あるいは粉末に直接パルス電流を流すことによ
り、高速(毎分50°C以上の昇温速度)で焼結するこ
とが可能である。この方法には例えば図1に示すような
装置が用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a high-performance material according to the present invention, sintering is carried out by heat generation by energization, and particularly preferably pulse energization sintering (discharge sintering) is used. In this sintering method, it is possible to perform sintering at a high speed (temperature rising rate of 50 ° C. or more per minute) by directly applying a pulse current to a sintering die or powder. For this method, for example, a device as shown in FIG. 1 is used.

【0016】この装置において、焼結型1は外型2と上
下一対のパンチ3とで構成され、外型2は導電性および
非導電性の物質、パンチ3は導電性のある物質からな
る。この焼結型1に粉末材料Mを充填し、チェンバ4内
で焼結を行う。チェンバ4内は大気はもちろんのこと真
空雰囲気あるいは不活性ガス雰囲気にすることができる
ため種々の粉末を焼結することが可能である。パンチ3
は加熱装置5により上下から加圧されることによって電
極6と接し、電極6は焼結用電源11に電気的に接続さ
れており、上記電源11から電極6およびパンチ3を通
じて粉末Mあるいは外型2に電流が流れ、焼結が行われ
る。また、パンチ3を電極6と結合させることによっ
て、無加圧の状態で電流を流すこともできる。
In this apparatus, the sintering die 1 is composed of an outer die 2 and a pair of upper and lower punches 3. The outer die 2 is made of a conductive and non-conductive material, and the punch 3 is made of a conductive material. The sintering die 1 is filled with the powder material M and is sintered in the chamber 4. Not only the atmosphere but also a vacuum atmosphere or an inert gas atmosphere can be used in the chamber 4, so that various powders can be sintered. Punch 3
Is in contact with the electrode 6 by being pressed from above and below by the heating device 5, and the electrode 6 is electrically connected to the sintering power source 11, and the powder M or the external mold is passed from the power source 11 through the electrode 6 and the punch 3. An electric current flows through 2 and sintering is performed. Further, by connecting the punch 3 to the electrode 6, it is possible to pass an electric current in a non-pressurized state.

【0017】上記焼結型1内には磁性材料となる強磁性
体の非平衡状態の粉末Mが充填される。このような粉末
は、例えば単ロールを用いた液体急冷法、あるいはメカ
ニカルアロイング(以下MAと略す)により作製され
る。すなわち、単ロール法では、液体金属を106K/
S以上の速度で超急冷するために、アモルファス相やナ
ノ結晶相などの通常の溶解凝固では得られない非平衡状
態を達成できる。また、MAでは、原料粉末あるいは合
金粉末を機械的に粉砕し、液体を介さずに固体反応によ
って合金化を行うか、あるいは合金結晶を微細化するこ
とにより、アモルファス相やナノ結晶相を生成させる。
The sintering mold 1 is filled with a non-equilibrium powder M of a ferromagnetic material serving as a magnetic material. Such a powder is produced by, for example, a liquid quenching method using a single roll or mechanical alloying (hereinafter abbreviated as MA). That is, in the single roll method, 10 6 K /
Because it is rapidly quenched at a rate of S or more, it is possible to achieve a non-equilibrium state such as an amorphous phase or a nanocrystalline phase that cannot be obtained by ordinary melt solidification. In MA, a raw material powder or an alloy powder is mechanically pulverized and alloying is performed by a solid reaction without a liquid, or an alloy crystal is refined to generate an amorphous phase or a nanocrystal phase. .

【0018】また、図1に示す装置内には磁場発生手段
が設けられている。この磁場発生手段は、例えば焼結型
の周囲に配置されたコイル7により構成されている。そ
して、このコイル7に、焼結用電源11とは別の磁場発
生用電源12から電流を供給することにより、磁場を発
生させ、この磁場内に焼結型1が位置する状態で、焼結
用電源11からの電力供給により焼結を行わせる。
A magnetic field generating means is provided in the apparatus shown in FIG. The magnetic field generating means is composed of, for example, a coil 7 arranged around a sintering die. Then, a current is supplied to the coil 7 from a magnetic field generating power source 12 different from the sintering power source 11 to generate a magnetic field, and the sintering die 1 is positioned in the magnetic field. Sintering is performed by supplying power from the power supply 11 for use.

【0019】この場合、コイル7を設置する方向によっ
て、発生させる磁場方向が決まるため、パンチ3を加圧
する方向と平行に磁場を発生させたり、垂直方向に磁場
を発生させたりすることが可能である。
In this case, since the direction of the magnetic field to be generated is determined by the direction in which the coil 7 is installed, it is possible to generate the magnetic field in parallel with the direction in which the punch 3 is pressed or in the vertical direction. is there.

【0020】磁場は焼結工程の全期間または一部の期間
(異方性に影響を及ぼす期間)に与えるようにし、例え
ば、焼結用電源11からの通電によって焼結材料を加熱
する前からコイル7への通電により磁場を生じさせ、加
熱終了後すなわち冷却中も磁場を存続させつつ、常温ま
で冷却する。
The magnetic field is applied during the whole or a part of the sintering process (period affecting the anisotropy), for example, before the sintering material is heated by energization from the sintering power source 11. A magnetic field is generated by energizing the coil 7, and the magnetic field is maintained after completion of heating, that is, during cooling, and is cooled to room temperature.

【0021】以上のような方法によると、磁性粉末ある
いはそれを含む混合粉末の焼結中に外部から磁場を与え
ることで異方性を発現させることができ、異方性を発現
させるプロセスと焼結により成形するプロセスとを同時
に行うことができる。
According to the method described above, anisotropy can be exhibited by applying a magnetic field from the outside during the sintering of the magnetic powder or the mixed powder containing the magnetic powder. The process of forming by binding can be performed simultaneously.

【0022】そして、とくに非平衡状態の磁性粉末は、
焼結時に熱が加えられるに伴い簡単に結晶成長や結晶の
析出が生じ、この際、磁場中で焼結が行われることによ
り、特定の方向を向いた結晶の成長あるいは析出を起こ
すことができ、効果的に異方性を発現させることができ
る。
And, in particular, the non-equilibrium magnetic powder is
Crystal growth and crystal precipitation easily occur as heat is applied during sintering, and at this time, it is possible to cause crystal growth or precipitation oriented in a specific direction by performing sintering in a magnetic field. The anisotropy can be effectively expressed.

【0023】また、焼結がパルス電流の供給による通電
焼結とされることにより、急速に昇温されて、短時間で
焼結が達成される。つまり、焼結用電源によりパルス電
流を供給し、その電流値およびパルス周波数等を制御す
ることにより、放電(アーク放電)による発熱および焼
結材料Mを流れる電流によるジュール熱(さらに外型2
が導電性物質の場合は外型2を流れる電流によるジュー
ル熱)で急速に昇温される。
Further, since the sintering is the energization sintering by supplying the pulse current, the temperature is rapidly raised and the sintering is achieved in a short time. That is, by supplying a pulse current from the sintering power source and controlling the current value and the pulse frequency, Joule heat due to the electric current flowing through the sintering material M (and the external mold 2
In case of a conductive substance, the temperature is rapidly raised by Joule heat due to the current flowing through the outer mold 2.

【0024】このように短時間で焼結が達成されること
により、焼結中に成長あるいは析出した結晶が大きくな
りすぎることが避けられ、磁気特性の低下が防止され
る。
By achieving the sintering in such a short time, it is possible to prevent the crystal grown or precipitated during the sintering from becoming too large, and to prevent the deterioration of the magnetic properties.

【0025】以上の方法により、異方性を持ち磁気特性
にすぐれた高性能磁性材料の成形体が得られる。
By the above method, a molded product of a high-performance magnetic material having anisotropy and excellent magnetic properties can be obtained.

【0026】なお、本発明は、上記の実施形態に限定さ
れるものではなく、以下の内容をも包含するものであ
る。
The present invention is not limited to the above-mentioned embodiment, but includes the following contents.

【0027】(1)焼結中に外部から磁場を与える方法
としては、図1に示すようなコイル7以外でも、焼結型
1の外部に焼結型1に触れないように電流経路を設け、
焼結用の電流とは別系統の電流を流すことによって型1
内の材料に磁場を与えるようにすればよい。あるいは、
焼結外型2を焼結材料とは電気的に絶縁して形成し、こ
の外型2に焼結用の電流とは別系統の電流を与えること
によって、型1内に磁場を発生させるようにしてもよ
い。あるいはまた、輻射熱による影響が無いように外部
に磁石を設置することにより型1内の材料に磁場を与え
るようにしてもよい。
(1) As a method of applying a magnetic field from the outside during sintering, a current path is provided outside the sintering die 1 so as not to touch the sintering die 1 other than the coil 7 shown in FIG. ,
Type 1 by applying an electric current of a system different from the electric current for sintering
A magnetic field may be applied to the material inside. Alternatively,
A magnetic field is generated in the mold 1 by forming the outer mold 2 which is electrically insulated from the sintering material and applying a current of a system different from the current for sintering to the outer mold 2. You may Alternatively, a magnetic field may be applied to the material in the mold 1 by installing a magnet outside so as not to be affected by radiant heat.

【0028】(2)焼結用の電流と磁場発生用の電流は
同一電源から発生させても、別電源から発生させても良
いが、上記実施形態のように別電源とする方が、個別に
制御できて好ましい。
(2) The sintering current and the magnetic field generating current may be generated from the same power source or different power sources, but it is preferable to use different power sources as in the above embodiment. It is preferable because it can be controlled.

【0029】(3)焼結用の電流は、パルス状態ではな
い通常の直流電流あるいは交流電流であってもよい。ま
た、磁場発生用の電流も、直流電流、直流パルス電流、
交流電流などが考えられる。
(3) The sintering current may be an ordinary direct current or alternating current that is not in a pulsed state. Also, the current for generating the magnetic field is DC current, DC pulse current,
AC current is possible.

【0030】(4)磁性材料としては、Nd-Fe-B、Sm-Fe
-Nなどの磁石材料、Tb-Dy-Fe、Sm-Feなどの磁歪材料な
どがある。また、これらと有機材料やセラミックスとの
複合材料であっても、焼結が可能である。また、Fe、C
o、Niといった強磁性体を含む化合物においても、非平
衡状態の粉末を出発原料とすることで、化合物の生成過
程において異方性を発現させることが可能である。ま
た、Fe、Co、Ni等の強磁性体からなる針状または繊維状
の物質(結晶、非結晶によらない)を含む複合材料も、
針状または繊維状の物質を特定方向に配列させた状態で
焼結することができる。例えば、マトリックスとしてAl
やMgなどの非磁性金属材料あるいはプラスチックなどの
有機材料あるいはAl2O3やZrO2などのセラミックスを使
用し、混合する磁性材料として、Fe、CoやNiなどの強磁
性元素単体あるいはこれらを含む合金を針状あるいは繊
維状に作製したものを使用することができる。
(4) Magnetic materials include Nd-Fe-B and Sm-Fe
There are magnet materials such as -N and magnetostrictive materials such as Tb-Dy-Fe and Sm-Fe. Further, even a composite material of these and an organic material or ceramics can be sintered. Also, Fe, C
Even in a compound containing a ferromagnetic material such as o or Ni, it is possible to exhibit anisotropy in the process of producing the compound by using the powder in the non-equilibrium state as a starting material. Also, a composite material containing a needle-like or fibrous substance (whether crystalline or non-crystalline) made of a ferromagnetic material such as Fe, Co, or Ni,
It is possible to sinter the needle-like or fibrous substances arranged in a specific direction. For example, Al as matrix
Nonmagnetic metal materials such as Mg and Mg, organic materials such as plastics, or ceramics such as Al2O3 and ZrO2 are used, and as a magnetic material to be mixed, simple ferromagnetic elements such as Fe, Co and Ni or alloys containing them are needle-shaped. Alternatively, a fibrous product can be used.

【0031】[0031]

【実施例】次に、本発明の実施例を説明する。なお、各
実施例の焼結体についての磁気特性の異方性の確認にあ
たっては、振動試料型磁化測定装置(以下VSMと略
す)を使用した。そして、作製した試料をサイコロ状
(立方体)に切断し、焼結時に印加した磁場に垂直な方
向と水平な方向の磁気特性を測定し、それぞれの違いを
調べた。評価は、得られた値のうちの大きい値を小さい
値で除した割合で表した。異方性があれば、磁気特性に
変化が現れ、その割合が100%以上となる。この割合
が大きいほど異方性が大きいことになる。
EXAMPLES Next, examples of the present invention will be described. To confirm the anisotropy of the magnetic properties of the sintered bodies of the respective examples, a vibrating sample type magnetization measuring device (hereinafter abbreviated as VSM) was used. Then, the produced sample was cut into a dice shape (cube), the magnetic characteristics in the direction perpendicular to the magnetic field applied during sintering and the direction in the horizontal direction were measured, and the differences between them were investigated. The evaluation was expressed as a ratio of a large value among the obtained values divided by a small value. If there is anisotropy, a change in magnetic characteristics will appear, and the ratio will be 100% or more. The larger this ratio, the greater the anisotropy.

【0032】実施例1 図1に示すような装置における内径10mmの黒鉛製の型
に、MAによってアモルファス状態にした磁性合金粉末
Tb-Dy-Fe-Crを2.5g入れ、黒鉛製のパンチで上下を
挟み、加圧力255kgf/cm2でパンチを加圧し、磁場発
生手段により発生させた磁場中で焼結を行った。磁場発
生手段のコイルに流す電流は直流パルスで80A、周波
数2Hzとした。このとき発生する磁場はおよそ2400
A/mである。磁場の方向は加圧力に平行な方向とし
た。焼結は、アモルファス相が結晶化する温度より高い
1173Kで5分間行った。作製した焼結体をVSMに
よって飽和磁化を調べその異方性を測定した結果、11
4%の違いがあった。
Example 1 A magnetic alloy powder made amorphous by MA in a graphite mold having an inner diameter of 10 mm in an apparatus as shown in FIG.
2.5 g of Tb-Dy-Fe-Cr was put, the upper and lower sides were sandwiched by graphite punches, the punches were pressed with a pressing force of 255 kgf / cm 2 , and sintering was performed in the magnetic field generated by the magnetic field generating means. The current passed through the coil of the magnetic field generating means was a DC pulse of 80 A and a frequency of 2 Hz. The magnetic field generated at this time is about 2400
A / m. The direction of the magnetic field was parallel to the applied pressure. Sintering was performed for 5 minutes at 1173K, which is above the temperature at which the amorphous phase crystallizes. As a result of measuring the saturation magnetization of the produced sintered body by VSM and measuring its anisotropy, 11
There was a 4% difference.

【0033】参考例 実施例1と同様の焼結条件で、磁場を発生させずに焼結
を行った場合、異方性は105%であった。これは、加
圧によりわずかに異方性が現れるものの、実施例1と比
べて異方性が格段に小さいことを示している。
Reference Example When sintering was performed under the same sintering conditions as in Example 1 without generating a magnetic field, the anisotropy was 105%. This shows that the anisotropy appears slightly by the pressurization, but the anisotropy is significantly smaller than that in the first embodiment.

【0034】実施例2 MAによってアモルファス状態にした磁性合金粉末Tb-D
y-Fe-Crを1.0gおよび市販のZrO2粉末を1.5g乳
鉢で混合した後、図1に示すような装置における内径1
0mmの黒鉛製の型に充填し、黒鉛製のパンチで上下を挟
み、加圧力255kgf/cm2でパンチを加圧し、磁場発生
手段により発生させた磁場中で焼結を行った。磁場発生
手段のコイルに流す電流は直流パルスで80A、周波数
2Hzとした。焼結は、アモルファス相が結晶化する温度
より高い1173Kで5分間行った。VSMによって飽
和磁化を調べその異方性を測定した結果、110%の違
いがあった。
Example 2 Magnetic alloy powder Tb-D made amorphous by MA
After mixing 1.0 g of y-Fe-Cr and 1.5 g of commercially available ZrO 2 powder in a mortar, the inner diameter of the device as shown in FIG.
It was filled in a 0 mm graphite mold, sandwiched between graphite punches at the top and bottom, pressed with a pressing force of 255 kgf / cm 2 , and sintered in a magnetic field generated by a magnetic field generating means. The current passed through the coil of the magnetic field generating means was a DC pulse of 80 A and a frequency of 2 Hz. Sintering was performed for 5 minutes at 1173K, which is above the temperature at which the amorphous phase crystallizes. As a result of examining saturation magnetization by VSM and measuring its anisotropy, there was a difference of 110%.

【0035】実施例3 Al粉末3.0gとFe繊維(平均長さ1mm、平均径10μ
m)0.5gを乳鉢で混合した後、図1に示すような装
置における内径10mmの黒鉛製の型に充填し、無加圧の
状態で、磁場発生手段により発生させた磁場中で焼結を
行った。磁場発生手段のコイルには直流80Aの電流を
流した。また、焼結温度は773Kとした。その結果、
繊維が印加した磁場と平行に配列された状態で焼結され
ていた。
Example 3 3.0 g of Al powder and Fe fiber (average length 1 mm, average diameter 10 μm)
m) After mixing 0.5 g in a mortar, it is filled in a graphite mold having an inner diameter of 10 mm in an apparatus as shown in FIG. 1 and sintered in a magnetic field generated by a magnetic field generating means in a non-pressurized state. I went. A direct current of 80 A was passed through the coil of the magnetic field generating means. The sintering temperature was 773K. as a result,
The fibers were sintered in a state of being arranged parallel to the applied magnetic field.

【0036】実施例4 実施例3と同様にAl粉末とFe繊維を混合した実験につい
て、加圧力を22.6kgf/cm2にすると、磁場を印加し
ても磁場方向にはそろわず、圧力方向に対して垂直な方
向にランダムな状態で焼結された。これは、磁場によっ
て発生する力よりも、加圧したことによってFe繊維がAl
粉末に押される力の方が強かったためである。この場合
においても、磁場を印加する方向を加圧力に対して垂直
方向にすることによって、圧力方向に対して垂直な方向
に配列された状態で焼結することが可能であった。
Example 4 In an experiment in which Al powder and Fe fiber were mixed in the same manner as in Example 3, when the applied pressure was set to 22.6 kgf / cm 2 , the magnetic field was not aligned even if a magnetic field was applied. It was sintered in a random state in a direction perpendicular to. This is because the Fe fibers are more Al when pressed than the force generated by the magnetic field.
This is because the force pushed by the powder was stronger. Also in this case, by making the direction of applying the magnetic field perpendicular to the applied pressure, it was possible to sinter in the state of being arranged in the direction perpendicular to the pressure direction.

【0037】実施例5 図1に示すような装置における内径10mmの黒鉛製の型
に、超急冷により作製したアモルファス相およびナノ結
晶相を含むNd-Fe-B粉末を2.0g充填し、黒鉛製のパ
ンチで上下を挟み、加圧力255kgf/cm2でパンチを加
圧し、磁場発生手段により発生させた磁場中で焼結を行
った。磁場発生手段のコイルに流す電流は直流パルスで
80A、周波数2Hzとした。磁場の方向は加圧力に平行
な方向とした。焼結は、アモルファス相が結晶化する温
度直上の933Kで10分間行った。VSMによって飽
和磁化を調べその異方性を測定した結果、111%の違
いがあった。
Example 5 A graphite mold having an inner diameter of 10 mm in an apparatus as shown in FIG. 1 was filled with 2.0 g of Nd-Fe-B powder containing an amorphous phase and a nanocrystalline phase prepared by ultra-quenching, and graphite was used. The upper and lower sides were sandwiched by the punches, and the punches were pressed with a pressing force of 255 kgf / cm 2 , and sintering was performed in the magnetic field generated by the magnetic field generating means. The current passed through the coil of the magnetic field generating means was a DC pulse of 80 A and a frequency of 2 Hz. The direction of the magnetic field was parallel to the applied pressure. Sintering was performed for 10 minutes at 933 K just above the temperature at which the amorphous phase crystallized. As a result of examining saturation magnetization by VSM and measuring its anisotropy, there was a difference of 111%.

【0038】なお、同じ焼結条件下の実験で、磁場を印
加しない実験を行って作製した試料につき、異方性を測
定すると、101%でほとんど違いが見られなかった。
When the anisotropy was measured for the sample prepared by conducting the experiment under the same sintering condition without applying the magnetic field, almost no difference was observed at 101%.

【0039】実施例6 超急冷法によって非平衡状態にしたSm-Fe-Nを2.0g
および市販のエポキシ樹脂粉末を0.2g乳鉢で混合し
た後、図1に示すような装置における内径10mmの黒鉛
製の型に充填し、黒鉛製のパンチで上下を挟み、加圧力
255kgf/cm2でパンチを加圧し、磁場発生手段により
発生させた磁場中で焼結を行った。磁場発生手段のコイ
ルに流す電流は直流パルスで80A、周波数2Hzとし
た。焼結は、Sm-Fe-Nが分解する温度より低い423K
で5分間行った。VSMによって飽和磁化を調べその異
方性を測定した結果、112%の違いがあった。
Example 6 2.0 g of Sm-Fe-N brought to a non-equilibrium state by the ultraquenching method
After mixing 0.2 g of commercially available epoxy resin powder in a mortar, the mixture is filled in a graphite mold having an inner diameter of 10 mm in an apparatus as shown in FIG. 1, the upper and lower sides are sandwiched by a graphite punch, and a pressing force of 255 kgf / cm 2 The punch was pressed by and the sintering was performed in the magnetic field generated by the magnetic field generating means. The current passed through the coil of the magnetic field generating means was a DC pulse of 80 A and a frequency of 2 Hz. Sintering is 423K, which is lower than the temperature at which Sm-Fe-N decomposes
For 5 minutes. As a result of examining the saturation magnetization by VSM and measuring the anisotropy, there was a difference of 112%.

【0040】尚、本発明は、上述の実施例にのみ限定さ
れるものではなく、本発明の要旨を逸脱しない範囲内に
おいて種々変更を加え得ることは勿論である。
The present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

【0041】[0041]

【発明の効果】以上記載したとおり、本発明によると、
通電焼結により、外部から磁場を与えながら高性能磁性
材料を焼結により作製することが可能となる。このた
め、異方性を発現させるプロセスと焼結により成形する
プロセスとを同時に行うことができ、製造工程を簡略化
することができるとともに、常温で圧粉体を作製する際
に必要な、あるいは、異方性を出すために行う押し出し
の際に必要な、大きなプレス圧力が不要となって、省エ
ネルギー化が可能となり、これらによってコストの低減
を図ることができる。
As described above, according to the present invention,
The electric current sintering makes it possible to produce a high-performance magnetic material by sintering while applying a magnetic field from the outside. Therefore, the process of exhibiting anisotropy and the process of molding by sintering can be performed at the same time, the manufacturing process can be simplified, and it is necessary when producing a green compact at room temperature, or The large press pressure required for the extrusion for producing the anisotropy becomes unnecessary, energy can be saved, and the cost can be reduced by these.

【0042】また、とくに非平衡状態にある磁性材料を
含む粉末材料を焼結し、その焼結中に磁場をあたえるこ
とにより、簡単かつ効果的に異方性を発現させることが
できる。
In addition, anisotropy can be easily and effectively exhibited by sintering a powder material containing a magnetic material in a non-equilibrium state and applying a magnetic field during the sintering.

【0043】非平衡磁性粉末とセラミックス、樹脂等の
粉末とを混合した材料を通電により焼結して、その通電
焼結中に外部から磁場を与えるようにすれば、異方性を
持つ複合磁性材料を作製することができる。
When a material obtained by mixing non-equilibrium magnetic powder and powder of ceramics, resin, etc. is sintered by energization and a magnetic field is applied from the outside during the energization sintering, a composite magnetic material having anisotropy is obtained. The material can be made.

【0044】また、針状あるいは繊維状の磁性材料と樹
脂、セラミックスまたはこれらの混合物との複合材料を
通電により焼結する場合には、通電焼結中に外部から磁
場を与えることにより、針状あるいは繊維状の磁性材料
が磁場方向に配列した焼結体を作製することができる。
When a composite material of a needle-like or fibrous magnetic material and a resin, ceramics or a mixture thereof is sintered by energization, a magnetic field is applied from the outside during energization sintering to form a needle-like shape. Alternatively, a sintered body in which fibrous magnetic materials are arranged in the magnetic field direction can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するための装置の一例を示
す概略図である。
1 is a schematic diagram showing an example of an apparatus for performing the method of the present invention.

【符号の説明】[Explanation of symbols]

1 焼結型 6 電極 7 磁場発生用のコイル 11 焼結用電源 12 磁場発生用電源 1 Sintered type 6 electrodes 7 Magnetic field generating coil 11 Power supply for sintering 12 Power supply for magnetic field generation

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 慶三 愛知県名古屋市守山区大字下志段味字穴ケ 洞2266番地の98 独立行政法人産業技術総 合研究所中部センター内 (72)発明者 菊池 光太郎 広島県東広島市西条町寺家7403−5 (72)発明者 菊池 光 京都府宇治市五ケ庄梅林60−11 マンショ ン禅601号 Fターム(参考) 4K018 CA04 EA22 KA42 5E040 AA11 AA14 BB01 BB03 BD01 CA01 HB03 HB06    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Keizo Kobayashi             Ari Prefecture Moriyama-ku, Nagoya             98 Independent Administrative Agency Industrial Technology General, 2266, Dong             Chuo Research Center Chubu Center (72) Inventor Kotaro Kikuchi             7403-5 Teriya, Saijo-cho, Higashihiroshima-shi, Hiroshima Prefecture (72) Inventor Hikaru Kikuchi             60-11 Gorinsho Bairin, Uji City, Kyoto Prefecture Mansho             Zen 601 F-term (reference) 4K018 CA04 EA22 KA42                 5E040 AA11 AA14 BB01 BB03 BD01                       CA01 HB03 HB06

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 磁性材料もしくは磁性材料を含む複合材
料を焼結により一定形状に成形する方法であって、粉末
材料に電流を供給して通電焼結を行い、その焼結中に外
部から磁場を与えながら上記磁性材料もしくは上記複合
材料を成形することを特徴とする高性能磁性材料の製造
方法。
1. A method of forming a magnetic material or a composite material containing a magnetic material into a constant shape by sintering, wherein an electric current is supplied to a powder material to perform electric current sintering, and a magnetic field is externally applied during the sintering. A method for producing a high-performance magnetic material, which comprises molding the above magnetic material or the above composite material while giving the above.
【請求項2】 非平衡状態にある磁性材料を含む粉末材
料に対して外部から磁場を与えながら通電焼結を行うこ
とを特徴とする請求項1記載の高性能磁性材料の製造方
法。
2. The method for producing a high-performance magnetic material according to claim 1, wherein the powder material containing the magnetic material in a non-equilibrium state is subjected to electric current sintering while applying a magnetic field from the outside.
【請求項3】 焼結中に外部から磁場を与えながら、
鉄、ニッケル、コバルト等の強磁性元素を含む合金もし
くは化合物からなる磁性材料あるいは磁性材料と非磁性
材料との複合材料を成形することを特徴とする請求項1
または2記載の高性能磁性材料の製造方法。
3. While applying a magnetic field from the outside during sintering,
A magnetic material made of an alloy or compound containing a ferromagnetic element such as iron, nickel or cobalt, or a composite material of a magnetic material and a non-magnetic material is molded.
Alternatively, the method for producing a high-performance magnetic material according to 2 above.
【請求項4】 焼結中に外部から磁場を与えながら、針
状あるいは繊維状の磁性材料と樹脂もしくはセラミック
スまたはこれらの混合物との複合材料を成形することを
特徴とする請求項1または2記載の高性能磁性材料の製
造方法。
4. The composite material of a needle-shaped or fibrous magnetic material and a resin or ceramics or a mixture thereof is molded while applying a magnetic field from outside during sintering. High-performance magnetic material manufacturing method.
【請求項5】 焼結により成形された磁性材料もしくは
磁性材料を含む複合材料を焼結した成形体であり、粉末
材料に直接電流を供給することによる通電焼結で成形さ
れ、かつ、焼結中に外部から磁場が与えられることによ
り異方性が付与されていることを特徴とする高性能磁性
材料の成形体。
5. A molded body obtained by sintering a magnetic material or a composite material containing a magnetic material, which has been molded by sintering, and is molded by electric current sintering by directly supplying an electric current to a powder material, and then sintered. A molded body of a high-performance magnetic material, characterized in that anisotropy is imparted by an externally applied magnetic field.
【請求項6】 鉄、ニッケル、コバルト等の強磁性元素
を含む合金あるいは化合物あるいは複合材料を焼結した
ものであることを特徴とする請求項5記載の高性能磁性
材料の成形体。
6. The molded product of a high-performance magnetic material according to claim 5, which is obtained by sintering an alloy, a compound or a composite material containing a ferromagnetic element such as iron, nickel or cobalt.
【請求項7】 針状あるいは繊維状の磁性材料と樹脂も
しくはセラミックスまたはこれらの混合物との複合材料
を焼結したものであることを特徴とする請求項5記載の
高性能磁性材料の成形体。
7. The molded product of a high-performance magnetic material according to claim 5, which is obtained by sintering a composite material of a needle-like or fibrous magnetic material and a resin or ceramics or a mixture thereof.
JP2002133000A 2002-05-08 2002-05-08 Method for producing high-performance magnetic material and sintered body thereof Expired - Lifetime JP4714839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133000A JP4714839B2 (en) 2002-05-08 2002-05-08 Method for producing high-performance magnetic material and sintered body thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002133000A JP4714839B2 (en) 2002-05-08 2002-05-08 Method for producing high-performance magnetic material and sintered body thereof

Publications (2)

Publication Number Publication Date
JP2003328009A true JP2003328009A (en) 2003-11-19
JP4714839B2 JP4714839B2 (en) 2011-06-29

Family

ID=29696244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133000A Expired - Lifetime JP4714839B2 (en) 2002-05-08 2002-05-08 Method for producing high-performance magnetic material and sintered body thereof

Country Status (1)

Country Link
JP (1) JP4714839B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934371A (en) * 2010-09-13 2011-01-05 华南理工大学 Permanent magnet material forming method and device under multi-external field coupling effect
CN101486097B (en) * 2008-12-24 2012-06-20 华南理工大学 Field coupling preparation method of powder metallurgical ferrous alloy material
CN109631568A (en) * 2019-01-30 2019-04-16 清华大学 A kind of pressure sintering furnace and sintering method of magnetic field coupling DC current
CN109682202A (en) * 2019-01-30 2019-04-26 清华大学 A kind of ultrasonic wave added direct current sintering furnace and sintering method
CN113087536A (en) * 2021-04-30 2021-07-09 陕西科技大学 Device for improving density of pressure-sensitive ceramic based on magnetic control method and preparation method of pressure-sensitive ceramic

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101486097B (en) * 2008-12-24 2012-06-20 华南理工大学 Field coupling preparation method of powder metallurgical ferrous alloy material
CN101934371A (en) * 2010-09-13 2011-01-05 华南理工大学 Permanent magnet material forming method and device under multi-external field coupling effect
CN109631568A (en) * 2019-01-30 2019-04-16 清华大学 A kind of pressure sintering furnace and sintering method of magnetic field coupling DC current
CN109682202A (en) * 2019-01-30 2019-04-26 清华大学 A kind of ultrasonic wave added direct current sintering furnace and sintering method
CN113087536A (en) * 2021-04-30 2021-07-09 陕西科技大学 Device for improving density of pressure-sensitive ceramic based on magnetic control method and preparation method of pressure-sensitive ceramic
CN113087536B (en) * 2021-04-30 2023-08-22 陕西科技大学 Device for improving density of pressure-sensitive ceramic based on magnetic control method and preparation method of pressure-sensitive ceramic

Also Published As

Publication number Publication date
JP4714839B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
EP0898287B1 (en) Hard magnetic alloy having supercooled liquid region, sintered product thereof and applications
EP2767992B1 (en) Manufacturing method for magnetic powder for forming sintered body of rare-earth magnet precursor
JP2013219353A (en) Manufacturing method of sintered magnet controlled in structure and component distribution
CN105849828B (en) The method for manufacturing rare-earth magnet
JP6780707B2 (en) Rare earth magnet manufacturing method
JP2003328009A (en) Method for manufacturing magnetic material with high performance, and compact thereof
CN105312574A (en) Manufacturing method for sintered compact
KR101804313B1 (en) Method Of rare earth sintered magnet
JP2003203818A (en) Method of manufacturing permanent magnet and pressing apparatus
WO2003056583A1 (en) Production method for permanent magnet and press device
JPH01171209A (en) Manufacture of permanent magnet
JP2007123467A (en) Method for manufacturing anisotropic magnet
JPH09263913A (en) Hard magnetic alloy compacted body and its production
JPH1171645A (en) Hard magnetic alloy sintered compact and its production
RU2424082C2 (en) Method of orienting powder of single-axis magnetic material by pulsed magnetic field
KR101528070B1 (en) Rare-earth permanent sintered magnet and method for manufacturing the same
JPH05217722A (en) Manufacture of material for rare earth-iron-boron permanent magnet
JPS63285909A (en) Permanent magnet and manufacture thereof
JPH07161524A (en) Production of radial anisotropic rare earth magnet
CN117099173A (en) Magnetic material for high frequency and method for producing the same
JPS63114106A (en) Permanent magnet and manufacture thereof
JPS60165702A (en) Manufacture of permanent magnet
JPH023203A (en) Permanent magnet and its manufacture
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JPH02139908A (en) Manufacture of pole anisotropic rare earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081203

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R150 Certificate of patent or registration of utility model

Ref document number: 4714839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term