JPS5873870A - Automatic chemical analyzer - Google Patents

Automatic chemical analyzer

Info

Publication number
JPS5873870A
JPS5873870A JP17084582A JP17084582A JPS5873870A JP S5873870 A JPS5873870 A JP S5873870A JP 17084582 A JP17084582 A JP 17084582A JP 17084582 A JP17084582 A JP 17084582A JP S5873870 A JPS5873870 A JP S5873870A
Authority
JP
Japan
Prior art keywords
reagent
nozzle
solution
liquid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17084582A
Other languages
Japanese (ja)
Inventor
Toshiyuki Sagusa
佐草寿幸
Yasushi Nomura
佐藤猛英
Takehide Sato
小野直也
Hiroshi Inomata
猪俣博
Naoya Ono
野村靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17084582A priority Critical patent/JPS5873870A/en
Publication of JPS5873870A publication Critical patent/JPS5873870A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/021Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a flexible chain, e.g. "cartridge belt", conveyor for reaction cells or cuvettes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To obtain a reagent supplying mechanism which is small-sized and free from mutual pollution of reagents, by providing a rinsing device for the inside and the outer surface of each of nozzles for a reagent. CONSTITUTION:A nozzle 24A for a first reagent moves between the positions of a reagent solution suction position on a turntable 25A, a reagent solution discharge position on a reaction line 8 and a rinsing tank 22A. A nozzle 24B for a second reagent moves between the positions of a reagent solution suction position on a turntable 25B, a reagent solution discharge position on the reaction line and a rinsing tank 22B. These nozzles suck and hold the reagent solution at the solution suction positions, and discharge the reagent solution into a reaction vessel at reagent solution applying positions. Prior to the suction of another reagent solution, the outer walls of the nozzles are rinsed in the rinsing tank 22A, while the inner walls thereof are rinsed by water for rinse and dilution after the reagent is discharged into the reaction vessel. These oerations in series are repeated every time when the reaction vessel 3 is brought to the reagent applying position on the reaction line 8.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は臨床検査等に用いるに好適な自動化学分析装置
に係り、籍に複数種の分析項目を同じ反応ライン上で反
応せしめるディスクリートタイプの分析装置に関するっ 〔従来技術〕 従来の臨床検査用化学分析装置でも、同じ反応ライン上
で複数種の分析項目を反応させるものがあった。この種
の分析装置では複数種の試薬液槽を用いるのであるが、
これらの試薬液槽は固定設置されており、又、試薬液送
液パイプの出口も、反応ライン上の欣足場所に固定され
ていた。反応容器へ試薬液を加えるときは、ポンプ装置
および試薬液送液パイプを流通するように試薬液を一方
向へ流していた。このため従来の分析装置では、各々の
試薬液槽に対してそれぞれポンプ装置を設けなければな
らず、測定すべき分析項目が増加するほどそれに対応し
てポンプ装置(ディスペンサ機構)を増設する必要があ
った。したがって多項目分析装置においては試薬供給機
構が大がかりとなり、各ディスペンサの動作制御も複雑
にならざるを得なかった。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an automatic chemical analyzer suitable for use in clinical tests, etc., and is a discrete type analysis device in which multiple types of analysis items are reacted on the same reaction line. Regarding Apparatus [Prior Art] Some conventional chemical analyzers for clinical testing react multiple types of analysis items on the same reaction line. This type of analyzer uses multiple types of reagent liquid tanks.
These reagent liquid tanks were fixedly installed, and the outlet of the reagent liquid feeding pipe was also fixed at a convenient location on the reaction line. When adding a reagent solution to a reaction container, the reagent solution was made to flow in one direction through a pump device and a reagent solution delivery pipe. For this reason, in conventional analyzers, a pump device must be installed for each reagent tank, and as the number of analysis items to be measured increases, it is necessary to install additional pump devices (dispenser mechanisms). there were. Therefore, in a multi-item analyzer, the reagent supply mechanism must be large-scale, and the operation control of each dispenser must also be complicated.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、試薬供給機構が小さくて、試薬同士の
汚染の影譬もな魅自動化学分析装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an automatic chemical analyzer having a small reagent supply mechanism and free from the possibility of contamination between reagents.

〔発明の概要〕    i□l、j=”;j本発明の特
徴は、反応容器列が試料添加位置および試薬添加位置を
通るように移送する装置と、異なる分析項目用複数試料
を同じサンプリングノズルによって、試料添加位置に位
置づけられる反応容器へ加える試料供給装置と、複数種
の試薬液槽を保持し得る移動台と、試薬添加位置に位置
づけられる反応容器に係る分析項目に対応した試薬′液
槽を、移動台の移動によって試薬液吸入位置に位置づけ
る試薬液位置つけ装置と、試薬液を試薬液吸入位置で試
薬用ノズル内に吸入保持し、て、その試薬用ノズル内に
保持しCいた試薬液を試薬添加位置で該当する反応容器
に加えるとともに、試薬液吸入位置に位置づけられる試
嗅液槽が変っても同じノズルを用いて試薬添加動作をす
る試薬ピペッタ装置と、前の試乗液とは違う種類の試薬
液を試薬用ノズルによって吸入保持する前に、その試乗
用ノズルから洗#液を吐出し、試薬用ノズル内部を洗浄
する管内部洗浄装置と、前の試乗液とは違う種類の試薬
液を試薬用ノズルによって吸入、、l:1.I・1゜ 保持する前に、洗□浄僧まで移送されたそのノズルの外
表面を洗浄液で洗浄する管外面洗#装置とを備えたこと
にある。
[Summary of the Invention] i□l,j=”;j The features of the present invention include a device for transporting a reaction container row through a sample addition position and a reagent addition position, and a device for transferring multiple samples for different analysis items using the same sampling nozzle. A sample supply device for feeding into a reaction container positioned at a sample addition position, a movable stage capable of holding multiple types of reagent liquid tanks, and a reagent liquid tank corresponding to the analysis item related to the reaction vessel positioned at a reagent addition position. a reagent liquid positioning device that positions a reagent liquid at a reagent liquid suction position by moving a moving table; A reagent pipettor device that adds liquid to the corresponding reaction container at the reagent addition position and performs the reagent addition operation using the same nozzle even if the test liquid tank located at the reagent liquid suction position changes, and the previous test liquid. Before a different type of reagent solution is inhaled and held by the reagent nozzle, a cleaning liquid is discharged from the test nozzle to clean the inside of the reagent nozzle. Before inhaling the reagent solution through the reagent nozzle and holding it at 1.I.1°, the pipe is equipped with a tube outer surface cleaning device that cleans the outer surface of the nozzle with a cleaning solution, which is transported to the cleaning chamber. There is a particular thing.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例の概略構成を第1図に示す。 FIG. 1 shows a schematic configuration of an embodiment of the present invention.

この分析装置において、反応ライン8は恒温浴槽と、こ
の浴槽に浸されながら図示しないスプロケット等によっ
て移送される透光性の反応容器3の列とを備えている。
In this analyzer, the reaction line 8 includes a thermostatic bath and a row of translucent reaction vessels 3, which are immersed in the bath and transferred by a sprocket or the like (not shown).

反応容器3はエンドレスのスネークチェーンに一定ピッ
チ毎に保持されており、このチェーンの移動によって反
応容器は加熱浴槽に浸された状態で光度計12の光路を
横切り、その後洗浄されて試料添加位置に戻される。
The reaction vessels 3 are held at fixed pitches by an endless snake chain, and by the movement of this chain, the reaction vessels are immersed in a heating bath and cross the optical path of the photometer 12, after which they are washed and moved to the sample addition position. be returned.

す/プラ機構20は、血清試料を収容した多数の試料容
器1が所定間隔でスネークチェーン等によって保持され
たものからなり、これらの試料容器は図示しないチェー
ン駆動機構により試料吸入位置を通るように移送される
。各試料容器1の試料吸入位置における停滞時間は、そ
の試料が何種類の分析項目を測定するかによって主とし
て決定されるので、移送時間間隔は一定でなく、検体情
報に基づいてメインコンピュータ5により制御される。
The sample container 20 consists of a large number of sample containers 1 containing serum samples held at predetermined intervals by a snake chain or the like, and these sample containers are moved through a sample suction position by a chain drive mechanism (not shown). be transported. The residence time at the sample suction position of each sample container 1 is mainly determined by how many types of analysis items are measured by the sample, so the transfer time interval is not constant and is controlled by the main computer 5 based on the sample information. be done.

す/プリングノズル24は、サンプラ20上の血清吸入
位置と、反応ライン8上の反応容器への試料吐出位置と
、外壁洗浄槽22との間を移動されるとともに、各点で
上下動し得る。サンプリングノズル24は、洗浄用水を
ノズル24がら吐出させ得る血清分注用ピペッタ機構2
3に接続されている。ノズル24は血清吸入位置で血清
を吸入保持し、反応容器3へその血清と水とを吐出し、
その後洗浄槽22へ移動し、その中でノズル外壁が洗浄
される。このような一連の分注動作は、反応ライン8の
1ステツプずつの移動毎に繰返される。
The spring/pull nozzle 24 is moved between the serum intake position on the sampler 20, the sample discharge position into the reaction container on the reaction line 8, and the outer wall cleaning tank 22, and can be moved up and down at each point. . The sampling nozzle 24 includes a serum dispensing pipetter mechanism 2 that can discharge washing water through the nozzle 24.
Connected to 3. The nozzle 24 sucks and holds serum at the serum suction position, and discharges the serum and water into the reaction container 3.
Thereafter, the nozzle is moved to a cleaning tank 22, where the nozzle outer wall is cleaned. Such a series of dispensing operations is repeated every time the reaction line 8 moves one step at a time.

反応ライン8付近には複数の(例えば2つの)試薬液槽
群が配置されるっターンテーブル25Aと25Bは同様
の機構で動作されるが、それぞれに配列された試薬液の
種類は違う。反応ライン8上の反応容器3に、早い時期
に加えられる試薬群が第1試薬群であり、遅い時期に加
えられる試薬群が第2試薬群である。各ターンテーブル
25A。
A plurality (for example, two) of reagent liquid tank groups are arranged near the reaction line 8.The turntables 25A and 25B are operated by a similar mechanism, but the types of reagent liquids arranged on each turntable are different. A reagent group added to the reaction container 3 on the reaction line 8 at an early stage is a first reagent group, and a reagent group added at a late stage is a second reagent group. Each turntable 25A.

25Bには分析すべき項目の種類に対応して試薬液種が
準備されているが、どの種類の試薬液を試薬液吸入位置
に位置づけるかは、メインコンピュータ5によって決め
られ動作制御される。すなわち、第1試薬用ノズル24
Aが反応ライン上に位置づけられる場所である第1試薬
液添加位置に位置づけられる反応容器に対応する分析項
目のだめの試薬液を収容した試薬液槽26Aが、その反
応容器の第1試薬液添加位置への位置づけと対応し−C
1ターンテーブル25A上の試薬液吸入位置に位置づけ
られる。試薬添加位置に位置づけられる分析項目が変わ
れば、試薬液吸入位置に位置づけられる試薬液槽26A
も変わる。このよう′な動作は第2試栗群についても同
様でおる。
25B is prepared with reagent liquid types corresponding to the types of items to be analyzed, and the main computer 5 determines and controls the operation of which type of reagent liquid is positioned at the reagent liquid suction position. That is, the first reagent nozzle 24
The reagent solution tank 26A containing the reagent solution for the analysis item corresponding to the reaction container positioned at the first reagent solution addition position, where A is positioned on the reaction line, is located at the first reagent solution addition position of the reaction container. -C
1 is positioned at the reagent liquid suction position on the turntable 25A. When the analysis item positioned at the reagent addition position changes, the reagent liquid tank 26A is positioned at the reagent liquid suction position.
It also changes. This kind of operation is the same for the second test chestnut group.

試薬液槽26A、26B内に収容された各徨試薬液は、
通常の分析操作時に使用する濃度の数を倍程度濃厚なも
のである。従って、1回の試薬吸入量は微量で済むから
試薬液槽の容積を小さなものにできる。このような試薬
門讐試薬用/ i n−24A、24Bによって反応容
器へ添加するときには、試薬用ピペッタ+IA傳23A
、23Bによって、ノズルから反応容器へ水を吐出し、
試薬液を通常濃度まで希釈する。
Each free reagent solution contained in the reagent solution tanks 26A and 26B is
It is about twice as concentrated as the number of concentrations used during normal analytical operations. Therefore, since only a small amount of reagent is inhaled at one time, the volume of the reagent liquid tank can be reduced. When adding such reagents to the reaction vessel using the reagent pipettor + IA-23A,
, 23B to discharge water from the nozzle into the reaction vessel;
Dilute the reagent solution to the normal concentration.

試薬用ピペッタ機$23A、23Bは、それぞれ試薬用
ノズル24A、24Bに連通されており、濃厚試薬を各
ノズルの先端に吸入保持させるだめのマイクロスリップ
を有している。また、この吸込保持した試薬液を反応容
器へ吐出するに伴って十倍量程度の純水を吐出して試薬
液を希釈するとともに、この純水の吐出によってノズル
管内を洗浄せしめる中形スリップも有している。
The reagent pipettor machines 23A and 23B are connected to reagent nozzles 24A and 24B, respectively, and have microslips for sucking and holding concentrated reagents at the tips of each nozzle. In addition, as this suctioned and held reagent solution is discharged into the reaction vessel, about 10 times the amount of pure water is discharged to dilute the reagent solution, and a medium-sized slip is also used that cleans the inside of the nozzle pipe by discharging this pure water. have.

第1N薬用ノズル24Aは、ターンテーブル25A上の
試薬aa人位置と、反応ライン8上の試系液吐出、位置
と、洗浄槽22Aの各点の間を移動する。第2試薬用ノ
ズル24Bは、ターンテーブル25B上のfit、薬液
吸入位置と、反応ライン上の試薬吸入位置と1.洗浄槽
22Bの各点の間を移動する。これらのノズルは、試薬
液吸入位置で′71、士。
The first N medicated nozzle 24A moves between the reagent aa position on the turntable 25A, the sample liquid discharge position on the reaction line 8, and each point in the cleaning tank 22A. The second reagent nozzle 24B fits on the turntable 25B, the chemical solution suction position, and the reagent suction position on the reaction line. It moves between each point of the cleaning tank 22B. These nozzles are located at the reagent suction position.

試薬液槽から所定量の試4&液をノズル内に吸入保持し
、試薬吸入位置でその保持し九試薬液を反応容器内へ吐
出し、次に別の分析項目用の試薬液を吸入する前に洗浄
槽22Aでノズル外壁を洗浄する。ノズル内壁は反応容
器へ試薬液を吐出した後に続いて洗浄水兼希釈水を吐出
することによって洗浄する。この一連の動作は、反応容
器3が反応ライン8の試薬吸入位置に位置づけられる毎
に繰返される。
Suction and hold a predetermined amount of reagent 4 and liquid from the reagent liquid tank into the nozzle, hold it at the reagent suction position, and discharge the 9 reagent liquid into the reaction container, before inhaling the reagent liquid for another analysis item. Next, the nozzle outer wall is cleaned in the cleaning tank 22A. The inner wall of the nozzle is cleaned by discharging the reagent solution into the reaction vessel and subsequently discharging cleaning water and dilution water. This series of operations is repeated every time the reaction container 3 is positioned at the reagent suction position of the reaction line 8.

ターンテーブル25Aおよび25Bは、スリップ機構を
介して駆動用モータにより一定方向に回転するが、メイ
ンコンピュータ5の指示によって任意の試薬容器が前述
の試薬吸入位置に来九際に例えば電磁的に停止する構成
である。
The turntables 25A and 25B are rotated in a fixed direction by a drive motor via a slip mechanism, but are stopped, for example, electromagnetically, when a given reagent container comes to the above-mentioned reagent suction position according to instructions from the main computer 5. It is the composition.

多波長光度針12は、光源からの白色光を反応容器3に
照射し、その反応容器を透過した白色光を分光器のグレ
ーティング(回折格子)によって分光し、好ましくは3
4Qnm〜850nm間の1241Aの波長に関する吸
光度を連続測定する。
The multi-wavelength photometric needle 12 irradiates the reaction vessel 3 with white light from a light source, and separates the white light transmitted through the reaction vessel using a grating (diffraction grating) of a spectrometer.
The absorbance for the wavelength of 1241A between 4Qnm and 850nm is continuously measured.

13は光源、14は分散子、15は検知器である。13 is a light source, 14 is a dispersion element, and 15 is a detector.

前記構成の装置において、オペレータは、まず測定すべ
き試料血清を採取した試料容器1を順序良くサンプラ機
構20のスネークチェーンに設置すると同時に、各試料
血清について何と何の項目を測定するかという検体情報
を入力オペコン19によって入力し、然る後分析装置を
スタートさせ゛る。
In the apparatus configured as described above, the operator first installs the sample containers 1 containing the sample serum to be measured in the snake chain of the sampler mechanism 20 in an orderly manner, and at the same time collects sample information such as what items to measure for each sample serum. is inputted by the input operation controller 19, and then the analyzer is started.

このスタートにより、反応ライ/8、ピペッタ機構23
,23Aおよび23Bは、既述からも明らかなように検
体情報と無関係に1周期毎に同一の動作を繰返す。
With this start, reaction line/8, pipetter mechanism 23
, 23A, and 23B repeat the same operation every cycle, regardless of the sample information, as is clear from the above description.

一方、夕〜ンテーブル25Aと25Bおよびサンプラ2
0は、検体情報に基づいてコンピュータ5により夫々回
転と停止および移送タイミングの制御が行なわれる。
Meanwhile, evening tables 25A and 25B and sampler 2
0, the computer 5 controls the rotation, stopping, and transfer timing, respectively, based on sample information.

以下、任意の検体についてA−Fの6項目を測定する場
合を例にとり、本実施例装置の動作をさらに詳しく説明
する。
The operation of the apparatus of this embodiment will be described in more detail below, taking as an example a case where six items A to F are measured for an arbitrary specimen.

前記血清の試料容器1がサンプラ機構20上の血清吸入
位置に到達すると、そのサングラ機構の移送は反応ライ
ン8、ピペッタ機構23,23Aおよび23Bが6ステ
ツプ動作する開停止し、その間に該吸入位置にある容器
中の血清がピペッタ機構23により吸入および純水希釈
されがら 順次6個の反応容器3中へ分注される。
When the serum sample container 1 reaches the serum suction position on the sampler mechanism 20, the transfer of the sampler mechanism is stopped by opening and stopping the reaction line 8 and the pipetter mechanisms 23, 23A and 23B in 6 steps, during which the sampler mechanism 20 reaches the serum suction position. The serum in the container is inhaled and diluted with pure water by the pipettor mechanism 23, and then sequentially dispensed into the six reaction containers 3.

これら6個の反応容器がさらに移送されてノズル24A
による試薬液添加位置に達すると、ターンテーブル25
Aが検体情報に基づいて回転および停止し、停止時にタ
ーンテーブル上の吸入位置にある試薬容器26A中の濃
厚第1試薬がピペッタ機構23Aにより吸入され、次い
で純水希釈後反応容器に添加される。
These six reaction vessels are further transferred to the nozzle 24A.
When the reagent solution addition position is reached, the turntable 25
A rotates and stops based on sample information, and when stopped, the concentrated first reagent in the reagent container 26A located at the suction position on the turntable is inhaled by the pipetter mechanism 23A, and then added to the reaction container after being diluted with pure water. .

然して、この繰返しによ#)A−Fの項目に対応する濃
厚第1試薬は順序良くターンテーブルの吸入位置に位置
づけられ、6個の反応容器中に希釈添加される。
By repeating this process, the concentrated first reagents corresponding to items #) A to F are placed in the suction position of the turntable in an orderly manner, and diluted and added into the six reaction vessels.

第1試薬株加後の6個の反応容器がさらに順次移送され
てノズル24Bによる試薬液添加位置に到達すると、第
1試薬添加の場合と同様、にしてターンテ」プル25B
の動鼻により必要な濃厚第2試薬の希釈添加が行なわれ
る。
After the first reagent stock has been added, the six reaction containers are further sequentially transferred and reach the reagent solution addition position by the nozzle 24B, and as in the case of the first reagent addition, the six reaction containers are turned and pulled 25B.
The required dilution of the concentrated second reagent is added through the nose.

第2試薬龜加後の反応容器がさらに移送されて測光位置
に達すると、多波長光度計12により吸光度が順次測定
され、その結果はA/D変換装置16を介してメインコ
ンピュータ5に伝送、処理される。
When the reaction container after adding the second reagent is further transported and reaches the photometry position, the absorbance is sequentially measured by the multi-wavelength photometer 12, and the results are transmitted to the main computer 5 via the A/D converter 16. It is processed.

以上実施例装置の典型例について説明したが、本発明は
これに限定されることなく、他に各種の変形や態様の存
在することFiδう迄もない。
Although the typical example of the embodiment device has been described above, the present invention is not limited thereto, and it goes without saying that there are various other modifications and embodiments.

例えば、試料血清を採堆しない場合や一液法における場
合には、ターンテーブル25Aおよび(ま7cは725
B上に試薬容器を設置しない空の停止位置を1ケ所以上
設けることが望ましい。
For example, when sample serum is not collected or when using a one-component method, turntable 25A and (or 7c are
It is desirable to provide one or more empty stopping positions on B where no reagent containers are placed.

すなわち、かくすることによりvC薬添加を必要としな
い容器に対しては、ターンテーブルを前記空位置で停止
させて純水のみを添加し、然して試薬の節約t−tf 
にとができる。
That is, by doing this, for containers that do not require the addition of vC reagents, the turntable is stopped at the empty position and only pure water is added, thus saving t-tf on reagents.
Nito is made.

上述の装置例によれば、液体の分圧に関連して検体情報
に澁ついて制御される機構は2つのター/テーブルとす
/プラの移送のみでめるため従来1、: 装置に比して制、−が著しく単純化さ扛ること、使′1 用するピペッタは項目数に関係なく3個程度で1分であ
るためターンデープルに載置する試薬数を増減すること
のみにより測定項目の拡張や変更を自在に行なえること
、機構系の中で最も複雑な動作を要求されるノズル機構
とピペッタが少数で済み、しかもそれらの動作が純然た
る周期的繰返しのみであるから安全性と信頼性を著しく
高めることができることおよび毎日の運転開始時に分注
器やその経路の試薬を全く必要としないため試薬類の無
駄を省きかつかびや汚れによるトラブルを避は得ること
などの種々の効果が達成される。
According to the above-mentioned device example, the mechanism that is controlled based on the sample information in relation to the partial pressure of the liquid is two tarps/tables and/or plastics. However, the number of reagents to be measured can be significantly simplified, and since the number of pipetters used is approximately 3 and takes 1 minute regardless of the number of items to be measured, the number of reagents to be measured can be changed by simply increasing or decreasing the number of reagents placed on the turntable. It is safe and reliable because it can be expanded and changed freely, requires only a small number of nozzle mechanisms and pipetters, which require the most complex movements in the mechanical system, and whose movements are only cyclical repetitions. It has a variety of effects, including significantly improving performance and eliminating the need for a pipettor or reagents in its path at the start of daily operation, eliminating waste of reagents and avoiding problems caused by mold and dirt. achieved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、複数試薬液をピペ
ッティングすることにより試薬供給機構を小形化でき、
試薬用ノズルの内外面洗浄に好適な構成にすることによ
り試薬同士の汚染の形番を排除することができる。
As explained above, according to the present invention, the reagent supply mechanism can be downsized by pipetting multiple reagent solutions,
By adopting a configuration suitable for cleaning the inner and outer surfaces of the reagent nozzle, it is possible to eliminate contamination between reagents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概略構成を示す図である。 1・・・試料容器、3・・・反応容器、12・・・光度
針、20・・・サンプラ機構、22A、22B・・・洗
浄槽、23A 、23B・・・試薬用ピペッタ機構、2
4・・・サンプリングノズル、24A、24B・・・試
薬用ノズル、25A、25B・・・ターン1−プル、2
6人。 26B・・・試薬液槽。
FIG. 1 is a diagram showing a schematic configuration of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Sample container, 3... Reaction container, 12... Photometric needle, 20... Sampler mechanism, 22A, 22B... Washing tank, 23A, 23B... Reagent pipetter mechanism, 2
4... Sampling nozzle, 24A, 24B... Reagent nozzle, 25A, 25B... Turn 1-Pull, 2
6 people. 26B...Reagent liquid tank.

Claims (1)

【特許請求の範囲】[Claims] 1、液体試料について複数種の分析項目に係る反応を同
じ反応ライン上の反応容器内で実行せしめる自動化学分
析装置において、(a)反応容器列が試料添加位置およ
び試薬添加位置を通るように移送する装置、(b)異な
る分析項目用複数試料を同じサンプリングノズルによっ
て、上記試薬添加位置に位*2けられる反志容器へ加え
る試料供給装置、(C)複数種の試薬液槽を保持し得る
移動台、(d)上記試薬添加位置に位置づけられる反応
容器に係る分析項目に対応した試薬液槽を、上記移動台
の移動によって試薬液吸入位置に位置づける試薬液位置
つけ装置、(e>試薬液を上記試薬1!!L吸入位置で
試薬用ノズル内に吸入保持して、上記試県用ノズル内に
保持していた試薬液を上記試薬添加位置で線画する分析
項目のための反応容器に加えるとともに、上記試薬液吸
入位置に位置づけられる試薬液槽が変っても同じノズル
を用いて試薬添加動作をする試薬ピペッタ装置、(f)
 Ailの試薬液とは違う種類の試薬液を上記試薬用ノ
ズルによって吸入保持する前に、上記試薬用ノズルから
洗#液を吐出し、上記試薬用ノズル内部を洗浄する管内
部洗##装置、(g)前の試薬液とは違う種類の試薬液
を上記試薬用ノズルによって吸入保持する前に、洗浄槽
まで移送された上記試薬用ノズルの外表面を洗′#液で
洗浄する管外面洗浄装置、全備えたことを特許とする自
動化学分析装置。
1. In an automatic chemical analyzer that performs reactions related to multiple types of analysis items for liquid samples in reaction vessels on the same reaction line, (a) the reaction vessel row is transferred so as to pass through the sample addition position and the reagent addition position; (b) A sample supply device for adding multiple samples for different analysis items to a reaction container positioned at the reagent addition position using the same sampling nozzle; (C) A device capable of holding multiple types of reagent liquid tanks. a moving table; (d) a reagent liquid positioning device that positions a reagent liquid tank corresponding to an analysis item related to the reaction container positioned at the reagent addition position to a reagent liquid suction position by moving the mobile table; (e> reagent liquid Inhale and hold the above reagent 1!!L into the reagent nozzle at the above reagent nozzle suction position, and add the reagent liquid held in the above reagent nozzle to the reaction container for the analysis item to be drawn at the above reagent addition position. and (f) a reagent pipetter device that performs a reagent addition operation using the same nozzle even if the reagent liquid tank positioned at the reagent liquid suction position changes.
a pipe interior cleaning ## device for discharging a cleaning solution from the reagent nozzle to clean the inside of the reagent nozzle before inhaling and holding a reagent solution of a type different from the reagent solution of Ail through the reagent nozzle; (g) Before a reagent solution of a different type than the previous reagent solution is inhaled and held by the reagent nozzle, the outer surface of the reagent nozzle transferred to the cleaning tank is cleaned with a cleaning solution. Automatic chemical analysis device with a patent for complete equipment.
JP17084582A 1982-10-01 1982-10-01 Automatic chemical analyzer Pending JPS5873870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17084582A JPS5873870A (en) 1982-10-01 1982-10-01 Automatic chemical analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17084582A JPS5873870A (en) 1982-10-01 1982-10-01 Automatic chemical analyzer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6990877A Division JPS5922905B2 (en) 1977-06-15 1977-06-15 Multi-item automatic analyzer

Publications (1)

Publication Number Publication Date
JPS5873870A true JPS5873870A (en) 1983-05-04

Family

ID=15912388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17084582A Pending JPS5873870A (en) 1982-10-01 1982-10-01 Automatic chemical analyzer

Country Status (1)

Country Link
JP (1) JPS5873870A (en)

Similar Documents

Publication Publication Date Title
JP3063584B2 (en) Automatic analyzer
CN103890589B (en) Automated analyzer
JP2000146987A (en) Apparatus and method for autoanalysis
US9513305B2 (en) Multiple cleaning stations for a dispensing probe
CN114019178A (en) Full-automatic immune biochemical integrated analyzer and use method thereof
JPS5922905B2 (en) Multi-item automatic analyzer
CN110320380B (en) Automatic analysis device and automatic analysis method
JP3391734B2 (en) Biological sample handling method and analyzer
JP4175916B2 (en) Automatic analyzer
JP6928712B2 (en) Automatic analyzer
JP4101466B2 (en) Biological sample analyzer
CN111164430B (en) Automatic analyzer
JP4153171B2 (en) Analysis method of biological sample
JP3055373B2 (en) Liquid sample analyzer
JPS6249259A (en) Automatic analyzer
JPS5873870A (en) Automatic chemical analyzer
JPH08122337A (en) Automatic analyzer
JP2944772B2 (en) Automatic chemical analyzer
JP4537472B2 (en) Analysis equipment
JPS5873871A (en) Analyzer for liquid sample
JPS59183371A (en) Automatic chemical analytical apparatus
JPS61270661A (en) Automatic analyzing instrument
JP2001208762A (en) Analysis method of bio-sample
JPH03175361A (en) Automatic immunoassay apparatus
JPH08105901A (en) Automatic analyzing device