JPS5873744A - Fe-co-mn-c alloy - Google Patents

Fe-co-mn-c alloy

Info

Publication number
JPS5873744A
JPS5873744A JP56154370A JP15437081A JPS5873744A JP S5873744 A JPS5873744 A JP S5873744A JP 56154370 A JP56154370 A JP 56154370A JP 15437081 A JP15437081 A JP 15437081A JP S5873744 A JPS5873744 A JP S5873744A
Authority
JP
Japan
Prior art keywords
alloy
phase
under heating
cold
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56154370A
Other languages
Japanese (ja)
Other versions
JPS6128012B2 (en
Inventor
Osamu Myoga
修 冥加
Hitoshi Igarashi
五十嵐 等
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56154370A priority Critical patent/JPS5873744A/en
Publication of JPS5873744A publication Critical patent/JPS5873744A/en
Publication of JPS6128012B2 publication Critical patent/JPS6128012B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the titled alloy consisting of prescribed percentages of Co, Mn, C and Si and the balance Fe and capable of being provided with desired magnetic characteristics by a short-time teatment under heating without requiring the strict control of the temp. dropping program and a long-time treatment under heating. CONSTITUTION:This Fe-Co-Mn-C alloy for a magnetic material consists of, by weight, 30-55% Co, 15-27% Mn, 0.3-2.0% C, <=3.6% Si and the balance Fe. When the alloy is treated under heating at a temp. giving nonmagnetic gamma-phase in a thermal equilibrium state and quenched to room temp., the gamma-phase state is maintained without causing phase transformation. The alloy is not cracked even when cold rolled, cold swaged or cold drawn at a high rate, and it maintains the nonmagnetic state and has high workability. By simply treating the alloy under heating for a much shorter time (about 1hr) than the time of a treatment under heating for a conventional alloy, desired magnetic characteristics are obtd.

Description

【発明の詳細な説明】 本発明社磁性材料用re −Co −Mn −C系合金
に関する。” 現在各方厘で用いられているFeCr−Co系合金は冷
間加工2例えば圧延、伸線およびスェージ加工等が容易
であるという特徴を有する永久磁石として知られている
。そして、さらに磁気特性を向上させるための努力が払
われている。ところで、Fe−Cr−Co系合金は永久
磁石としての特性を得るために強い磁性の相と弱゛い磁
性の相を適蟲に分散させる熱処理方法が用いられて−る
。しかしながら、その熱処理方法は411電の温度籠−
を所定Oゆり(〉シ九速度(例えば、20℃/時間)で
降下させ、さもに長時間O時効処理を施すものであ31
.10時間あるいはそれ以上の熱処理時間を必要とする
方法である。窃らに上記降温遮変が磁気特性に大き゛く
影響を与える丸め、降温プ四ダラムは厳密゛に管理する
ことが必要であった。その問題点を清決するために、連
続降温でなく、10℃〜20℃の゛間隔で段階的に降温
させる方法が提案されて−るが、中は)長時間の熱処理
が必要であった・ 本発明は、 re −Cr −Co系合金におけるよう
な熱処理に必!!な厳密な降温プロゲラ五の管理や長時
間の熱処理を必要とせず、1時間mmの短時間の熱処理
で所望の磁気特性が得られ、さらに所望の場所を非磁性
化できるという大きな特徴を有する磁性材料用合金を提
供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a re-Co-Mn-C alloy for magnetic materials. ” The FeCr-Co alloy currently used in various industries is known as a permanent magnet that can be easily cold-worked, such as rolling, wire drawing, and swaging. Efforts are being made to improve the magnetic properties of Fe-Cr-Co alloys.By the way, in order to obtain properties as permanent magnets, Fe-Cr-Co alloys are heat treated to disperse the strong magnetic phase and weak magnetic phase into appropriate particles. However, the heat treatment method is a 411-den temperature cage.
is lowered at a predetermined rate (e.g., 20°C/hour) and subjected to long-term O aging treatment.
.. This method requires a heat treatment time of 10 hours or more. In addition, it was necessary to strictly control the temperature drop and shielding changes mentioned above, which have a large effect on magnetic properties. In order to solve this problem, a method has been proposed in which the temperature is lowered stepwise at intervals of 10°C to 20°C instead of continuously, but this method requires a long heat treatment. The present invention is essential for heat treatment such as in re-Cr-Co alloys. ! It is a magnetic material that has the major characteristics that the desired magnetic properties can be obtained with a short heat treatment of 1 hour, without the need for strict temperature control or long heat treatment, and furthermore, the desired location can be made non-magnetic. The present invention provides alloys for materials.

本発明の磁性材料用合金は、 Coが30〜55重量%
e Mnが15〜2711%、Cが0.3〜2.0重量
’IG、 81が3.6重量襲以下そして残部が、Pe
からなることを特徴とする合金である。Feは910℃
〜1390Cの温度範囲で非磁性の両心立方構造(以下
、r相と−う)となるが、室温に急冷すると、磁性の体
心立方構造(以下。
The alloy for magnetic materials of the present invention contains 30 to 55% by weight of Co.
e Mn is 15 to 2711%, C is 0.3 to 2.0 IG, 81 is less than 3.6 IG, and the remainder is Pe.
It is an alloy characterized by consisting of. Fe is 910℃
In the temperature range of ~1390C, it becomes a non-magnetic bi-centered cubic structure (hereinafter referred to as r-phase), but when rapidly cooled to room temperature, it becomes a magnetic body-centered cubic structure (hereinafter referred to as r-phase).

α相という)となる。re K Muを添加し、Mnの
添加量を増加すると、r/(γ+α)境界が低温側へ肉
りて$)、そして、Cを少量添加すると、高温での非磁
性のr相が室温で得られる。
(referred to as α phase). When adding re K Mu and increasing the amount of Mn added, the r/(γ+α) boundary widens toward the low temperature side ($), and when a small amount of C is added, the nonmagnetic r phase at high temperature changes at room temperature. can get.

以上のようなFe Mn C合金を強度に冷間加工し。The above Fe Mn C alloy is cold-worked to make it strong.

低温で熱処理してr相を磁性相に変態させると。When the r-phase is transformed into a magnetic phase by heat treatment at a low temperature.

Mnが少量では高い保磁力(以下、Hcという)が得ら
れず2Mnが多量になると磁化量が減少す1     
    ′ る。さらKCoの添加紘、磁性相の磁化量を増加させる
効果がある。
With a small amount of Mn, high coercive force (hereinafter referred to as Hc) cannot be obtained, and with a large amount of 2Mn, the amount of magnetization decreases.
′ Furthermore, the addition of KCo has the effect of increasing the amount of magnetization of the magnetic phase.

また8iはFeK対して、高温でγ域を形成して固溶し
9本発明の舎′″会の磁気特性を改善する元素である。
Further, 8i is an element that forms a γ region at high temperatures and forms a solid solution with FeK, improving the magnetic properties of the structure of the present invention.

上記の本発明の合金は、熱平衡状−で非磁性のr相が得
られる温度範囲で熱処理した後、室温に急冷すると相変
態が起ることなくr相状箇であり、冷関圧W1.冷関ス
ェージおよび冷関伸纏加工を強度Kjliしても割れを
生じることはなく、シかも非磁性状態を保持し、良好な
加工性を有する合金であるヒとがわかつ九。これらの冷
間加工を行なう先後、従来の合金に比べ非常に1i時間
で簡単な熱部11によって所望の磁気特性が得られるこ
とが本発明の合金の大きな特徴である。
The above-mentioned alloy of the present invention is heat treated in a temperature range in which a nonmagnetic r-phase is obtained in a state of thermal equilibrium, and then rapidly cooled to room temperature to form an r-phase without undergoing phase transformation. It is an alloy with good workability that does not crack even when subjected to cold swage and cold stretch processing at high strength, maintains a non-magnetic state, and has good workability. A major feature of the alloy of the present invention is that after performing these cold workings, the desired magnetic properties can be obtained with a simple hot section 11 in a much shorter time than conventional alloys.

次に本発明の詳細を実施例によって説明する。Next, the details of the present invention will be explained by referring to examples.

まず試料として9次のlll11表に示すAl〜12の
12種類の組成を選んだ。また比較の丸めA13として
、公知のWe  Cr −Co Ti合金を選んだ。
First, 12 compositions of Al to 12 shown in Table 11 of 9th order were selected as samples. In addition, a known We Cr - Co Ti alloy was selected as a comparison rounding A13.

第1表 tf、第1表t)A1〜6に示した化学成分組成の合金
インゴットは1100tl:Oj1度で1時間。
Table 1 tf, Table 1 t) Alloy ingots having the chemical compositions shown in A1 to A6 were heated at 1100 tl:Oj 1 degree for 1 hour.

ムrjlll気中で溶体化処理し先後、10%N鞠6H
水溶液中に浸して急冷した。これらの合金インゴツトか
ら番々小片を切〉出し、磁化量を測定する゛とン飽和磁
車冑度(以下、 IImと込う)は−ずれ%100ma
ss 9度であった。また、xsgi祈によ〉結晶構造
を調べたところ、いずれも両心立方構造以外の1m祈パ
ターンは観測されず、r8が重−で得られたことを確認
し丸、A7〜12は本発明の特許請求の範四から外れ丸
化学成分組成の含金インーットであるが、At〜60合
金インゴットと同様O処理を施したところ、ム7〜10
はA1〜6と同様の結果が得られえ。しかし、ム1−1
および120谷金インゴット社、各kBstx−14,
51cGauss 、  Ba !13.9 KGau
asとtLAllThiび12の化学成分組成では非磁
性のr相を室温に導入できなかりた。A1〜10のr相
状態の合金インゴット011?I酸化膜を除去した後、
冷関伸−1冷聞哀エージあるいは一冷闘圧延加工を論゛
シ、゛その後、 Ar雰囲気中で熱処理を施した。第1
表のA13はFe −Cr −Co系合金の1例である
After solution treatment in the atmosphere, 10%N 6H
It was quenched by immersing it in an aqueous solution. Small pieces are cut out from these alloy ingots and the amount of magnetization is measured.
It was ss 9 degrees. In addition, when we investigated the crystal structure using xsgi, no 1m pattern other than a double-centered cubic structure was observed, and it was confirmed that r8 was obtained in heavy form. Although it is a metal-containing ingot with a round chemical composition that falls outside the scope of claim 4, when it was subjected to O treatment in the same way as the At~60 alloy ingot, it became
The same results as A1-6 can be obtained. However, Mu1-1
and 120 Tanigane Ingot Co., each kBstx-14,
51c Gauss, Ba! 13.9 kgau
With the chemical compositions of as, tLAllTh, and 12, it was not possible to introduce the nonmagnetic r phase at room temperature. Alloy ingot 011 in r-phase state of A1-10? After removing the I oxide film,
Cold Sekishin-1 cold rolling or cold rolling was carried out, and then heat treatment was performed in an Ar atmosphere. 1st
A13 in the table is an example of a Fe-Cr-Co alloy.

413の合金インゴットは、1180Cで1時間水嵩雰
囲気中で溶体化処理を施し、水中に浸して急冷しえ。そ
の後、載置率70%の冷間伸線加工を施し、再び、65
0℃で1時間水素雰囲気中で熱処理を1し、水中に急冷
した(条件人)、その後、再び625℃からio5℃ま
で18℃を間O速度で降し9つ熱処理(水素雰囲気中)
シ、さらに505℃で8時間、水素WM!気中で熱処理
を施した(条件B)。第111!に示した試料の組成と
各種処S条件及び磁気特性との関係を第2表に示−一ノ
′ 第2表 注)なお1表中の条件人と条件Bは前述O条件である。
The No. 413 alloy ingot was solution treated at 1180C for 1 hour in a water atmosphere and quenched by immersion in water. After that, cold wire drawing processing was performed with a placement rate of 70%, and the wire was drawn again at 65%.
Heat treated at 0°C for 1 hour in a hydrogen atmosphere, quenched in water (conditions), then heated again at 18°C from 625°C to io5°C at an O rate for 9 times (in a hydrogen atmosphere)
Hydrogen WM for another 8 hours at 505℃! Heat treatment was performed in air (condition B). 111th! Table 2 shows the relationship between the composition of the sample shown in Table 1, various processing conditions, and magnetic properties.

第2表中の試料Al〜6は本発明の請求範囲内の組成で
あ)、短時間で熱処理ができ、磁気緒特性も良好な値を
示している。一方A7〜10は請求範囲外の組成であ〕
磁気特性は請求範囲内の値に比べ大きく劣っている。を
九公知のFe−Cr−Co系合金は9本発明の合金と同
様の60分の熱処理ではかな)劣つ九磁気特性じか得ら
゛れず11本発明の合金と同等の磁気特性を得るために
は前述の条・件ム及び条件Bのような長時間Q′兜環が
必要で本る。
Samples Al to 6 in Table 2 have compositions within the claimed range of the present invention), can be heat treated in a short time, and exhibit good magnetic properties. On the other hand, A7 to A10 have compositions outside the claimed range.]
The magnetic properties are significantly inferior to the values within the claimed range. The known Fe-Cr-Co alloy can be heat-treated for 60 minutes in the same way as the alloy of the present invention, but cannot obtain magnetic properties that are inferior to the alloy of the present invention, but obtain magnetic properties equivalent to the alloy of the present invention. In order to achieve this, a long Q' ring like the conditions and condition B described above is required.

なお0本発明の合金は第2表に示した熱処理条件に限定
されることはなく温゛度は520℃〜400℃1時間は
180分〜3益の範囲の適当な熱処理条件を選ぶととに
よつても良好な磁気特性が得られる。
It should be noted that the alloy of the present invention is not limited to the heat treatment conditions shown in Table 2, but the temperature can be selected from appropriate heat treatment conditions in the range of 520°C to 400°C for 1 hour to 180 minutes to 300°C. Good magnetic properties can also be obtained.

第2表の結果から2本発明の合金の組成請求範囲を次の
ように限定する。COが30重量S〜55重量襲を外れ
ると保磁力、残留磁束密度(以下Brと云う)* Br
4#および最大エネルギー積(以下B)hnaxと云う
)が劣化した。したがってCoは30重量弧〜55重量
−の範囲が必要である。まえCoが少量の場合Orはよ
)多く加える必要があり、Coが多量O場合はOrは少
量でよ−。しかしCoが30重量襲のときMuを27重
量−よ)多く加えると磁化量が減少し、11用的でなく
なJj、C。
Based on the results shown in Table 2, the claimed range of the composition of the alloy of the present invention is limited as follows. When CO deviates from the 30 weight S to 55 weight range, the coercive force and residual magnetic flux density (hereinafter referred to as Br) * Br
4# and the maximum energy product (hereinafter referred to as B) hnax) deteriorated. Therefore, Co needs to be in the range of 30 to 55 weight arcs. If there is a small amount of Co, it is necessary to add a large amount of Or, and if there is a large amount of Co, it is necessary to add a small amount of Or. However, when Co is 30% by mass and Mu is added by 27% by mass, the amount of magnetization decreases and becomes unusable.

が55重量襲のときは合金に対しては、 Mnt−15
重量襲を下まわって添加すると磁気的Kl!−合金は得
られなかっ九。し九がってsMa@範囲は15重量%〜
2フ重量襲としえ。Maを27重重量型加し九本発明の
合金に対しては、Cを0.3重量憾な下まわって添加す
ると1相を室温に導入することが不可能であった。を九
〇は2.0重量襲まで本発明の合金or相内に固溶さ°
せることかできた。
When the weight is 55, for the alloy, Mnt-15
When added below the weight attack, magnetic Kl! -No alloy was obtained9. Therefore, sMa @ range is 15% by weight ~
2F heavy attack and Shie. For the alloy of the present invention with 27% Ma added by weight, it was impossible to introduce one phase at room temperature when C was added below 0.3% by weight. 90° solid solution in the alloy or phase of the present invention up to 2.0% by weight
I was able to let it go.

Mfiを27重量幅、Cを0.3重量襲添加した本発明
の合金は強度の冷間加工を施すことがで1iえ、し九が
って、Cの範囲は0.3重量S〜2.0重量襲としえ、
8iは3.6重tSを越えて添加するとr相を室温に導
入することが不可能であっ九。
The alloy of the present invention containing Mfi of 27 wt. and C of 0.3 wt. can be subjected to strong cold working. .0 weight attack,
If 8i is added in excess of 3.6 times tS, it is impossible to introduce the r phase to room temperature.

以上第2表に示すように1本発明の請求範囲内の組成を
有する合金は、 F@−Cr −Co系合金のように複
雑で、長時間の熱処理を必要とせず、簡単な熱処理を施
すことで、良好な磁気特性を有することがわかった。
As shown in Table 2 above, alloys having compositions within the claimed scope of the present invention are complex like F@-Cr-Co alloys and do not require long heat treatment, but can be easily heat treated. It was found that the material had good magnetic properties.

さらに本発明の合金では合金インゴットを減面率で99
≦の冷間伸線加工を施し得られ九合金細曽を、475℃
の温度に保持された均熱長200■の水素雰囲気の貫通
炉の一方端から連続して。
Furthermore, in the alloy of the present invention, the area reduction ratio of the alloy ingot is 99
≦ 9 Alloy Hososo obtained by cold wire drawing at 475℃
Continuously from one end of a through-furnace in a hydrogen atmosphere with a soaking length of 200 mm maintained at a temperature of .

60■/分の速度で送シ込み、他の一方端より連続して
取り出し、直径400mのドラムKII!き取る熱処理
方法によっても例えば第1表に示し九Alの組成ではH
c=590 (Oe )t 9r=  9.3(KGa
uss ) e 8q = O198、BHmax  
= 3.3 (MGmuss・Oe ’)の良好な磁気
特性が得られ九。
Drum KII with a diameter of 400 m is fed in at a speed of 60 cm/min and taken out continuously from the other end! For example, in the case of the composition of 9Al shown in Table 1, H
c=590 (Oe)t9r=9.3(KGa
uss ) e 8q = O198, BHmax
Good magnetic properties of = 3.3 (MGmuss・Oe') were obtained.

さらに本発明の合金の他の大きな特徴は熱処理をし所望
の磁気特性を得た後、得られた合金中の所望の場所を約
1000℃、、、、、、、i秒間程度の条件で加□1□
5.や。ム、オ□ウイ、オ、−1ある。
Furthermore, another major feature of the alloy of the present invention is that after it is heat-treated to obtain the desired magnetic properties, a desired location in the resulting alloy is heated at approximately 1000°C for about i seconds. □1□
5. or. There is -1.

これを実施例によって説明する。第1表のA1の組成に
ついて冷間スェージ加工をし440℃−60分の熱部1
1によって得られた棒状合金を、長さ方向の中心軸を軸
にしてI11転tの速度で回転させ、5W連続発振YA
Gレーザの1箇直径のレープビームを10秒間照射し九
。このレーザを照射した部分を切〉出し磁化量を測定す
るとB参の値が約10ガウスとな〉、はとんど非磁性O
r相になっていることを確認した。したがって9本発明
の合金はレーザビーム、電子ビーム、赤外線ビーム等を
用いて所望の場所を非磁性化でき、磁性領域と非磁性領
域の複合化が可能である。
This will be explained using an example. The composition of A1 in Table 1 was cold swaged and heated at 440°C for 60 minutes.
The rod-shaped alloy obtained in 1 was rotated around the central axis in the longitudinal direction at a speed of I11 rotation t, and a 5W continuous wave YA
Irradiate the G laser with a rape beam of one diameter for 10 seconds.9. When we cut out the part irradiated with this laser and measured the amount of magnetization, the value of B was about 10 Gauss, which is mostly non-magnetic O.
It was confirmed that it was in the r phase. Therefore, the alloy of the present invention can be made non-magnetic at a desired location using a laser beam, an electron beam, an infrared beam, etc., and it is possible to combine magnetic and non-magnetic regions.

以上本発明の合金は9強度の冷間加工が容品で。The alloy of the present invention can be cold-worked to a strength of 9.

熱処理も非常に簡単であるという特徴を有し、さらに所
望の部分を非磁性化できるという特徴もあ)工東上、多
くの分野にお−て有用な磁性材料である。
It is a magnetic material that is useful in many fields.

手続補正書偵発) 57、12.−6 昭和  年  月  日 特許庁長官 殿 1、事件の表示   昭和56年 特許 願第1543
70号2・ 発明の名称   1・−Go−Mn−0系
合金3、補正をする者 事件との関係       出 願 人東京都港区芝五
丁目33番1号 (423)   日本電気株式会社 代表者 関本忠弘 4、代理人 〒108  東京都港区芝五丁目37番8号 性成三田
ビル5、補正の対象 明細書の「発明の詳細な説明」の欄。
Procedural amendment reconnaissance) 57, 12. -6 Director General of the Patent Office, Month, Day, 1980, 1, Indication of Case 1982 Patent Application No. 1543
No. 70 No. 2. Title of the invention 1.-Go-Mn-0 alloy 3. Relationship to the amended case Applicant 5-33-1 Shiba, Minato-ku, Tokyo (423) Representative of NEC Corporation Tadahiro Sekimoto 4, Agent 5-37-8 Shiba, Minato-ku, Tokyo 108, Seisei Mita Building 5, ``Detailed Description of the Invention'' column of the specification to be amended.

6、補正の内容 l)明細書の第3頁第5行目の[川・・・、rIIi性
の体心・・・・・・」とあるのを「・・団・、強磁性の
体心・・−・・」と補正する0 ゛ 2)明細書の第3貞第11行目の[・・・・・・γ相を
磁性相に・・・・・・」とあるのを「・・・・・・γ相
を強滅性相に・・・・・・」と補正する。
6. Contents of the amendment 1) In the fifth line of page 3 of the specification, the phrase [River..., rIIi body center...] has been replaced with "...Gan..., a ferromagnetic body..." 0 ゛2) In the 11th line of the 3rd page of the specification, the phrase [...gamma phase is changed to magnetic phase...] is corrected to ``heart...''. . . . The γ phase is changed to the annihilation phase . . . ” and so on.

3)明細書の弗3頁第14行目の「・旧・・、磁性相・
・・・・・」とあるのを[・・・・・・、強@性相・・
・・・・」と補正T6゜ 4)明11a齋の第12頁第9行目のr 町、、、磁」
とあるのを「・・・・・・、強磁」と補正する◎手続補
正書C台応) 特許庁長官 殿 1、事件の表示  昭和56年 特 許 願第1!!4
370号2、発明の名称   ffe−Go−Mn−0
系合金3、補正をする者 事件との関係       出 願 人東京都港区芝五
丁目33番1号 (423)   日本電気株式会社 代表者 関本忠弘 4、代理人 5、補正の対象 明細書の「発明の詳細な説明」の欄。
3) On page 3, line 14 of the specification, “・old・・magnetic phase・
``...'' means [..., Strong @Sungsou...
``...'' and correction T6゜4) Mei 11a Sai, page 12, line 9, ``Machi...''
◎Procedural Amendment C Table Correct) Director General of the Patent Office 1, Indication of Case 1982 Patent Application No. 1! ! 4
No. 370 2, title of invention ffe-Go-Mn-0
System Alloy 3, Relationship with the case of the person making the amendment Applicant: 5-33-1 Shiba, Minato-ku, Tokyo (423) NEC Corporation Representative: Tadahiro Sekimoto 4, Agent 5: "Detailed Description of the Invention" column.

6、補正の内容 (1)明細書の第10頁IM1行から嬉3行の「またC
oが少量・・・・・・・・・・・曲・・曲・・・少量で
よい。」を削除する。
6. Contents of amendment (1) “Also C
A small amount of o......Song...Song...A small amount is enough. ” to be deleted.

Claims (1)

【特許請求の範囲】[Claims] Co : 30〜55重量%、、 Mn : l 5〜
27重量襲、C:0.3〜2.0重量%、8i:3.6
重量膚以下、残部Feからなるζ゛とを特徴とする磁性
材料用re−Co  Mn  C系、合金。
Co: 30-55% by weight, Mn: l5-
27 weight attack, C: 0.3-2.0 weight%, 8i: 3.6
A re-Co Mn C-based alloy for magnetic materials, which is less than 100% in weight and is characterized by ζ゛ consisting of the remainder Fe.
JP56154370A 1981-09-29 1981-09-29 Fe-co-mn-c alloy Granted JPS5873744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56154370A JPS5873744A (en) 1981-09-29 1981-09-29 Fe-co-mn-c alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56154370A JPS5873744A (en) 1981-09-29 1981-09-29 Fe-co-mn-c alloy

Publications (2)

Publication Number Publication Date
JPS5873744A true JPS5873744A (en) 1983-05-04
JPS6128012B2 JPS6128012B2 (en) 1986-06-28

Family

ID=15582671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56154370A Granted JPS5873744A (en) 1981-09-29 1981-09-29 Fe-co-mn-c alloy

Country Status (1)

Country Link
JP (1) JPS5873744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177165A (en) * 1984-02-24 1985-09-11 Nec Corp Magnetic fe-co-mn-c alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177165A (en) * 1984-02-24 1985-09-11 Nec Corp Magnetic fe-co-mn-c alloy
JPS6140744B2 (en) * 1984-02-24 1986-09-10 Nippon Electric Co

Also Published As

Publication number Publication date
JPS6128012B2 (en) 1986-06-28

Similar Documents

Publication Publication Date Title
JPS5942068B2 (en) High manganese non-magnetic steel for cryogenic temperatures
KR830001327B1 (en) Method of manufacturing magnetic element made of alloy
JPS5873744A (en) Fe-co-mn-c alloy
US3983916A (en) Process for producing semi-hard co-nb-fl magnetic materials
US3873380A (en) Process for making copper-containing oriented silicon steel
US4244757A (en) Processing for cube-on-edge oriented silicon steel
JPH0653892B2 (en) Method for producing high strength non-magnetic stainless steel
US4481045A (en) High-coercive-force permanent magnet with a large maximum energy product and a method of producing the same
KR100186289B1 (en) Iron-nickel alloy with particular soft magnetic properties
JPS5873743A (en) Fe-co-mn-c alloy
JPS5873748A (en) Fe-co-mn-c alloy
JPS59110763A (en) Fe-co-mn-c type magnetic alloy
JPS5873749A (en) Fe-co-mn-c alloy
JPH0790505A (en) Soft magnetic steel material and its production
JPS5873747A (en) Fe-co-mn-c alloy
JPS6128017B2 (en)
JPS6365042A (en) Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture
JP3176385B2 (en) Method for producing Ni-Fe-Cr soft magnetic alloy sheet
EP0023398B1 (en) Manganese steels and a process of making these steels
JPS5873745A (en) Fe-co-mn-c alloy
JPH0770715A (en) Soft magnetic steel excellent in strain resistance and production thereof
JPS58164763A (en) Fe-co-mn-c alloy for magnetic material
JPS60177165A (en) Magnetic fe-co-mn-c alloy
JPH036353A (en) Ultra high tensile dual-phase alloy and its manufacture
JP2776593B2 (en) Grain refinement method for titanium-aluminum intermetallic compound