JPS5873748A - Fe-co-mn-c alloy - Google Patents
Fe-co-mn-c alloyInfo
- Publication number
- JPS5873748A JPS5873748A JP56154373A JP15437381A JPS5873748A JP S5873748 A JPS5873748 A JP S5873748A JP 56154373 A JP56154373 A JP 56154373A JP 15437381 A JP15437381 A JP 15437381A JP S5873748 A JPS5873748 A JP S5873748A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- phase
- magnetic
- weight
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は磁性材料用Fe−Co−Mn−C系合金に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Fe-Co-Mn-C alloy for magnetic materials.
現在各方面で用いられているFe 二Or −Co系合
金は冷間加工9例えばi延、仲戯およびスェージ加工等
が容易であ゛ると−う特徴を有する永久磁石として知ら
れている。そし′て、さらに磁゛気特性を向上さ讐るた
めの努力が払われている。ところで、 Fe = Cr
−Co−系合金は永久磁石としての特性を得る丸めに
強“い磁性′の相とSt%/%磁性“の相を適轟に分数
させる熱処理方法が用い゛られている。しかしながら、
その熱処理方法は特定の温度範囲を所定のゆっくりCた
速11!(例えば、20℃/時−)で降下適せ、さらに
長時間の時効処理を施すものであシワ10時間あるいは
それ以上の熱処理時間を必要とする方法である。さらに
上記−渥達度が磁気特性に大きく影響を与える丸め、降
温プ彎グラムは厳密に管理することが必要であった。そ
の問題点を解決するために、連続降温でなく、lO℃〜
20℃の間隔で段階的に降温させる方法が提案されてい
るが、中はシ長時間の熱処理が必要であった。Fe-2-Or--Co alloys, which are currently used in various fields, are known as permanent magnets that are easy to cold-work, such as rolling, rolling, and swaging. Efforts are therefore being made to further improve the magnetic properties. By the way, Fe = Cr
For the -Co- alloy, a heat treatment method is used in which the "strongly magnetic" phase and the "St%/% magnetic" phase are divided into appropriate fractions in order to obtain properties as a permanent magnet. however,
The heat treatment method is to heat a specific temperature range slowly at a predetermined rate of 11! This is a method in which the material is cooled at a temperature of 20 DEG C./hour, for example, and then subjected to a long aging treatment, which requires a heat treatment time of 10 hours or more. Furthermore, it was necessary to strictly control the rounding and temperature drop curves, in which the degree of convergence greatly affects the magnetic properties. In order to solve this problem, instead of continuously decreasing the temperature, we
A method has been proposed in which the temperature is lowered stepwise at intervals of 20°C, but this requires a long heat treatment for the inside.
本発明は* Fe −Cr −Co系合金におけるよう
な熱J6!IK必要な厳IIな降温プログラムの管理や
長時間の熱地−を必要とせず、1時間atの短時間の熱
処理で所望の磁気特性が′得ら糺、さらに所望の場所を
非iaa化できるという大龜′1に□特徴を有する磁性
材料用合金を蝿供すみものである。The present invention is based on *thermal J6! such as in Fe-Cr-Co alloys. The desired magnetic properties can be obtained with a short heat treatment of 1 hour, and the desired location can be made non-IAAA, without the need for strict temperature-lowering program management or long-term heat treatment required for IK. An alloy for magnetic materials that has the following characteristics is commonly used.
本発明o11&性材料金金は、 Coが30〜55重量
%、 Mn#15〜27重量5t、cが0.3〜2.0
重量L Vが2.9重量呪以下そして残部が、F1!か
らなることを特徴とする合金である。Feは910℃〜
1390℃の温度範囲で非磁性の面心立方構造(以下、
γ相という)となるが、室温に急冷すると。The o11&gold material of the present invention contains 30 to 55% by weight of Co, 5 tons of Mn #15 to 27, and 0.3 to 2.0 c.
Weight L V is 2.9 weight curse or less and the rest is F1! It is an alloy characterized by consisting of. Fe is 910℃~
Non-magnetic face-centered cubic structure (hereinafter referred to as
(referred to as γ phase), but when rapidly cooled to room temperature.
磁性の体心立方構造(以下、α相という)となる。It has a magnetic body-centered cubic structure (hereinafter referred to as α phase).
FeK−を添加し、Mnの添加量を増加すると17(r
+α)境界が低温側へ向って移シ、そして。When FeK- is added and the amount of Mn added is increased, 17(r
+α) The boundary moves toward the low temperature side, and.
Cを少量添加すると、″゛高温の非磁性のγ相が室温で
得られる。以上のよりなFe Mn C合金を強度に冷
間加工し、低温で熱処理してγ相を磁性相に変態させる
と一ムが少量では高−保磁力(以下。When a small amount of C is added, a high-temperature, non-magnetic γ phase is obtained at room temperature.The above-mentioned FeMnC alloy is strongly cold worked and heat treated at a low temperature to transform the γ phase into a magnetic phase. When a small amount of aluminum is used, it has a high coercive force (or less).
Hcという)が得られずe Mnが多量になると磁化量
が減少する。さらKCoの添加は、磁性相の磁化量を増
加させる効果がある。If a large amount of e Mn is not obtained (referred to as Hc), the amount of magnetization decreases. Furthermore, the addition of KCo has the effect of increasing the amount of magnetization of the magnetic phase.
またVはre K対して高−でr域を一形成して固溶し
1本発明の合金の磁気特性を改善する元素である。
:、:、。Further, V is an element that forms an r region at high − re K, forms a solid solution, and improves the magnetic properties of the alloy of the present invention.
:, :,.
上記の本発明の合金は、−平衡状態で非磁性のr相が得
られる温度範囲で熱処理した後、室温に急冷すると相変
態が起ることなくr相状態でTo!l。The above-mentioned alloy of the present invention is heat-treated in a temperature range in which a non-magnetic r-phase is obtained in a -equilibrium state, and then rapidly cooled to room temperature to form an r-phase state without phase transformation. l.
冷間正弧、冷間スエージシよび冷間伸線加工を強度に施
しても割れを生じることはなく、シかも非磁性状態を保
持し、良好な加工性を有する合金であることがわかり九
。これらO冷間加工を行倉った後、従来の合金に比べ非
常に短時間で簡単な熱J611によって所望の磁気特性
が得られることが本発明の合金の大きな特徴である。It was found that the alloy does not crack even when subjected to severe cold arc, cold swage and cold wire drawing, maintains a non-magnetic state, and has good workability.9. A major feature of the alloy of the present invention is that after performing these O cold workings, the desired magnetic properties can be obtained by simple heating in a much shorter time than with conventional alloys.
次に本発明の詳細を実施例によって説明する。Next, the details of the present invention will be explained with reference to examples.
まず、試料として、第1表に示すA1−12の12種類
の組成を選んだ。を九比較の九めA13として、公知の
re −Cr −Co −Ti合金を選んだ。First, 12 types of compositions A1-12 shown in Table 1 were selected as samples. A known re-Cr-Co-Ti alloy was selected as the ninth A13 of the nine comparisons.
第1表
tfsst’表のAl〜6に示した化学成分組成の合金
インゴットは1100t:の温度で1時間、Ar雰囲気
中で溶体化処理した後、10襲NaOH水溶液中に浸し
て急冷し丸。これらの合金インゴットから各々小片に@
l)出し、磁化量を測定すると。The alloy ingots having the chemical compositions shown in Al to 6 in Table 1, tfsst', were solution-treated at a temperature of 1100 t for 1 hour in an Ar atmosphere, and then quenched by immersing them in a 10-stroke NaOH aqueous solution. Each small piece from these alloy ingots@
l) and measure the amount of magnetization.
飽和磁束密度(以下、Bsと−う)はいずれも10Ga
uss 11度でi5た。また、xsa折によ)結晶構
造を調べたとζろ、いずれも両心立方構造以外fDB折
パターンは観測されず、 rll14が室温で得られた
ヒとを確認した。A7〜12は本発明0畳許請求の範囲
から外れ丸化学成分組成の合金インゴットであるが、A
l〜60合金インゴットと同様の処理を施したところ、
ム7〜1oはAl〜6と同様の結果が得られた。しかし
AllおよびAl2O合金インゴットは、各k Bs
! 14.5 KGasiss eBs = 13.8
KGaussとな31.AllおよびA12の化学成
分組成では非磁性or相を室温に導大できなかつえ。A
1〜100r相状態の合金インボッ)0表面酸化膜を除
去し先後、冷間伸線、冷間スェージあるいは冷間正弧加
工を施し、七0畿。The saturation magnetic flux density (hereinafter referred to as Bs) is 10Ga in both cases.
uss 11 degrees and i5. In addition, when the crystal structure was examined by XSA folding, no fDB folding pattern other than a bicentered cubic structure was observed, confirming that rll14 was obtained at room temperature. A7 to 12 are alloy ingots with round chemical compositions that are outside the scope of the present invention.
When subjected to the same treatment as the l~60 alloy ingot,
The same results as Al-6 were obtained for samples 7-1o. However, All and Al2O alloy ingots each have a
! 14.5 KGasiss eBs = 13.8
K Gauss 31. With the chemical compositions of All and A12, the nonmagnetic or phase cannot be brought to room temperature. A
After removing the 0 surface oxide film, the alloy ingot in the 1 to 100r phase state is subjected to cold wire drawing, cold swaging, or cold straight arc processing, and is then processed to a wire width of 70 mm.
Ar雰−気中て熱処理を施した。m1表の413はFe
−Or −Co系合金の1例である。A130合金イ
ンゴットは、1180℃で1時間、水嵩雰囲気中て溶体
化処理を施し、水中に浸して急冷し丸。Heat treatment was performed in an Ar atmosphere. 413 in m1 table is Fe
-Or - This is an example of a Co-based alloy. The A130 alloy ingot was solution-treated at 1180°C for 1 hour in a water atmosphere, then quenched by immersion in water.
その後滅藺率70−の冷間伸S加工を施し、再び。After that, it was subjected to cold stretching S processing with a 70% inertness rate, and again.
650℃で1時間水素雰囲気中で熱処理を施し。Heat treatment was performed at 650°C for 1 hour in a hydrogen atmosphere.
水中に急冷し九(条件ム)。その後、再び、625℃か
ら505℃まで18℃/時間の速度で降しっつ熱部Im
(水素xm気中)シ、さらに505℃で8時間、水素雰
囲気中で熱処理を施した(条件B)。Nine (conditionum) quenched in water. After that, the temperature of the hot part Im is reduced again from 625°C to 505°C at a rate of 18°C/hour.
(Hydrogen x m atmosphere) and further heat treatment was performed at 505° C. for 8 hours in a hydrogen atmosphere (condition B).
第11!に示した試料の組成と各種処理条件及び磁気特
性との関係を嬉2表に示す。11th! Table 2 shows the relationship between the composition of the sample shown in , various processing conditions, and magnetic properties.
S++。S++.
j112表 注)1お9表中の条件ムと条件Bは前述の条件である。j112 table Note) Conditions M and B in Tables 1 and 9 are the conditions described above.
嬉2表中の試料^l〜6は本竺明の請求範囲内の組成で
あシ、短時間で熱処理ができ、磁気緒特性も良好表値を
示している。一方A7゛〜10社−求範囲外の組成であ
り磁気特性は請求範囲内の値に比べ大きく劣っている。Samples ^1 to 6 in Table 2 have compositions within the claimed range of this summary, can be heat treated in a short time, and exhibit good magnetic properties. On the other hand, the compositions of companies A7 to 10 were outside the claimed range, and the magnetic properties were significantly inferior to those within the claimed range.
また公知のFe −Cr−Co系合金は1本発明の合金
と同様の60分の熱処理ではかなり劣った磁気特性しか
得られず1本発明の合金と同等の磁気特性を得るために
は前述の条件人及び条件Bのような長時間の処理が必要
である。In addition, the known Fe-Cr-Co alloy can only be obtained with considerably inferior magnetic properties when subjected to the same 60-minute heat treatment as the alloy of the present invention, and in order to obtain magnetic properties equivalent to the alloy of the present invention, it is necessary to Condition Person and Condition B require long-time processing.
なお9本発明の合金は第2表に示した熱処理条件に限定
されることはなく、温度は520℃〜400℃9時間a
’180分〜3分の範囲の適当な熱処理条件を選ぶとと
くよっても良好な磁気特性が得られる。Note that the alloy of the present invention is not limited to the heat treatment conditions shown in Table 2, and the temperature is 520°C to 400°C for 9 hours a.
By selecting appropriate heat treatment conditions in the range of 180 minutes to 3 minutes, particularly good magnetic properties can be obtained.
第2表の結果から9本発明の合金の組成請求範囲を次の
ように限定する。Coが30重量憾〜55重量憾を外れ
ると保磁力、残留磁束密度(以刊「と云う) e Br
4 eおよび最大エネルギー積(以下BHmaxと云
う)が劣化した。し九がりてCoは30重量弧〜55重
量博の範囲が必要である。またCoが少量の場合Crは
よ都多く加える必1Fがあ)、Coが多量の場合はCr
は少量でよい。しかしCoが30重量%oときiを27
重量襲よ)多く加えると磁化量が減少し、実用的で表く
なり t C。Based on the results shown in Table 2, the claimed range of the composition of the alloy of the present invention is limited as follows. When Co falls outside the range of 30 to 55 weight, the coercive force and residual magnetic flux density (hereinafter referred to as "") e Br
4 e and the maximum energy product (hereinafter referred to as BHmax) were degraded. Therefore, Co needs to be in the range of 30 to 55 weight arc. Also, if Co is small, it is necessary to add a lot of Cr, but if Co is large, Cr should be added.
A small amount is sufficient. However, when Co is 30% by weight, i is 27
If a large amount is added, the amount of magnetization will decrease, making it more practical.
が55重量襲のときは、合金に対してはJ−を15重量
襲を下まわって添加すると磁気的に硬−合金は得られ&
=りた。し九が6りてJ−の範囲紘15重量憾〜27重
量襲としえ。1を27重量−添加し九本発明の合金に対
しては、ctto、s重量襲を下まわって添加するとr
相を室温に導入することが不可能であうえ。を九〇は2
.0重量%壇で本発明の合金のr相内に固溶させること
ができた0M11を27重量%、Cを0.3重量幅添加
した本発明の合金は強度の冷間加工を膣すことができた
。し九が9で、Cの範−は0.3重量襲〜2.0重量≦
とした。■は2.9重量慢を越えて添加するとr相を室
温に導入することが可能であうえ。When J- is 55% by weight, magnetically hard alloys can be obtained by adding J- to the alloy below 15% by weight.
= Rita. Shi9 is 6 and J-'s range is 15 weights to 27 weights. For the alloy of the present invention, when 27 wt.
It is impossible to introduce the phase to room temperature. 90 is 2
.. The alloy of the present invention in which 27% by weight of 0M11 and 0.3% by weight of C, which were able to be solid-dissolved in the R phase of the alloy of the present invention at 0% by weight, could not be subjected to high-strength cold working. was completed. Shi9 is 9, C range is 0.3 weight attack ~ 2.0 weight ≦
And so. When (2) is added in excess of 2.9% by weight, it is possible to introduce the r phase to room temperature.
以上第2表に示すように9本発明の請求範囲内の組成を
有する合金は* Fe −Cr −Co系合金のように
複雑で、長時間の熱処理を必要とせず、簡単な熱処理を
施すことで、良好な磁気特性を有することがわかった。As shown in Table 2 above, the alloys having the composition within the scope of the claims of the present invention are complex alloys such as *Fe-Cr-Co alloys, and do not require long heat treatment, but can be easily heat treated. It was found that it has good magnetic properties.
さらに本発明の合金上は合金インゴットを減面率で99
%の冷間伸線加工を施し得られた合金細線を、480℃
の温度に保持された均熱長200■の水素雰囲気の貫通
炉の一方端から連続して。Furthermore, the alloy ingot of the present invention has an area reduction ratio of 99
The alloy thin wire obtained by cold wire drawing at 480℃
Continuously from one end of a through-furnace in a hydrogen atmosphere with a soaking length of 200 mm maintained at a temperature of .
60■/分の速度で送シ込み、他の一方端よ)連続して
織り出し、直径400箇のドラムに豐き堆る熱処理方法
によつても例えば第1表に示したムlの組成ではHc
= 570 (Oe ) 、 Br = 9.4 (K
Gaus@)。For example, the composition of the mulch shown in Table 1 can be obtained by a heat treatment method in which the weaving is carried out at a speed of 60 cm/min, the other end is continuously woven, and the mulch is deposited on 400 drums in diameter. Then Hc
= 570 (Oe), Br = 9.4 (K
Gaus@).
8q = 0.97* BHmax = 3.2 (M
Gausa・Oe )の嵐好な磁気特性が得られ丸。8q = 0.97* BHmax = 3.2 (M
Gausa・Oe)'s excellent magnetic properties were obtained.
さもに本発明の合金の他の大きな特徴は、熱処理をし所
望の磁気特性を得丸後、得られ九合金中の所望の場所を
約1000℃、1秒間S度の条件で加熱後急冷すると、
その1.−:、′−が非磁性化することである・これを
実施例によってl!明する。第1表の′A1の組成につ
いて冷間スェージ加工をし440℃−60分の熱処理に
よって得られた棒状合金を長さ方向の中心軸を軸にして
1回転/秒の速度で回転させ、5W連続発振YAGレー
ザの1m直径のレーダビームを10秒間照射した。この
レーザを照射した部分を切り出し磁化量を測定するとB
10値が約lOガウスとなシ、はとんど非磁性のr相に
なっていることを確認した。したがって本発明の合金は
レーザビーム、電子ビーム、赤外線ビーム等を用にて所
望の場所を非磁性化でき、磁性領域と非磁性領域の複合
化が可能である。Another major feature of the alloy of the present invention is that after it has been heat-treated to obtain the desired magnetic properties, it can be heated at a desired location in the alloy at approximately 1000°C for 1 second at S degrees, and then rapidly cooled. ,
Part 1. -:,'- is to become non-magnetic. I will clarify. The rod-shaped alloy obtained by cold swage processing and heat treatment at 440°C for 60 minutes for the composition 'A1 in Table 1 was rotated at a speed of 1 revolution/second about the central axis in the longitudinal direction, and 5W A radar beam of 1 m diameter from a continuous wave YAG laser was irradiated for 10 seconds. When we cut out the part irradiated with this laser and measure the amount of magnetization, B
It was confirmed that the 10 value was about 1O Gauss, and that it was mostly in the nonmagnetic r phase. Therefore, the alloy of the present invention can be made non-magnetic at a desired location using a laser beam, an electron beam, an infrared beam, etc., and it is possible to combine magnetic and non-magnetic regions.
以上本発明の合金は1強度の冷間加工が容易で。As mentioned above, the alloy of the present invention can be easily cold-worked to a strength of 1.
熱地理も非−”に鴎単であるという特徴を有し、さらに
所望の部分を非磁性化できるという特徴もあシ工東上、
多くの分野にお−て有用な磁性材料である。Thermogeography also has the characteristic of being non-magnetic, and it also has the characteristic of being able to make a desired part non-magnetic.
It is a useful magnetic material in many fields.
゛ 手続補正書(臼′L)
昭和 ♂6°1餉15 日
特許庁長官 殿
1、事件の表示 昭和56年、特 許 願第154
373号2、発明の名称 Fe−OFe−0o−系
合金3、補正をする者
事件との関係 出 願 人−゛ 東工;〔
都港区芝五丁目33番1号(423) 日本電気株
式会社
代表者 関本忠弘
4、代理人
5、補正の対象
明細書の「発明の詳細な説明」の欄。゛ Procedural amendment (Usu'L) Showa ♂ 6° 1 15th Japan Patent Office Commissioner 1, Indication of case 1981, Patent Application No. 154
No. 373 No. 2, Title of the invention Fe-OFe-0o-based alloy 3, Relationship with the person making the amendment case Applicant: Tokyo Kogyo;
5-33-1 Shiba, Miyakominato-ku (423) NEC Corporation Representative Tadahiro Sekimoto 4, Agent 5, ``Detailed Description of the Invention'' column of the specification to be amended.
6、補正の内容
(1) 明細書の第1O頁第1行から第3行の「また
COが少量・・・・・・++*+*+、・・・・・・・
・・・・・・・・少量で↓い。」を削除する。6. Contents of the amendment (1) In the specification, page 1 O, lines 1 to 3, ``Also, there is a small amount of CO...++*+*+,...
・・・・・・・・・A small amount is ↓. ” to be deleted.
手続補正書翰剤
57.12.−6
昭和 年 月 日
特許庁長官 殿
1、事件の表示 昭和56年特 許 願第15437
3 号2、発明の名称 、。−0゜−一。−01合
。Procedural amendment letter 57.12. -6 Director General of the Japan Patent Office, Month, Day, 1980, 1, Indication of Case 1982 Patent Application No. 15437
3 No. 2, Title of the invention. -0°-1. -01 go.
3、補正をする者
事件との関係 出 願 人東京都港区芝五
丁目33番1号
4、代理人
〒108 東京都港区芝、五■゛目37番8号 住人
三田ビル5、補正の対象
明細書の「発明の詳細な説明」の個。3. Relationship between the person making the amendment and the case Applicant: 5-33-1-4 Shiba, Minato-ku, Tokyo; Agent: 5-37-8, Shiba, Minato-ku, Tokyo 108; Resident: Mita Building 5; Amendment: ``Detailed description of the invention'' in the subject specification.
6、補正の同各
υ・明細書の第3頁第5行目の[磁性の本心・・・o
jとあるのを「強磁性の本心・・・・・・。」と補正す
る。6. Amendments to the same υ・Page 3, line 5 of the specification [The essence of magnetism...o
j is corrected to ``The true meaning of ferromagnetism...''.
2)・明細書の第3頁第lO行目の「・・・・・・、・
・・・・・γ相を低性相に」とあるのを「・・・・・・
、・・・・・・・γ相を強磁性相に」と補正する。2)・Page 3, line 10 of the specification “・・・・・・,・
・・・・・・Convert the γ phase to a low sex phase'' is replaced with ``...
,......The γ phase is changed to a ferromagnetic phase.''
3)明細晋の第3貞第13竹目の[・・・・・・。−−
1低注相の磁化itを」とあるのを「・・・・・・。・
・・・・・、強磁性相の磁1ヒ瀘を」と補正する。3) The 13th bamboo of the 3rd chapter of the Jin Dynasty [......]. ---
1. The text "low phase injection magnetization it" should be replaced with "......
..., the magnetic phase of the ferromagnetic phase is corrected as ".
4)明細着の第12貞第8朽目の「・・・・・・、磁性
」とあるのを「・・・・・−1強磁性」と補正す。。4) Correct the phrase ``...magnetism'' in the 12th order, 8th column of the specification to read ``...-1 ferromagnetism.'' .
Claims (1)
1、 C: 0.3〜2.0重量%、V : 2.9重
量襲以、下残部Feからなることを特徴とする磁性材料
用Fe−Co−MnC系合金。For magnetic materials characterized by Co: 30 to 55 weight s, Mn: 15 to 27 weight s, C: 0.3 to 2.0 weight %, V: 2.9 weight % or less, and the lower balance consists of Fe. Fe-Co-MnC alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56154373A JPS5873748A (en) | 1981-09-29 | 1981-09-29 | Fe-co-mn-c alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56154373A JPS5873748A (en) | 1981-09-29 | 1981-09-29 | Fe-co-mn-c alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5873748A true JPS5873748A (en) | 1983-05-04 |
JPS6128015B2 JPS6128015B2 (en) | 1986-06-28 |
Family
ID=15582734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56154373A Granted JPS5873748A (en) | 1981-09-29 | 1981-09-29 | Fe-co-mn-c alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5873748A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60177165A (en) * | 1984-02-24 | 1985-09-11 | Nec Corp | Magnetic fe-co-mn-c alloy |
-
1981
- 1981-09-29 JP JP56154373A patent/JPS5873748A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60177165A (en) * | 1984-02-24 | 1985-09-11 | Nec Corp | Magnetic fe-co-mn-c alloy |
JPS6140744B2 (en) * | 1984-02-24 | 1986-09-10 | Nippon Electric Co |
Also Published As
Publication number | Publication date |
---|---|
JPS6128015B2 (en) | 1986-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3634072A (en) | Magnetic alloy | |
CN106119719B (en) | Ultra low cobalt Fe-Co magnetic alloy | |
US2300336A (en) | Magnetic alloy of iron and aluminum | |
US4695333A (en) | Iron-chromium-base spinodal decomposition-type magnetic (hard or semi-hard) alloy | |
JPWO2014157146A1 (en) | Austenitic stainless steel sheet and method for producing high-strength steel using the same | |
US3843424A (en) | Normal grain growth(110)(001)textured iron-cobalt alloys | |
KR830001327B1 (en) | Method of manufacturing magnetic element made of alloy | |
US3983916A (en) | Process for producing semi-hard co-nb-fl magnetic materials | |
JPS5873748A (en) | Fe-co-mn-c alloy | |
JPS63272007A (en) | Ultra-high coercive force permanent magnet exhibiting maximum energy product and manufacture thereof | |
Major et al. | Physical metallurgy and properties of a new high saturation Co-Fe alloy | |
US3189493A (en) | Processes for producing ductile cobaltiron-vandium magnetic alloys | |
JPS59110763A (en) | Fe-co-mn-c type magnetic alloy | |
Szymura et al. | Permanent magnetic properties of Fe-Cr-Co-Mo alloy | |
JPS6128011B2 (en) | ||
JPH0790505A (en) | Soft magnetic steel material and its production | |
JPS5873744A (en) | Fe-co-mn-c alloy | |
US2209685A (en) | Silicon electrical steel sheet | |
JPS6128016B2 (en) | ||
JPS5873747A (en) | Fe-co-mn-c alloy | |
JPS58164763A (en) | Fe-co-mn-c alloy for magnetic material | |
JPS6128013B2 (en) | ||
Masumoto et al. | Nonmagnetic Elinvar-Type Alloys in the Mn–Cu–Cr System | |
JPH0770715A (en) | Soft magnetic steel excellent in strain resistance and production thereof | |
JPS6128017B2 (en) |