JPS5873175A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS5873175A
JPS5873175A JP17069481A JP17069481A JPS5873175A JP S5873175 A JPS5873175 A JP S5873175A JP 17069481 A JP17069481 A JP 17069481A JP 17069481 A JP17069481 A JP 17069481A JP S5873175 A JPS5873175 A JP S5873175A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor layer
layer
epitaxial growth
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17069481A
Other languages
Japanese (ja)
Inventor
Kenji Ikeda
健志 池田
Kazuhisa Takahashi
和久 高橋
Jun Osawa
大沢 潤
Wataru Suzaki
須崎 渉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP17069481A priority Critical patent/JPS5873175A/en
Publication of JPS5873175A publication Critical patent/JPS5873175A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate manufacture, and to improve the temperature characteristics, etc., of a semiconductor laser by a method wherein epitaxial growth layers containing an active layer formed in a groove are formed in the manner not to extend over the dielectric film adhered on the main surface of a semiconductor substrate. CONSTITUTION:A dielectric layer 12 of Si3N4 is formed according to the CVD method on a semionductor substrate 1, and patterning is performed according to the photoetching method. After a groove is formed according to the chemical etching method, etc., a first semiconductor layer 6 consisting of N type InP, a second semiconductor layer 7 consisting of InGaAsP, a third semiconductor layer 8 consisting of P type InP and a fourth semiconductor layer 9 consisting of P type InGaAsP are formed by crystal growth according to the liquid phase epitaxial growth method. According to the liquid phase epitaxial growth method, the crystal is not grown on the dielectric film 12 being amorphous like Si3N4, and is grown only in the groove, and the manufacturing yield of the semiconductor laser is improved, and after then, a first electrode 10 and a second electrode 11 are adhered on both the faces, and the temperature characteristics, etc., are improved.

Description

【発明の詳細な説明】 本発明は、発振横モードが単一で良質な光を低閾値で得
られ、製作も簡単な新しい半導体レーザを提供するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a new semiconductor laser that has a single oscillation transverse mode, can obtain high-quality light with a low threshold value, and is easy to manufacture.

第1図は、B C,(Buried Crescent
 ;埋込み三日月)形レーザと呼ばれる従来の半導体レ
ーザの一例を示す1面図である。
Figure 1 shows B C, (Buried Crescent
FIG. 1 is a plan view showing an example of a conventional semiconductor laser called a buried crescent laser.

この半導体レーザは、n−1nP基板結晶(1)上へn
 −1nP(2)* n −1nGaAsP (31+
 p −InP(4)、n−InP (f+)を順次成
長させた後、写真蝕刻法でマスクを形成し、化学エッチ
して溝を穿ち、マスク材を除去した後、n −1nP 
(6ン、  InGaAsP (7) 、 p −1n
P(8)及びp −1nGaAsP (9)を順次成長
させ、真空蒸着法等に依り、正電極韓、負電極Qvを形
成し、その後溝に垂直な曲で剪曲して製作していた。こ
のBC形レーザでは、2度目に成長されたI nGaA
sP(7)へ、n −1nP(6)から電子が、p −
1nP (8)がら正孔が注入され、発光再結合する。
This semiconductor laser is deposited on an n-1nP substrate crystal (1).
−1nP(2)* n −1nGaAsP (31+
After sequentially growing p-InP (4) and n-InP (f+), a mask was formed by photolithography, a groove was formed by chemical etching, and the mask material was removed.
(6n, InGaAsP (7), p-1n
P (8) and p -1nGaAsP (9) were sequentially grown, a positive electrode ring and a negative electrode Qv were formed using a vacuum evaporation method, and then the grooves were bent perpendicular to the grooves. In this BC type laser, the second grown InGaA
Electrons from n -1nP (6) to sP (7), p -
Holes are injected from 1nP(8) and recombine radiatively.

このInGaAsP (7)は、電気的光学的に活性で
あることから、活性層と呼ばれる。また、InGaAs
P (7)の禁制帯幅は、n−1nP(6)やp −1
nP (8)より狭く、屈折率が大きい。
This InGaAsP (7) is called an active layer because it is electro-optically active. Also, InGaAs
The forbidden band width of P (7) is n-1nP(6) or p -1
It is narrower than nP (8) and has a larger refractive index.

〜8μ市とすれば、第1図に示す様に上弦の三日1様の
形状となる為、幅方同に対しては、中央の1μmN度の
狭い範囲に光が閉じ込められる。
If the width is ~8 μm, the shape will be like a waxing trident as shown in FIG. 1, so light will be confined within a narrow range of 1 μmN degrees in the center for the same width.

このため、活性層(7)中に許される発振横モードは基
本モードに制限され、単一モード発振するのである。
Therefore, the oscillation transverse mode allowed in the active layer (7) is limited to the fundamental mode, resulting in single mode oscillation.

しかし、このBC形レーザに於ては、溝の中にある活性
層(7)へ流れる有効な電流はがりでなく、n −1n
P f5)やp −1nP (4) 、 n −1nG
aAsP (3)の部分を流れる無効な電流もある。こ
の無効な電流は、p −InP (4)とn −1nP
 (5)の逆バイアスに依って小さくなる様工夫されて
いる。しかし、この無効電流の流れる領域の面積は、有
効な溝部の面積の200倍栓度あるため無視できす、温
度上昇とともに無効電流は急激に上昇し、レーザの温度
特性を悪化させる支配的な要因となっている。また、こ
のBC形レーザを製作するにあたっては、一部結晶成長
した後、溝を形成し、再度結晶成長するという面絢で難
しい工程を特徴とする特に一度成長した面は、基板表面
に比・べて平面度が悪く、微細なパターニングには適さ
ず、幅を一様にするのが困難である。
However, in this BC type laser, the effective current flowing to the active layer (7) in the groove is not n -1n
P f5), p -1nP (4), n -1nG
There is also a reactive current flowing through the aAsP (3) section. This invalid current is p −InP (4) and n −1nP
It is devised so that it can be reduced by the reverse bias in (5). However, the area of the region where this reactive current flows is 200 times larger than the effective groove area, so it can be ignored.The reactive current increases rapidly as the temperature rises, and is the dominant factor that deteriorates the temperature characteristics of the laser. It becomes. In addition, manufacturing this BC type laser is characterized by an elaborate and difficult process in which a part of the crystal is grown, a groove is formed, and the crystal is grown again. All of them have poor flatness and are not suitable for fine patterning, and it is difficult to make the width uniform.

本発明はこのような点に鑑みてなされたもので、液相エ
ピタキシャル法では、非晶質な誘電体#膜上に成長しな
いことを利用し゛C1基板の溝中にの作される。第8図
aのn −1nP基板結晶(1)上にCVD法に依すS
i3N4膜(2)を形成し・(第8図b)ζ写真蝕刻法
でパターニングする(化8図C)。
The present invention has been made in view of these points, and takes advantage of the fact that in the liquid phase epitaxial method, it does not grow on an amorphous dielectric # film, and is formed in the groove of the C1 substrate. On the n -1nP substrate crystal (1) in Figure 8a,
An i3N4 film (2) is formed (FIG. 8b) and patterned by zeta photolithography (FIG. 8C).

次に、リアクティブイオンエツチング法や通常の化学エ
ツチング法等に依り渦を形成しく第8図d)、液相エピ
タキシャル法によりn −1nP (6)、 InGa
AsP(7) e p−InP (8)及びp −In
GaAsP (9)を結晶成長させる(第8図e)。こ
のとき、液相エピタキシャル法では、Si3N4のよう
な非晶質な誘電体膜上には成長しないので、溝内のみに
成長する。その後、真空蒸着法にまり両面に金属を被着
せしめ、圧電極QQ、負電極(ロ)を形成する(第8図
f)。
Next, a vortex is formed using a reactive ion etching method or a normal chemical etching method (Fig. 8d), and a liquid phase epitaxial method is used to form an n-1nP (6), InGa
AsP (7) e p-InP (8) and p-In
GaAsP (9) is grown as a crystal (Fig. 8e). At this time, in the liquid phase epitaxial method, growth does not occur on an amorphous dielectric film such as Si3N4, so it grows only within the groove. Thereafter, metal is deposited on both surfaces using a vacuum evaporation method to form a piezo electrode QQ and a negative electrode (b) (FIG. 8f).

この実施例装置は、第1図の従来装置と同様にInGa
AsP (7)が活性層として作用し、正を極αQを正
伝では、溝部以外は誘電体薄膜(2)で絶縁されている
ため、溝部以外に電流は全く流れず、無効電流を完全に
除去でき、発振閾値の温度依存性も良好になり、70°
C以上の高温雰囲気中でも連続発振がoJ能である。発
振光のモード特性は、従来例の説明と同様に良好である
事は6を待たない。
This embodiment device is similar to the conventional device shown in FIG.
In the case where AsP (7) acts as an active layer and the positive polarity αQ is insulated by the dielectric thin film (2) other than the groove, no current flows anywhere other than the groove, completely eliminating reactive current. The temperature dependence of the oscillation threshold is also good, and 70°
Continuous oscillation is possible even in a high temperature atmosphere of C or higher. The mode characteristics of the oscillated light are as good as those described in the conventional example.

また、液相エピタキシャル法で各層を形成しているが、
これは次の理由による。気相エビタキシャは溝に対応し
て凹凸ができ、電極形成が難しくなる。また、この成長
した面を放熱体へ半田付けず・′る際にも、hta体薄
膜薄膜上晶質の厚さだけ溝部が放熱体から触れる事とな
り、放熱が悪くなる。
In addition, each layer is formed using a liquid phase epitaxial method.
This is due to the following reason. Gas-phase epitaxia has irregularities corresponding to the grooves, making it difficult to form electrodes. Furthermore, when this grown surface is not soldered to the heat sink, the groove portion comes into contact with the heat sink by the thickness of the crystalline layer on the HTA thin film, resulting in poor heat dissipation.

換dすれば、接合一度の上昇を招来し、1度特性の悪化
、寿命の短縮等、不具合が多くなる。この点、液相エピ
タキシャル法では、非晶質な胱電体薄膜であるSi3N
4腺(2)上には全く伺も成長せず、InGaAsP 
(7)の上へ、上記InGaAsP (7)より名士禁
制となる組成とした場合、p −1nGaAsP(2)
の発光波長は1.1μmとなる組成とする。この場合、
活性層(7)で発生した光は、p −1nGaAsP 
Qaの禁制帯幅がp −InP (8)やn −1nP
 (6)より狭い為、屈折率もp−InP (8)やn
 −InP (61より大きく、p −1nGaAsP
亜へも広ろがって導波される。この様に光を広ろげて導
波することにより、高出力化が図れ、かつ放射されるレ
ーザビームの広ろがりを狭くすることができる。この様
な作用を有するp −1nGaAsPOを光導波層と呼
ぶことにする。光の導波作用には、p形、n形という電
気伝導形は直接関係しない。そこで、この光導波層(至
)を活性HIJ(7)の下に入れて、n形としても良い
If it is replaced, the bonding time will increase, and many problems will occur, such as deterioration of characteristics and shortening of life. In this respect, in the liquid phase epitaxial method, Si3N, which is an amorphous cystoelectric thin film, is
There was no growth on the 4th gland (2), and InGaAsP
On top of (7), when the composition is prohibited from the above InGaAsP (7), p -1nGaAsP (2)
The composition is such that the emission wavelength is 1.1 μm. in this case,
The light generated in the active layer (7) is p -1nGaAsP
The forbidden band width of Qa is p -InP (8) or n -1nP
(6) Because it is narrower than p-InP (8) and n
-InP (greater than 61, p -1nGaAsP
The waves also spread to Asia and are guided. By spreading the light and guiding it in this manner, it is possible to achieve high output and to narrow the spread of the emitted laser beam. p-1nGaAsPO having such an effect will be referred to as an optical waveguide layer. The electrical conductivity types, p-type and n-type, are not directly related to the waveguide effect of light. Therefore, this optical waveguide layer (to) may be placed under the active HIJ (7) to make it n-type.

以上の実施例ではn形の基板結晶を用いて説明したが、
全ての伝導形を入れ替えてもよい。また、基板にInP
単結晶を用いる例を示したが、GaAsを用いても同様
である。例えば、第2図に於て、(1)をn −GaA
s 、(6)をn  Al0−4 Gao、s As 
I (7)をp−Alxにal−xAs(x≦0.8 
)、 ’(8)をp  AIo、4Ga6,6 As 
*(9)をp −GaAsとしてもよい。また、第4図
に於て、(1)をn −GaAs 、 (6ンをn −
AIo、4 Gaes As * (7)をp −Al
xGa+−xAs、 G:Iをp −A1yGa+−y
As(x < y <。
Although the above embodiments were explained using an n-type substrate crystal,
All conductivity types may be interchanged. In addition, InP is used for the substrate.
Although an example using a single crystal has been shown, the same can be said of using GaAs. For example, in Figure 2, (1) is replaced by n-GaA
s, (6) as n Al0-4 Gao, s As
I (7) to p-Alx al-xAs (x≦0.8
), '(8) p AIo, 4Ga6,6 As
*(9) may be p-GaAs. In addition, in Fig. 4, (1) is n -GaAs, (6n is n -
AIo, 4 Gaes As * (7) as p -Al
xGa+-xAs, G:I p-A1yGa+-y
As(x<y<.

0.4 > 、 (8)をp−AIo、、 Ga、、、
6 As 、 (9)をp −GaAsと1てもよい。
0.4 > , (8) as p-AIo, , Ga, ,
6As, (9) may be combined with p-GaAs.

勿論、これらの伝導形を入れ換えたものも同様である。Of course, the same applies to those in which these conduction types are interchanged.

これらのうち、(1)をp −GaAs【 、勢板結晶、(6)をp −AIo、4 Gao、a 
As 、 (7)をp −AlxGarxAs 、 Q
aをn −AlyGa+−yAs(x<y<0.4 )
 。
Among these, (1) is p -GaAs [ , Seita crystal, (6) is p -AIo, 4 Gao, a
As, (7) as p-AlxGarxAs, Q
a to n-AlyGa+-yAs (x<y<0.4)
.

(8)をn −AIo、4 Gao、g As 、(9
)をn −GaASとしたものは、低抵抗電極の得にく
いp形結晶を広くして抵抗を砥石できる点で優れている
(8) as n -AIo, 4 Gao, g As, (9
) is made of n-GaAS, which is excellent in that the resistance can be ground by widening the p-type crystal, which is difficult to obtain a low-resistance electrode.

また、基板結晶をGaAsとし、溝の中に成長させる各
層を、AlInGaP等の他の一−V族化合物半導体と
しても良い。
Alternatively, the substrate crystal may be made of GaAs, and each layer grown in the groove may be made of another 1-V group compound semiconductor such as AlInGaP.

また、先にも述べた通り、基板結晶上に形成した誘電体
薄膜は、平担度が高く微細パターニングやエツチングが
比較的容易であることを利用して、第5図に示す様に、
複数個の溝を精度良く形成することもできる。この様に
して、各半導体レーサA、B間を半導体レーザCで接続
して、位相同期した半導体レーザを製作することも容易
になる。
Furthermore, as mentioned earlier, the dielectric thin film formed on the substrate crystal has a high degree of flatness and is relatively easy to finely pattern and etch, as shown in FIG.
It is also possible to form a plurality of grooves with high precision. In this way, it becomes easy to connect the semiconductor lasers A and B with the semiconductor laser C to manufacture a phase-synchronized semiconductor laser.

以上のように本発明は、良質な半導体レーザか、比較的
簡単な製法で、従って短時間に歩留り良く得られ、しか
も、閾値が低く、温度特性も艮好な特性を持せられると
いう優れた効果を持つ。
As described above, the present invention provides excellent semiconductor lasers that can be produced using a relatively simple manufacturing method, in a short period of time, and with a high yield, as well as having a low threshold value and excellent temperature characteristics. have an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体レーザの一例を示す断面図、第2
図はこの発明の一実施例を示す断面図、98図はその製
造方法の一例を示す工&[のTo1面図、第4図はこの
発明の他の実施例を示す断面図、第6図はこの発明の応
用例を示す斜視図である。 図において、(1)は半導体基板、(6ンは第1の半導
体層、(7)は第2の半導体層、(8)は第8の半導体
層、QIJは第1のwt極、0υは第2の電極、(6)
は誘亀体朕、(へ)は第4の半1体層である。 なお、図中同−符刊はそれぞれ同一または相当部分を7
バす。 出願人 工業技術院長  石 坂 h  −第1− 第2図 第3図
Figure 1 is a cross-sectional view showing an example of a conventional semiconductor laser;
Figure 98 is a cross-sectional view showing one embodiment of the present invention, Figure 98 is a To1 side view of the process showing an example of its manufacturing method, Figure 4 is a cross-sectional view showing another embodiment of the present invention, Figure 6 FIG. 2 is a perspective view showing an example of application of the present invention. In the figure, (1) is the semiconductor substrate, (6) is the first semiconductor layer, (7) is the second semiconductor layer, (8) is the eighth semiconductor layer, QIJ is the first wt pole, and 0υ is the second electrode, (6)
is the transparent layer, and (to) is the fourth half-body layer. In addition, the same numbers in the figures indicate the same or corresponding parts.
Bus. Applicant: Director of the Agency of Industrial Science and Technology Ishizaka h -No. 1- Fig. 2 Fig. 3

Claims (5)

【特許請求の範囲】[Claims] (1)一方の主面に溝が設けられた第14電形の半導体
基板、上記溝のみが亀山するように上゛記半導体基板の
一方の主面に被着された誘亀体映、この誘電体膜上には
延在しないように上記溝内に形成された活性層を含むエ
ピタキシャル成長層、このエピタキシャル成長層と上記
誘電体膜上に連続して被着された第1のt極、上記半導
体基板の他方の主面に被着された第2の電極を備えた半
導体レーザ。
(1) A semiconductor substrate of type 14 with a groove provided on one main surface; an epitaxial growth layer including an active layer formed in the groove so as not to extend over the dielectric film; a first t-pole continuously deposited on the epitaxial growth layer and the dielectric film; and the semiconductor. A semiconductor laser including a second electrode deposited on the other main surface of the substrate.
(2)エピタキシャル成長層は、溝の底部から順次&層
された第1導電形の第1の半導体層、この第1の半導体
層より禁制帯幅が狭く活性#Iを檎成する第2の半導体
〜、この第2の半導体ノーより禁制帯幅の広い第2導電
形の第8の半導体層を少なくとも含んで成る特許請求の
範囲第1項記載の半導体レーザ。
(2) The epitaxial growth layer includes a first semiconductor layer of the first conductivity type that is sequentially layered from the bottom of the trench, and a second semiconductor that has a narrower forbidden band width than this first semiconductor layer and that provides active #I. 2. The semiconductor laser according to claim 1, comprising at least an eighth semiconductor layer of the second conductivity type having a wider forbidden band width than the second semiconductor layer.
(3)第2の半導体層と第8の半導体層の間に、禁制帯
幅が上記第2の半導体層より広く、上記第8の半導体層
より狭い第2導亀形の第4の半導体J−を有して成る特
許請求の範囲第2項記載の半導体レーザ。
(3) A second turtle-shaped fourth semiconductor J whose forbidden band width is wider than the second semiconductor layer and narrower than the eighth semiconductor layer, between the second semiconductor layer and the eighth semiconductor layer. - A semiconductor laser according to claim 2, comprising: -.
(4)第1の半導体層と第2の半導体層の間に、禁制帯
幅が上記第1の半導体層より狭く、上記第2の半導体層
より広い第1導電形の第5の半導体層を自して成る特許
請求の範囲第2項記載の半導体レーザ。
(4) Between the first semiconductor layer and the second semiconductor layer, a fifth semiconductor layer of the first conductivity type whose forbidden band width is narrower than that of the first semiconductor layer and wider than that of the second semiconductor layer. A semiconductor laser according to claim 2, which is made by itself.
(5)エピタキシャル成長層は、液相エピタキシャル成
長法で形成されたものである特許請求の範囲第1項記載
の半導体レーザ。
(5) The semiconductor laser according to claim 1, wherein the epitaxial growth layer is formed by a liquid phase epitaxial growth method.
JP17069481A 1981-10-27 1981-10-27 Semiconductor laser Pending JPS5873175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17069481A JPS5873175A (en) 1981-10-27 1981-10-27 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17069481A JPS5873175A (en) 1981-10-27 1981-10-27 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS5873175A true JPS5873175A (en) 1983-05-02

Family

ID=15909660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17069481A Pending JPS5873175A (en) 1981-10-27 1981-10-27 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5873175A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493380A (en) * 1977-12-30 1979-07-24 Fujitsu Ltd Semiconductor light emitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493380A (en) * 1977-12-30 1979-07-24 Fujitsu Ltd Semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JPS6124838B2 (en)
JPH0556036B2 (en)
JPS5940592A (en) Semiconductor laser element
JPS61183987A (en) Semiconductor laser
US5786234A (en) Method of fabricating semiconductor laser
JPH10229246A (en) Ridge semiconductor laser diode and its manufacturing method
JPS6144485A (en) Semiconductor laser device and manufacture thereof
JPS5873175A (en) Semiconductor laser
JP2629678B2 (en) Semiconductor laser device and method of manufacturing the same
JP2940158B2 (en) Semiconductor laser device
JPH0530315B2 (en)
JPH0629618A (en) Multibeam semiconductor laser and manufacturing method thereof
JP2000183458A (en) Semiconductor device and its production
JP2804533B2 (en) Manufacturing method of semiconductor laser
JPS63250886A (en) Manufacture of semiconductor laser element
JPS5911692A (en) Semiconductor laser
JPS62193189A (en) Semiconductor light-emitting device
JPH03263890A (en) Semiconductor laser device and manufacture thereof
JPH08316584A (en) Semiconductor optical element and fabrication thereof
JPS6241437B2 (en)
JPH03145781A (en) Semiconductor laser device
JPS60201684A (en) Semiconductor laser device and manufacture thereof
JPH0433387A (en) Semiconductor laser and manufacture thereof
JPH0243789A (en) Manufacture of buried type semiconductor laser element
JPH02253683A (en) Algaas laser