JPS5871613A - Method of producing solid electrolytic condenser - Google Patents

Method of producing solid electrolytic condenser

Info

Publication number
JPS5871613A
JPS5871613A JP17051781A JP17051781A JPS5871613A JP S5871613 A JPS5871613 A JP S5871613A JP 17051781 A JP17051781 A JP 17051781A JP 17051781 A JP17051781 A JP 17051781A JP S5871613 A JPS5871613 A JP S5871613A
Authority
JP
Japan
Prior art keywords
capacitor element
water
lead
repellent
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17051781A
Other languages
Japanese (ja)
Inventor
園 泰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP17051781A priority Critical patent/JPS5871613A/en
Publication of JPS5871613A publication Critical patent/JPS5871613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Conductive Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は固体電解コンデンサの製造方法に関し、特にコ
ンデンサエレメントより導出された陽極リードへの半導
体層形成部材の這い上り付着を軽減させることを目的と
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solid electrolytic capacitor, and in particular, an object of the present invention is to reduce the tendency of a semiconductor layer forming member to creep up and adhere to an anode lead led out from a capacitor element.

一般にこの種固体電解コンデンサは例えば第1図に示す
°ように、弁作用を有する金属粉末を円柱状に加圧成形
し焼結してなるコンデンサニレメン)AK予め弁作用を
有する金属線を陽極リードBとし1植立し、この陽極リ
ードBの導出部分HL形の第1の外部リード部材Cを溶
接すると共に1ストルート状の第2の外部リード部材り
を、コンデンサニレメン)Aの局面に酸化層、半導体層
を介して形成された電極引出し層lcに半田付けし、ペ
ル後、コンデンサエレメントAの全周面を樹脂材Fにて
被覆して構成されている。
In general, this type of solid electrolytic capacitor is made by press-molding metal powder with valve action into a cylindrical shape and sintering it, as shown in Figure 1. One lead B is planted, and the lead-out part of this anode lead B is welded to the HL-shaped first external lead member C, and one strut-shaped second external lead member is attached to the surface of the capacitor element (A). The capacitor element A is soldered to an electrode lead layer lc formed through an oxide layer and a semiconductor layer, and after soldering, the entire circumferential surface of the capacitor element A is covered with a resin material F.

トコ口で、コンデンサエレメントhVは陽極リードBの
導出部分に第1の外部リード部材0を溶接するに先立っ
て、陽極リードBと共に化成処理によって誘電体層とし
ての酸化層が形成されておす、サラニコンデンサエレメ
ントAのみを半導体母液に一定時間浸漬した後、高温雰
囲気中において熱分解反応を起させて酸化層上に半導体
層が形成されている。
In the capacitor element hV, an oxide layer as a dielectric layer is formed by chemical conversion treatment together with the anode lead B before welding the first external lead member 0 to the lead-out portion of the anode lead B. After only the capacitor element A is immersed in the semiconductor mother liquor for a certain period of time, a thermal decomposition reaction is caused in a high temperature atmosphere to form a semiconductor layer on the oxide layer.

しかし乍ら、この熱分解工程において、高温雰囲気中に
挿入されたコンデンサニレメン)Aはそn自身の温度が
急激に上昇し、内部に含浸された半導体母液が熱分解反
応を起し水蒸気、窒素酸化物などの分解ガスが表面層に
噴き出してくるために、表面層における熱分解途中の半
導体母液層に気泡が生じ、これが陽極リードBの導出部
分に付着していわゆる半導体層形成部材の這い上りを生
ずる。通常、半導体母液の含浸−熱分解操作はコンデン
サエレメントAが多孔質であることに鑑み数回以上繰り
返される関係で、半導体層形成部材の這い上りもさらに
進行する傾向にある。
However, during this thermal decomposition process, the temperature of the capacitor (A) inserted into the high-temperature atmosphere rises rapidly, and the semiconductor mother liquor impregnated inside undergoes a thermal decomposition reaction, resulting in water vapor and As decomposed gases such as nitrogen oxides blow out to the surface layer, bubbles are generated in the semiconductor mother liquid layer in the middle of thermal decomposition in the surface layer, and these bubbles adhere to the lead-out portion of the anode lead B, causing so-called creeping of the semiconductor layer forming member. It causes an upslope. Normally, the impregnation-pyrolysis operation of the semiconductor mother liquor is repeated several times or more in view of the porous nature of the capacitor element A, and the creeping up of the semiconductor layer forming member tends to progress further.

従って、陽極リードBの導出部分に第1の外部リード部
材0を溶接する際に、第1の外部リード部材Oと這い上
った半導体層とが接触して漏洩電流が増加したり、時に
は陰極と陽極とが短絡さnてしまいコンデンサとしての
機能を奏し得なくなるという問題がある。
Therefore, when welding the first external lead member 0 to the lead-out portion of the anode lead B, the first external lead member O and the semiconductor layer that has climbed up may come into contact and leakage current may increase, and sometimes the cathode There is a problem in that the capacitor and the anode are short-circuited and cannot function as a capacitor.

それ故に、本出願人は先にコンデンサエレメントに半導
体層を形成するに先立って、コンデンサエレメント面よ
り導出された陽極リード部分にのみ炭水性被膜を形成す
ることにより、半導体層の這い上り形成を防止する製造
方法を提案した。
Therefore, prior to forming a semiconductor layer on a capacitor element, the present applicant prevents the formation of a creeping semiconductor layer by forming a hydrocarbon film only on the anode lead portion led out from the surface of the capacitor element. We proposed a manufacturing method for this purpose.

この方法によれば、半導体母液の熱分解工程において熱
分解途中の半導体母液が気泡の破裂時などに飛び散って
陽極リードに付着したとしても、撥水性被膜の撥水作用
によってはじかれるために、第1の外部リード部材の溶
接される陽極リード部分への半導体層の形成を防止する
ことができ、漏洩電流特性の劣化を防止できるものであ
る。
According to this method, even if the semiconductor mother liquor in the middle of thermal decomposition scatters when a bubble bursts and adheres to the anode lead in the pyrolysis process of the semiconductor mother liquor, it will be repelled by the water-repellent action of the water-repellent coating. It is possible to prevent the formation of a semiconductor layer on the anode lead portion of the external lead member No. 1 to be welded, and it is possible to prevent deterioration of leakage current characteristics.

しかし乍ら、陽極リードへの撥水性被膜の形成は例えば
液状の撥水性部材にコンデンサエレメント及びlIi&
リードを浸漬した後、コンデンサエレメントにのみ付着
した撥水性部材を洗浄、除去することにより行われてい
るのであるが、コンデンサニレメン)Aの深層部にまで
含浸された撥水性部材は簡単な洗浄πよって除去するこ
とはできない。従って、長時間洗浄液に浸漬しなければ
ならないために1作業性が著しく損なわれ、量産工程へ
の適用が困難であるという問題がある。
However, the formation of a water-repellent coating on an anode lead is difficult, for example, by applying a liquid water-repellent material to a capacitor element and lIi&
This is done by immersing the lead and then cleaning and removing the water-repellent material that has adhered only to the capacitor element. It cannot be removed by π. Therefore, since it has to be immersed in the cleaning liquid for a long time, the workability is significantly impaired, and there is a problem that it is difficult to apply it to a mass production process.

本発明はこのような点に鑑み、撥水性部材によつ又コン
デンサエレメント面から導出された陽極リード部分への
半導体層の這い上り形成を抑制でき、かつ撥水性部材の
コンデンサエレメントの深層部への浸み込みを確実に防
止できる固体電解コンデンサの製造方法を提供するもの
で、以下その一製造方法について第2図〜第4図を参照
して説明する〇 まず、第2図に示すようπ、弁作用を有する金属粉末を
円柱状に加圧成形し焼結してなるコンデンサエレメント
1に予め弁作用を有する金属線を陽極リード2として植
立する。そして、この陽極リード2のコンデンサエレメ
ント面1aからの導出端を帯状の金属板3に一定のピッ
チ間隔にて接続して帯状部品を形成する。そして、液状
の撥水性部材4を陽極リード2のコンデンサエレメント
面1aから充分に離隔した導出部分に滴下し、粒状に被
着、乾燥させる。次に、第3図に示すように、撥水性部
材4を点線位置より実線位置まで移動サセ、コンデンサ
エレメント面zaKm触1にいし近接させる。次に、第
4図に示すように、コンデンサニレメン)lの周面に酸
化層、半導体層を介して電極引出し層5を形成する。そ
して、陽極リード2を所望長さに切断し、この部分にL
形の第1の外部リード部材6を溶接すると共に、ストレ
ート状の第2の外部リード部材7を電極弓1出し層5に
半田付けする。然る後、コンデンサエレメント1の全周
面を樹脂材8にて被覆して固体電解コンデンサを得る。
In view of these points, the present invention is capable of suppressing the formation of a semiconductor layer on the water-repellent member and on the anode lead portion led out from the surface of the capacitor element, and also suppresses the formation of the semiconductor layer on the water-repellent member in the deep part of the capacitor element. The purpose is to provide a method for manufacturing a solid electrolytic capacitor that can reliably prevent the penetration of A metal wire having a valve function is installed in advance as an anode lead 2 in a capacitor element 1 which is formed by press-forming metal powder having a valve function into a cylinder shape and sintering it. The ends of the anode leads 2 extending from the capacitor element surface 1a are connected to the band-shaped metal plate 3 at regular pitch intervals to form a band-shaped component. Then, the liquid water-repellent member 4 is dropped onto the lead-out portion of the anode lead 2 that is sufficiently separated from the capacitor element surface 1a, and is deposited in granular form and dried. Next, as shown in FIG. 3, the water-repellent member 4 is moved from the dotted line position to the solid line position and brought close to the capacitor element surface zaKm. Next, as shown in FIG. 4, an electrode lead layer 5 is formed on the circumferential surface of the capacitor element 1 via an oxide layer and a semiconductor layer. Then, cut the anode lead 2 to a desired length, and add L to this part.
The straight-shaped first external lead member 6 is welded, and the straight-shaped second external lead member 7 is soldered to the electrode bow 1 extension layer 5. Thereafter, the entire circumferential surface of the capacitor element 1 is covered with a resin material 8 to obtain a solid electrolytic capacitor.

このようにコンデンサエレメント面1aより導出された
陽極リード部分には半導体層形成工程前に、粒状の撥水
性部付番が形成されているので、コンデンサエレメント
1v含浸された半導体母液の熱分解]、程Kllいて、
コンデンサエレメント面1aで熱分解途中の半導体母液
が気泡の破裂時に飛び散ろうとしても撥水性部材4の存
在によつ1陽極リード2への付着が防止されるし1仮に
それが飛び散ったとしても、撥水性部材4の撥水作用に
よって付着が防止される。従って、陽極1」−ド2に第
1の外部リード部材6を溶接しても、漏洩電流の増加、
陰極と陽極との短絡を防止でき、コンデンサとしての品
位を高めることができる。
In this way, the granular water-repellent part numbers are formed on the anode lead portion led out from the capacitor element surface 1a before the semiconductor layer forming process, so that the thermal decomposition of the semiconductor mother liquor impregnated with the capacitor element 1v], After a while,
Even if the semiconductor mother liquor undergoing thermal decomposition on the capacitor element surface 1a tries to scatter when a bubble bursts, the presence of the water-repellent member 4 prevents it from adhering to the anode lead 2; , adhesion is prevented by the water-repellent action of the water-repellent member 4. Therefore, even if the first external lead member 6 is welded to the anode 1''-de 2, the leakage current will increase.
Short circuits between the cathode and anode can be prevented, and the quality of the capacitor can be improved.

又、撥水性部材4はコンデンサエレメント面りから充分
に離隔した陽極リード部分に被着、乾燥させた後、コン
デンサエレメント面1aに接触ないし近接するように移
動される関係で、撥水性部材のコンデンサエレメント1
への浸み込みを確実ff防止できる。このために、コン
デンサエレメント1に浸み込んだ撥水性部材の洗浄、除
去操作を全く必要としないので、作業能率を著しく高め
ることができ、量産工程への適用が可能となる。
In addition, the water-repellent member 4 is applied to the anode lead portion sufficiently separated from the capacitor element surface, and after drying, the water-repellent member 4 is moved so as to come into contact with or come close to the capacitor element surface 1a. element 1
It is possible to reliably prevent ff from seeping into. For this reason, there is no need to clean or remove the water-repellent material that has soaked into the capacitor element 1, so that work efficiency can be significantly increased, and the present invention can be applied to mass production processes.

次に置体的実施例について説明する。Next, a mounting example will be described.

実施例1 タンタル粉末を35ψ×4鱒の円柱状に加圧成形し焼結
してなるコンデンサエレメントに予め05φX5011
のタンタル線をS極り一ドとして植立する。
Example 1 A capacitor element made by press-molding tantalum powder into a 35ψ x 4 column shape and sintering it was preliminarily 05φ x 5011 mm.
The tantalum wire is planted with S polarity.

そして、陽極リードの導出側におけるコンデンサエレメ
ント面より15謁離隔した陽極リード部分にダイキン株
式会社製の商品名ダイフリー(弗素系樹脂)を滴下させ
、粒状に被着させる。そ1−て・乾燥後、コンデンサエ
レメント面に密層するように移動させる。以下通常の方
法にてタンタル固体電解コンデンサを製作する。
Then, Daifree (a fluorine-based resin) manufactured by Daikin Corporation is dropped onto the anode lead portion located 15 mm apart from the capacitor element surface on the output side of the anode lead, and is deposited in the form of particles. 1- After drying, move it so that it forms a dense layer on the surface of the capacitor element. A tantalum solid electrolytic capacitor is manufactured using the following conventional method.

このコンデンサによnげ、半導体層の陽極IJ−ドへの
這い上り付着は全くなく、第1の外部IJ−ド部材を溶
接しても、漏洩電流の増加、電極短絡は全く発生しなか
った。又、撥水性部材のコンデンサエレメントへの浸み
込みも全く発生しなかった。
In this capacitor, there was no creeping up of the semiconductor layer onto the anode IJ-board, and even when the first external IJ-board member was welded, no increase in leakage current or electrode short circuit occurred. . Further, no penetration of the water-repellent member into the capacitor element occurred.

実施例2 コンデンサエレメント面にタンタル線よりなる陽極リー
ドを溶接して導出する。以下実施例1と)¥様の方法に
てタンタル固体電解コンデンサを製作した処、実施例1
と同様の効果が得られた。
Example 2 An anode lead made of tantalum wire is welded to the surface of a capacitor element. Example 1: A tantalum solid electrolytic capacitor was manufactured using the method described in Example 1 below.
A similar effect was obtained.

実施例3 実施例1のダイフリーの代りπ、シリコン樹脂に弗素樹
脂粉末を混入した撥水性部材を用いた処、実施例1と同
様の効果が得られた。又、撥水性部材の粘度調節が容易
Vなり、粒状体の大きさを任意に変えることができる。
Example 3 The same effect as in Example 1 was obtained by using a water-repellent member made of silicone resin mixed with fluororesin powder instead of the dye-free material in Example 1. Further, the viscosity of the water-repellent member can be easily adjusted, and the size of the granules can be changed arbitrarily.

尚、本発明において、コンデンサエレメント及び陽極リ
ードはタンタルの他、ニオブ、アルミニウム、チタン、
ハフニウムなどの単体ないし合金にて構成することもで
きる。又、撥水性部材の移動は乾燥状態で行う他、熱硬
化状態、固化状態で行うこともできる。
In addition, in the present invention, the capacitor element and anode lead are made of niobium, aluminum, titanium, in addition to tantalum.
It can also be composed of a single substance or an alloy of hafnium or the like. Further, the water-repellent member can be moved not only in a dry state but also in a heat-cured state or a solidified state.

以上のように本発明によれば、撥水性部材によってコン
デンサエレメント面から導出されり@極り一ド部分への
半導体層の這い上り形成を抑制できる上、撥水性部材の
コンデンサエレメントへの浸み込みを防止できる関係で
所望のコンデンサ特性を得ることができる。
As described above, according to the present invention, the water-repellent member can suppress the formation of the semiconductor layer that is drawn out from the surface of the capacitor element and climb up to the very top part, and also prevent the water-repellent member from seeping into the capacitor element. Desired capacitor characteristics can be obtained in a relationship that prevents interference.

【図面の簡単な説明】 第1図は従来の固体電解コンデンサの側断面図、第2図
〜第4図は本発明方法の説明図であって、第2図は帯状
部品における陽極リードに撥水性部材を被着した状態を
示す側断面図、第3図は撥水件部材をコンデンサエレメ
ント面に接触させた状態を示す側断面図、第4図は完卑
状態を示す側断面図である。 1m中、lはコンデンサエレメント、1aはコンデンサ
エレメント面、2は陽極リード、4は撥水性部材、6,
7け外部リード部材である。 第1図 ヒ 第2図 第3図 第4図 62
[Brief Description of the Drawings] Fig. 1 is a side sectional view of a conventional solid electrolytic capacitor, Figs. FIG. 3 is a side sectional view showing the water-repellent material in contact with the surface of the capacitor element; FIG. 4 is a side sectional view showing the state in which the water-repellent material is in contact with the surface of the capacitor element. . In 1m, l is the capacitor element, 1a is the capacitor element surface, 2 is the anode lead, 4 is the water repellent member, 6,
This is a 7 piece external lead member. Figure 1 H Figure 2 Figure 3 Figure 4 62

Claims (1)

【特許請求の範囲】[Claims] 弁作用を有する金属粉末にて構成し、かつそnより弁作
用を有する金属線を陽極リードとして導出したコンデン
サエレメントに半導体層を形成するに先立つ1、陽極リ
ードのコンデンサエレメント面から離隔した導出部分に
撥水性部材を粒状に被着すると共に、この撥水性部材を
コンデンサエレメント面π接触ないし近接する導出部分
にまで移動させることを特徴とする固体電解コンデンサ
の製造方法。
1. Prior to forming a semiconductor layer on a capacitor element made of metal powder having a valve action, and from which a metal wire having a valve action is led out as an anode lead, 1. A lead-out portion of the anode lead separated from the surface of the capacitor element. A method for producing a solid electrolytic capacitor, which comprises applying a water-repellent material in granular form to a surface of the capacitor element, and moving the water-repellent material into contact with a surface of a capacitor element or to a nearby lead-out portion.
JP17051781A 1981-10-23 1981-10-23 Method of producing solid electrolytic condenser Pending JPS5871613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17051781A JPS5871613A (en) 1981-10-23 1981-10-23 Method of producing solid electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17051781A JPS5871613A (en) 1981-10-23 1981-10-23 Method of producing solid electrolytic condenser

Publications (1)

Publication Number Publication Date
JPS5871613A true JPS5871613A (en) 1983-04-28

Family

ID=15906403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17051781A Pending JPS5871613A (en) 1981-10-23 1981-10-23 Method of producing solid electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS5871613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299634A (en) * 1991-09-26 1994-04-05 Mitsubishi Denki Kabushiki Kaisha Indoor unit of a ventilation system, ventilation and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827257A (en) * 1971-08-09 1973-04-10
JPS4981862A (en) * 1972-11-17 1974-08-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827257A (en) * 1971-08-09 1973-04-10
JPS4981862A (en) * 1972-11-17 1974-08-07

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299634A (en) * 1991-09-26 1994-04-05 Mitsubishi Denki Kabushiki Kaisha Indoor unit of a ventilation system, ventilation and air conditioner

Similar Documents

Publication Publication Date Title
JP3881480B2 (en) Solid electrolytic capacitor and manufacturing method thereof
ATE517424T1 (en) ELECTRODES FOR ELECTROLYTIC CAPACITORS AND THEIR PRODUCTION PROCESS
US4188706A (en) Method for making a plurality of solid electrolyte capacitors and capacitors made thereby
JPS5871613A (en) Method of producing solid electrolytic condenser
JPS5926590Y2 (en) solid electrolytic capacitor
JPS6214674Y2 (en)
JPS603769B2 (en) Manufacturing method of electrolytic capacitor
JPS58154224A (en) Method of producing solid electrolytic condenser
JPH0141244B2 (en)
JPS60949B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0410205B2 (en)
JPS587634Y2 (en) Anode body for solid electrolytic capacitors
JPS6161693B2 (en)
JP2002270468A (en) Capacitor manufacturing method and capacitor
JPH0144008B2 (en)
JPS6127891B2 (en)
JPS60948B2 (en) Manufacturing method of solid electrolytic capacitor
JPS6142936A (en) Manufacture of body structure with light transmitting window
JPH0260208B2 (en)
JPS593572Y2 (en) solid electrolytic capacitor
JPS6033296B2 (en) Manufacturing method of solid electrolytic capacitor
KR960012296B1 (en) Tantalium electrolytic capacitor coating apparatus
JPS6043006B2 (en) Manufacturing method of solid electrolytic capacitor
JPS6251492B2 (en)
KR0151214B1 (en) Plastic method for tantalum electrolytic condenser