JPH0144008B2 - - Google Patents

Info

Publication number
JPH0144008B2
JPH0144008B2 JP58009756A JP975683A JPH0144008B2 JP H0144008 B2 JPH0144008 B2 JP H0144008B2 JP 58009756 A JP58009756 A JP 58009756A JP 975683 A JP975683 A JP 975683A JP H0144008 B2 JPH0144008 B2 JP H0144008B2
Authority
JP
Japan
Prior art keywords
capacitor element
water
anode lead
repellent
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58009756A
Other languages
Japanese (ja)
Other versions
JPS59135717A (en
Inventor
Juji Kawashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
Original Assignee
NEC Home Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd filed Critical NEC Home Electronics Ltd
Priority to JP975683A priority Critical patent/JPS59135717A/en
Publication of JPS59135717A publication Critical patent/JPS59135717A/en
Publication of JPH0144008B2 publication Critical patent/JPH0144008B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は固体電解コンデンサの製造方法に関
し、特に陽極リードに撥水性部材を被着して半導
体層の這い上りを防止したものの信頼性の改善方
法に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for manufacturing a solid electrolytic capacitor, and particularly to a method for improving the reliability of a solid electrolytic capacitor in which a water-repellent material is coated on an anode lead to prevent a semiconductor layer from creeping up. It is.

〔背景技術〕[Background technology]

一般にこの種固体電解コンデンサは例えばタン
タル、チタン、アルミニウムなどのように弁作用
を有する金属粉末を円柱状に加圧成形し焼結して
なるコンデンサエレメントに予め弁作用を有する
金属線を陽極リードとして植立し、この陽極リー
ドの導出部分に第1の外部リード部材を溶接する
と共に、第2の外部リード部材をコンデンサエレ
メントの周面に酸化層、半導体層を介して形成さ
れた電極引出し層に半田付けし、かつコンデンサ
エレメントの全周面を樹脂材にて被覆して構成さ
れている。
In general, this type of solid electrolytic capacitor is made of a capacitor element made by press-molding metal powder with a valve action, such as tantalum, titanium, aluminum, etc., into a cylindrical shape and sintering it, and a metal wire with a valve action is used as an anode lead in advance. A first external lead member is welded to the lead-out portion of the anode lead, and a second external lead member is welded to the electrode lead-out layer formed on the circumferential surface of the capacitor element via an oxide layer and a semiconductor layer. The capacitor element is soldered and the entire circumferential surface of the capacitor element is covered with a resin material.

ところで、このコンデンサのコンデンサエレメ
ントにはそれより導出された陽極リードに第1の
外部リード部材を溶接するに先立つて、陽極リー
ドと共にその表面に酸化層が形成さら、さらにコ
ンデンサエレメントに半導体母液を充分に含浸さ
せた後、高温雰囲気中において熱分解反応を起さ
せ、酸化層上に半導体層が形成されている。
By the way, before welding the first external lead member to the anode lead led out from the capacitor element of this capacitor, an oxide layer is formed on the surface of the anode lead as well as the capacitor element. After being impregnated with oxide, a thermal decomposition reaction is caused in a high temperature atmosphere, and a semiconductor layer is formed on the oxide layer.

しかし乍ら、陽極リードの表面には軸方向に多
くのダイス傷が存在している関係で、コンデンサ
エレメントに含浸された半導体母液がこのダイス
傷を通つて陽極リードのコンデンサエレメント面
からの導出部分に付着し、熱分解されていわゆる
半導体層の這い上りを生ずる。通常、半導体母液
の含浸−熱分解操作はコンデンサエレメントが多
孔質であることに鑑み数回以上繰り返される関係
で、半導体層の這い上りもさらに進行する傾向に
ある。
However, since there are many die scratches in the axial direction on the surface of the anode lead, the semiconductor mother liquid impregnated in the capacitor element passes through these die scratches and reaches the part of the anode lead led out from the capacitor element surface. It adheres to the semiconductor layer and is thermally decomposed, resulting in what is called a creep-up of the semiconductor layer. Normally, the impregnation-pyrolysis operation of the semiconductor mother liquor is repeated several times or more in view of the porous nature of the capacitor element, and the creeping-up of the semiconductor layer tends to progress further.

従つて、陽極リードの導出部分に第1の外部リ
ード部材を溶接する際に、第1の外部リード部材
と這い上つた半導体層とが接触して漏洩電流が増
加したり、時には陰極と陽極とが短絡されてしま
いコンデンサとしての機能を奏し得なくなるとい
う問題がある。
Therefore, when welding the first external lead member to the lead-out portion of the anode lead, the first external lead member and the semiconductor layer that has climbed up may come into contact, increasing leakage current, and sometimes the cathode and anode may There is a problem in that the capacitor becomes short-circuited and cannot function as a capacitor.

それ故に、本出願人は先にコンデンサエレメン
トに半導体層を形成するに先立つて、コンデンサ
エレメント面より導出された陽極リード部分にの
み撥水性被膜を形成することにより、半導体層の
這い上り形成を防止する製造方法を提案した。
Therefore, before forming the semiconductor layer on the capacitor element, the applicant prevents the formation of the semiconductor layer by forming a water-repellent coating only on the anode lead portion led out from the surface of the capacitor element. We proposed a manufacturing method for this purpose.

この方法によれば、仮に陽極リードにダイス傷
が形成されていても、半導体母液の這い上りを撥
水性被膜の撥水効果によつて確実に防止すること
ができるために、第1の外部リード部材が溶接さ
れる陽極リード部分への半導体層の形成を防止す
ることができ、漏洩電流特性の劣化を低減できる
ものである。
According to this method, even if a die scratch is formed on the anode lead, it is possible to reliably prevent the semiconductor mother liquor from creeping up due to the water-repellent effect of the water-repellent coating. It is possible to prevent the formation of a semiconductor layer on the anode lead portion to which the member is welded, and it is possible to reduce deterioration of leakage current characteristics.

しかし乍ら、陽極リードへの撥水性被膜の形成
は酸化層の形成に先立つて、例えば溶液状の撥水
性部材にコンデンサエレメント及び陽極リードを
浸漬した後、コンデンサエレメントにのみ付着し
た撥水性部材を洗浄、除去し加熱することにより
行われる関係で、この撥水性被膜は陽極リード部
分をかなり水密的に被覆している。このために、
コンデンサエレメント及び陽極リードを化成液に
浸漬して行う化成工程において、撥水性被膜のコ
ンデンサエレメント面側の端部下の陽極リード部
分にも若干酸化層が形成されるものの、撥水性被
膜がかなり水密的に形成されていることもあつて
酸化層の厚みは撥水性被膜にて被覆されていない
部分に比しかなり薄くなつている。
However, the formation of a water-repellent coating on the anode lead is possible by, for example, immersing the capacitor element and the anode lead in a solution of water-repellent material, and then removing the water-repellent material attached only to the capacitor element before forming the oxide layer. This water-repellent coating covers the anode lead portion in a fairly water-tight manner since it is performed by cleaning, removing, and heating. For this,
During the chemical conversion process in which the capacitor element and anode lead are immersed in a chemical solution, a slight oxidation layer is formed on the anode lead under the end of the water-repellent coating on the side of the capacitor element, but the water-repellent coating is quite watertight. The thickness of the oxidized layer is considerably thinner than that of the portion not covered with the water-repellent coating.

一方、半導体層は撥水性被膜のコンデンサエレ
メント面側の境界部分にまで形成される関係で、
この部分において耐圧不良、漏洩電流不良などが
発生し易く、充分に満足しうる信頼性を確保し難
いという問題がある。
On the other hand, the semiconductor layer is formed up to the boundary of the water-repellent coating on the side of the capacitor element.
There is a problem in that breakdown voltage defects, leakage current defects, etc. are likely to occur in this portion, making it difficult to ensure sufficiently satisfactory reliability.

〔発明の開示〕[Disclosure of the invention]

それ故に、本発明の目的は半導体層の這い上り
形成を防止するために陽極リードを撥水性部材に
て被覆しても、被覆下における陽極リード部分に
所望の酸化層を形成させることによつて信頼性を
効果的に高めることにある。
Therefore, an object of the present invention is to form a desired oxide layer on the anode lead portion under the coating, even if the anode lead is coated with a water-repellent material in order to prevent the formation of the semiconductor layer creeping up. The aim is to effectively increase reliability.

そして、本発明の特徴は弁作用を有する金属粉
末にて構成し、かつそれより弁作用を有する金属
線を陽極リードとして導出したコンデンサエレメ
ントに酸化層を形成するに先立つて、陽極リード
のコンデンサエレメント面からの導出部分に、熱
処理後に空孔を有するペースト状の撥水性部材を
被着し加熱することにある。
The feature of the present invention is that, before forming an oxide layer on the capacitor element which is made of a metal powder having a valve action and from which a metal wire having a valve action is derived as an anode lead, the capacitor element of the anode lead is The purpose is to apply a paste-like water-repellent member having holes after heat treatment to the portion leading out from the surface and then heat it.

この発明によれば、陽極リード部分にはペース
ト状の撥水性部材が被着されているので、半導体
層の這い上りを効果的に防止できる。
According to this invention, since the paste-like water-repellent material is applied to the anode lead portion, it is possible to effectively prevent the semiconductor layer from creeping up.

又、この撥水性部材は粘度の高いペースト状に
構成されているので、仮にコンデンサエレメント
面に被着されても、コンデンサエレメント内への
浸み込みを防止できる。このために、浸み込んだ
撥水性部材の洗浄、除去作業を省略でき、作業性
を改善できる上、コンデンサ特性への悪影響も回
避できる。
In addition, since this water-repellent member is made of a paste with high viscosity, even if it is adhered to the surface of the capacitor element, it can be prevented from seeping into the capacitor element. Therefore, the work of cleaning and removing the soaked water-repellent member can be omitted, work efficiency can be improved, and an adverse effect on the capacitor characteristics can be avoided.

特に、この撥水性部材は熱処理後に空孔を呈す
るようにも構成されているので、酸化層の形成に
先立つて陽極リードに被着しても、化成処理によ
つて撥水性部材にて被覆されている陽極リード部
分に所望の酸化層を形成することができる。この
ために、半導体層が撥水性部材のコンデンサエレ
メント面側の境界部分にまで形成されていても、
この部分での故障発生を著しく低減でき、信頼性
を著しく高めることができる。
In particular, this water-repellent material is configured to have pores after heat treatment, so even if it is applied to the anode lead prior to the formation of the oxide layer, it will not be covered with the water-repellent material through chemical conversion treatment. A desired oxide layer can be formed on the anode lead portion. For this reason, even if the semiconductor layer is formed up to the boundary portion of the water-repellent member on the side of the capacitor element,
The occurrence of failures in this part can be significantly reduced, and reliability can be significantly improved.

〔発明を実施するための最良の形態〕[Best mode for carrying out the invention]

次に、本発明の一実施例について第1図〜第3
図を参照して説明する。
Next, FIGS. 1 to 3 will explain one embodiment of the present invention.
This will be explained with reference to the figures.

まず、第1図に示すように、弁作用を有する金
属粉末を円柱状に加圧成形し焼結してなるコンデ
ンサエレメント1に予め弁作用を有する金属線を
陽極リード2として植立する。尚、コンデンサエ
レメント1は円柱状の他、角柱状など任意の形状
に構成できるし、陽極リード2はコンデンサエレ
メントの周面に溶接して導出することもできる。
次に、第2図に示すように、陽極リード2のコン
デンサエレメント面1aからの導出部分に、熱処
理後に空孔を有するペースト状の撥水性部材3を
被着し加熱処理する。この状態において撥水性部
材3には空孔が形成されている。そして、コンデ
ンサエレメント1及び陽極リード2を化成液に浸
漬し、所定の直流電圧を印加して化成(酸化層の
形成)する。この化成工程において、化成液が撥
水性部材3の空孔を介して陽極リード部分に達す
るために、撥水性部材3にて被着されている陽極
リード部分にも充分の酸化層が形成される。そし
て、半導体層、電極引出し層4を形成する。次
に、第3図に示すように、陽極リード2の導出部
分にL形の第1の外部リード部材5をほぼ直角に
交叉させて溶接すると共に、ストレート状の第2
の外部リード部材6を電極引出し層4に半田付け
する。然る後、コンデンサエレメント1の全周面
を樹脂材7にて被覆することにより固体電解コン
デンサが得られる。
First, as shown in FIG. 1, a metal wire having a valve function is installed in advance as an anode lead 2 on a capacitor element 1 which is formed by press-forming metal powder having a valve function into a cylindrical shape and sintering it. Note that the capacitor element 1 can be configured in any shape other than a cylinder, such as a prismatic shape, and the anode lead 2 can be welded to the circumferential surface of the capacitor element.
Next, as shown in FIG. 2, after heat treatment, a paste-like water repellent member 3 having holes is applied to a portion of the anode lead 2 extending from the capacitor element surface 1a, and then heat treated. In this state, holes are formed in the water-repellent member 3. Then, the capacitor element 1 and the anode lead 2 are immersed in a chemical solution, and a predetermined DC voltage is applied to perform chemical conversion (formation of an oxide layer). In this chemical conversion step, since the chemical solution reaches the anode lead portion through the pores of the water-repellent member 3, a sufficient oxide layer is also formed on the anode lead portion covered with the water-repellent member 3. . Then, a semiconductor layer and an electrode lead layer 4 are formed. Next, as shown in FIG. 3, an L-shaped first external lead member 5 is welded to the lead-out portion of the anode lead 2 so as to intersect at a substantially right angle.
The external lead member 6 is soldered to the electrode lead layer 4. Thereafter, a solid electrolytic capacitor is obtained by covering the entire circumferential surface of the capacitor element 1 with a resin material 7.

このコンデンサによれば、撥水性部材3にて被
覆されている陽極リード部分にも所要の酸化層が
形成されるために、半導体層が撥水性部材3のコ
ンデンサエレメント面側の境界部分にまで形成さ
れていても、この部分での故障の発生を著しく低
減できる。
According to this capacitor, since the required oxidation layer is also formed on the anode lead portion covered with the water-repellent member 3, the semiconductor layer is formed up to the boundary portion of the water-repellent member 3 on the side of the capacitor element surface. Even if it is, the occurrence of failures in this part can be significantly reduced.

次に、本発明のタンタル固体電解コンデンサへ
の具体的適用例について説明する。
Next, a specific example of application of the present invention to a tantalum solid electrolytic capacitor will be described.

まず、タンタル粉末を1×1mmの円柱状に加圧
成形し焼結してなるコンデンサエレメントに予め
0.25のタンタル線を陽極リードとして植立する。
そして、陽極リードのコンデンサエレメント面か
らの導出部分に、弗素系樹脂、粉末状の樟脳を含
むペースト状の撥水性部材を0.06mg被着し、260
℃にて30分間加熱する。これによつて、撥水性部
材中の樟脳は除去され、空孔が形成される。以
下、通常の方法にてタンタル固体電解コンデンサ
を製作する。
First, tantalum powder is pressure-formed into a 1 x 1 mm cylinder shape and sintered to form a capacitor element.
Plant a 0.25 tantalum wire as an anode lead.
Then, 0.06 mg of a paste-like water-repellent material containing fluorine-based resin and powdered camphor was applied to the part of the anode lead leading out from the capacitor element surface.
Heat at ℃ for 30 minutes. As a result, camphor in the water-repellent member is removed and pores are formed. Below, a tantalum solid electrolytic capacitor is manufactured using a conventional method.

このコンデンサ50個を85℃の加熱炉内に挿入
し、定格電圧の1.3倍の試験電圧を印加して1000
時間経過後における故障状況を調査した処、故障
の発生は全く認められなかつた。しかし乍ら、本
発明の前提となる本出願人が先に提案した方法に
よるものでは50個中2個に故障発生が認められ
た。
50 of these capacitors were inserted into a heating furnace at 85℃, and a test voltage of 1.3 times the rated voltage was applied to
When we investigated the failure status after the passage of time, we found that no failure had occurred at all. However, in the method previously proposed by the applicant, which is the premise of the present invention, failures were observed in 2 out of 50 devices.

尚、本発明において、コンデンサエレメントは
弁作用を有する金属粉末の単体の他、複合ないし
合金粉末にて構成することもできる。又、熱処理
後に空孔を呈するペースト状の撥水性部材は上記
実施例のみに制約されることなく、例えばペース
ト状の撥水性部材に強制的に気泡を混入させ、熱
処理による除去によつて空孔を形成する他、適宜
の部材を利用できる。
In addition, in the present invention, the capacitor element may be composed of a single metal powder having a valve action, or a composite or alloy powder. Furthermore, the paste-like water-repellent member that exhibits pores after heat treatment is not limited to the above embodiments; for example, air bubbles are forcibly mixed into the paste-like water-repellent member, and the pores are removed by heat treatment. In addition to forming this, any appropriate member can be used.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法の説明図であつて、第1図はコ
ンデンサエレメントの側断面図、第2図は陽極リ
ードにペースト状の撥水性部材を被着した状態を
示す側断面図、第3図は完成状態を示す側断面図
である。 図中、1はコンデンサエレメント、1aはコン
デンサエレメント面、2は陽極リード、3はペー
スト状の撥水性部材である。
The figures are explanatory diagrams of the method of the present invention, in which Fig. 1 is a side sectional view of a capacitor element, Fig. 2 is a side sectional view showing a state in which a paste-like water-repellent material is coated on an anode lead, and Fig. 3 is a side sectional view of a capacitor element. is a side sectional view showing the completed state. In the figure, 1 is a capacitor element, 1a is a surface of the capacitor element, 2 is an anode lead, and 3 is a paste-like water-repellent member.

Claims (1)

【特許請求の範囲】[Claims] 1 弁作用を有する金属粉末にて構成し、かつそ
れより弁作用を有する金属線を陽極リードとして
導出したコンデンサエレメントに酸化層を形成す
るに先立つて、陽極リードのコンデンサエレメン
ト面からの導出部分に、熱処理後に空孔を有する
ペースト状の撥水性部材を被着し加熱することを
特徴とする固体電解コンデンサの製造方法。
1. Prior to forming an oxide layer on a capacitor element made of metal powder with a valve action and from which a metal wire with a valve action is led out as an anode lead, on the part of the anode lead leading out from the surface of the capacitor element. A method for producing a solid electrolytic capacitor, which comprises applying a paste-like water-repellent member having holes after heat treatment and heating the same.
JP975683A 1983-01-24 1983-01-24 Method of producing solid electrolytic condenser Granted JPS59135717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP975683A JPS59135717A (en) 1983-01-24 1983-01-24 Method of producing solid electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP975683A JPS59135717A (en) 1983-01-24 1983-01-24 Method of producing solid electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS59135717A JPS59135717A (en) 1984-08-04
JPH0144008B2 true JPH0144008B2 (en) 1989-09-25

Family

ID=11729125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP975683A Granted JPS59135717A (en) 1983-01-24 1983-01-24 Method of producing solid electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS59135717A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4981862A (en) * 1972-11-17 1974-08-07
JPS5213653A (en) * 1975-07-22 1977-02-02 Fujitsu Ltd Method of manufacturing solid state electrolytic capacitor
US4127680A (en) * 1977-02-03 1978-11-28 Sprague Electric Company Making a capacitor employing a temporary solid mask in the porous anode
JPS57157516A (en) * 1981-03-23 1982-09-29 Nippon Electric Co Electronic part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4981862A (en) * 1972-11-17 1974-08-07
JPS5213653A (en) * 1975-07-22 1977-02-02 Fujitsu Ltd Method of manufacturing solid state electrolytic capacitor
US4127680A (en) * 1977-02-03 1978-11-28 Sprague Electric Company Making a capacitor employing a temporary solid mask in the porous anode
JPS57157516A (en) * 1981-03-23 1982-09-29 Nippon Electric Co Electronic part

Also Published As

Publication number Publication date
JPS59135717A (en) 1984-08-04

Similar Documents

Publication Publication Date Title
JP3881480B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US5036434A (en) Chip-type solid electrolytic capacitor and method of manufacturing the same
JPH07320982A (en) Manufacture of capacitor element for tantalum solid electrolytic capacitor
US4188706A (en) Method for making a plurality of solid electrolyte capacitors and capacitors made thereby
JPH0144008B2 (en)
JPS5926590Y2 (en) solid electrolytic capacitor
JPH0141244B2 (en)
JPS58154224A (en) Method of producing solid electrolytic condenser
JPS60949B2 (en) Manufacturing method of solid electrolytic capacitor
JP3158448B2 (en) Method for manufacturing solid electrolytic capacitor
JP2003338432A (en) Capacitor element used for solid electrolytic capacitor and method for forming dielectric layer thereto
JPH0260208B2 (en)
JPS6161693B2 (en)
KR200211021Y1 (en) Porous Tantalum Pellets of Tantalum Solid Electrolytic Capacitors
JPS5871613A (en) Method of producing solid electrolytic condenser
JPS603769B2 (en) Manufacturing method of electrolytic capacitor
JP2847001B2 (en) Manufacturing method of solid electrolytic capacitor
JPS6127891B2 (en)
JP3138639B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6214674Y2 (en)
JPS5891617A (en) Method of producing solid electrolytic condenser
JPS6043006B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0314220B2 (en)
JPH0347328Y2 (en)
JPS5874031A (en) Method of producing solid electrolytic condenser