JPS5871380A - Production of hydrogen by electrolysis - Google Patents

Production of hydrogen by electrolysis

Info

Publication number
JPS5871380A
JPS5871380A JP56168446A JP16844681A JPS5871380A JP S5871380 A JPS5871380 A JP S5871380A JP 56168446 A JP56168446 A JP 56168446A JP 16844681 A JP16844681 A JP 16844681A JP S5871380 A JPS5871380 A JP S5871380A
Authority
JP
Japan
Prior art keywords
hydrogen
steam
electrolysis
anode
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56168446A
Other languages
Japanese (ja)
Other versions
JPS5853074B2 (en
Inventor
Kinjiro Fujii
河村千章
Wakichi Kondo
近藤和吉
Susumu Mizuta
熊谷俊弥
Yoshinao Oosawa
水田進
Toshiya Kumagai
大沢吉直
Kyo Fuchita
藤井欽二郎
Chiaki Kawamura
淵田京
Hiroshi Yufu
油布宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Yuasa Corp
Original Assignee
Agency of Industrial Science and Technology
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Yuasa Corp, Yuasa Battery Corp filed Critical Agency of Industrial Science and Technology
Priority to JP56168446A priority Critical patent/JPS5853074B2/en
Publication of JPS5871380A publication Critical patent/JPS5871380A/en
Publication of JPS5853074B2 publication Critical patent/JPS5853074B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To obtain H2 together with I2 or Br2 at a low voltage by carrying out the electrolysis of HI or HBr in a vapor phase using an electrolytic cell contg. a porous holding matrix impregnated with phosphoric acid as an electrolyte between electrodes. CONSTITUTION:Said known electrolytic cell is used as a fuel cell, gaseous HI is introduced into the anode chamber, and vapor phase electrolysis is carried out. I2 produced on the anode is slightly soluble in concd. phosphoric acid. Gaseous H2 is generated from the cathode chamber. When gaseous HI contg. steam is introduced, the steam is dissolved in phosphoric acid on the anode side and shifts to the cathode side in accordance with the difference between the anode and cathode chambers in the partial pressure of steam, and it is evaporated on the cathode side. Accordingly, H2 obtd. from the cathode chamber contains steam, yet the steam can be separated by condensation. Since the transfer of steam in the electrolytic chambers facilitates the transfer of H<+>, the current density can be increased in the presence of steam contained in gaseous HI.

Description

【発明の詳細な説明】 本発明はヨウ化水素または臭化水素を電解して水素とヨ
ウ素または臭素を製造する方法に関し、特に前記ハロゲ
ン化物を気相状態で電解する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hydrogen and iodine or bromine by electrolyzing hydrogen iodide or hydrogen bromide, and particularly relates to a method for electrolyzing the halide in a gas phase.

ハロゲン化水素、特にヨウ化水素の分解は従来、熱分解
、電気分解及び光分解等、各種の方法によって検討され
、とりわけ熱分解ないし接触分解に関しては、部分的に
生成する水素(400°Kにおける平衡分解率11.3
%)の分鱗離を含めて数多くの研究がなされた。このう
ち、電解法について述べると、固体のヨウ素及び液体の
臭素の標準単極電位差(25℃)//i夫々、0.53
6及び1.0.65Vであるから、活量1 (約1モル
濃度)のヨウ化水素酸及び臭化水素酸の水溶液を電解し
て1気圧の水素を発生させるには理論セル電圧として夫
々0.536及び1.065Vを必要とする。実際に電
解を行った歓崎の結果(特許第178878号)による
と、比重1.7のヨウ化水素酸溶液につき、18°Cで
44mA/cIrL2の電流をとるのに浴電圧として1
vを必要とした。一方、フイースら(H,FeeSs、
 k、 k6sterand Ci、  H,5chi
itz、Jnt、  J、  HydrogenEne
rgy 6 NO−4pp−377−388、1981
)は臭化水素酸水溶液の電解において、陽極で生成する
臭素がそのまま水溶液に溶解し1.対流や拡散等によっ
て陰極に移動して水素と再結合する傾向を示し、その分
だけ電流効果率を低下させると述べている。
The decomposition of hydrogen halides, especially hydrogen iodide, has been investigated by various methods such as thermal decomposition, electrolysis, and photolysis. Equilibrium decomposition rate 11.3
Numerous studies have been carried out, including the separation of fractions (%). Of these, regarding the electrolytic method, the standard monopolar potential difference (25°C) of solid iodine and liquid bromine is 0.53, respectively.
6 and 1.0.65 V, the theoretical cell voltage for generating hydrogen at 1 atm by electrolyzing an aqueous solution of hydroiodic acid and hydrobromic acid with an activity of 1 (approximately 1 molar concentration) is Requires 0.536 and 1.065V. According to the results of Kanzaki who actually performed electrolysis (Patent No. 178878), for a hydroiodic acid solution with a specific gravity of 1.7, the bath voltage was 1 to obtain a current of 44 mA/cIrL2 at 18°C.
needed v. On the other hand, FeeSs et al.
k, k6sterand Ci, H,5chi
itz, Jnt, J, HydrogenEne
rgy 6 NO-4pp-377-388, 1981
1.) In the electrolysis of an aqueous solution of hydrobromic acid, the bromine produced at the anode is directly dissolved in the aqueous solution. It states that it shows a tendency to move to the cathode through convection, diffusion, etc. and recombine with hydrogen, reducing the current efficiency rate accordingly.

本発明は低い電圧で、前記ノ・ロゲンイヒ水素を電解す
る方法を提供するもので、気相電解を骨子とする。温度
127”C(4000K)のヨウ化水素ガス及び臭化水
素ガスの分解反応、2Hi(9)−、H2V)+ I 
絢及び21−I B rty>−−” t’ 2 (q
)” Bra ノ自由x ネ/l/ キー変化は、夫々
、△(7127℃−3,07及び26.78)cczd
/・νItti II 2で、理論セル市圧は夫々0.
067 V及びQ、58Vと計算される。即ち、ヨウ化
水素ガスの気相11fi、 解fは、約1モル濃度のヨ
ウイヒ水累酸水溶液の場合の約1/8のセル電圧ですむ
ことになる。
The present invention provides a method for electrolyzing the above-mentioned hydrogen at a low voltage, and is based on gas phase electrolysis. Decomposition reaction of hydrogen iodide gas and hydrogen bromide gas at a temperature of 127"C (4000K), 2Hi(9)-, H2V)+ I
Aya and 21-I B rty>--"t' 2 (q
)” Bra no freedom
/・νItti II 2, the theoretical cell pressure is 0.
067 V and Q, calculated as 58V. That is, the gas phase 11fi of hydrogen iodide gas, solution f, requires a cell voltage of about 1/8 of that of an aqueous solution of hydrogen hydroxide having a concentration of about 1 molar.

さらに、このように有利な分解反応を行わせる実際の装
置として、リン酸を電解質とする・燃料醒池形式のもの
が有効に利用できることを見出した。
Furthermore, we have found that a fuel clarification pond type device using phosphoric acid as an electrolyte can be effectively used as an actual device for carrying out such an advantageous decomposition reaction.

即ち、本発明で用いる装置は、燃料電池の構造として公
知(例、アール、ディ、プロールト特開昭52−299
33)のもので、一対の隔置されたガス拡散電極の間に
、リン酸電解質を含浸させた多孔質のリン酸保持マトリ
ックスを配置したものである。ここに、ガス拡散電極は
高電導性のカーボン繊維の織布に白金触媒等を被覆した
・ものでよく、またリン酸保持のマトリックスには濃リ
ン酸の浸食に訃える電気絶縁性の多孔質材料、例えば酸
化タンタル織布が役立つ。電解温度は、ヨウ化水素ガス
に関しては、生成するヨウ素が液体または気体であるよ
うな温度が好優しく、この温度条件下、陽極室に同ガス
を導入すると約0.085 Vのセル電圧下で電解を開
始することを認めた。この際、陽極側で生成するヨウ素
は濃リン酸に難溶であり、一方陰極室からは水素ガスが
発生する。また、水蒸気が共存するヨウ素化水素ガスを
導入すると、水蒸気は陽極側からリン酸に溶解し、陽極
と陰極の画室間の水蒸気分圧の差に応じて、陰極側へ移
動し、そこで蒸発する。従って陰極室から得られる水素
は水蒸気を含むことになるが、慣用の手段によってこれ
を凝縮させ、水素ガスを精製することができる。ここで
注目すべきことは、この水蒸気の電解質円移動が陰極側
への水素イオンの移動を促進することで、これによって
水蒸気が存在しないヨウ化水素ガス電解の場合に比べて
、電流密度を大きくともことができる。水蒸気の量は、
ヨウ化水素1モルに対し0.01〜20モルの範囲が好
ましい。本発明でヨウ化水素に代えて、臭化水素も使用
可能である。
That is, the device used in the present invention is known as a structure of a fuel cell (for example, R. D. Prolt JP-A-52-299
33), in which a porous phosphoric acid retention matrix impregnated with a phosphoric acid electrolyte is placed between a pair of spaced apart gas diffusion electrodes. Here, the gas diffusion electrode may be a highly conductive carbon fiber woven cloth coated with a platinum catalyst, etc., and the matrix for retaining phosphoric acid may be an electrically insulating porous material that is resistant to erosion by concentrated phosphoric acid. Materials such as woven tantalum oxide are useful. Regarding hydrogen iodide gas, the preferred electrolysis temperature is such that the iodine produced is in the form of liquid or gas. Under these temperature conditions, when the gas is introduced into the anode chamber, a cell voltage of approximately 0.085 V is produced. It was approved to start electrolysis. At this time, iodine produced on the anode side is poorly soluble in concentrated phosphoric acid, while hydrogen gas is generated from the cathode chamber. Additionally, when hydrogen iodide gas containing water vapor is introduced, the water vapor is dissolved in phosphoric acid from the anode side, moves to the cathode side, and evaporates there, depending on the difference in water vapor partial pressure between the anode and cathode compartments. . Therefore, the hydrogen obtained from the cathode chamber contains water vapor, which can be condensed by conventional means to purify hydrogen gas. What should be noted here is that this circular movement of water vapor in the electrolyte promotes the movement of hydrogen ions toward the cathode, which increases the current density compared to hydrogen iodide gas electrolysis where no water vapor is present. I can talk with you. The amount of water vapor is
The amount is preferably in the range of 0.01 to 20 mol per mol of hydrogen iodide. Hydrogen bromide can also be used in place of hydrogen iodide in the present invention.

実施例1゜ 用いた電解セルは、酔性電解液電池として公知の構造の
もの(手沢、「現代化学」昭和47年12月号18頁)
である。即ち、一対の黒鉛製基体(9,5cm X 1
 t、(1am、厚さ2儂)は密に組合わさってセルの
外殻を形成すると共に、夫々、2ケの連絡「1を有し、
ここから密着面に存在して多数の溝(巾1 mm、深さ
2mm)を刻んである集電体(5crrL×5(−In
)にガス全供給し、または発生したガス等を排出するこ
とができる。この集電体は触媒としての白金を0.75
m9/cIrL2塗布した黒鉛繊維布(厚さ0.5mm
、繊維の太さ5μm)製のガス拡散電極と重ねられ、さ
らに、この一対の電極を隔置するように、酸化タンタル
織布(厚さQ、75mm、繊維の太さ5μm)製で、濃
リン酸(85%)を含浸させたマトリックスを配置する
。従って、実験用電解セルは、このマトリックス布を中
心として、対称的に、下方の陽極室と、上方の陰極室か
ら構成され、全体を空気定温槽内に置き、所定の温度に
保った。150℃における電解セルの電気抵抗は約0.
1オームである。
Example 1 The electrolytic cell used had a structure known as an intoxicating electrolyte battery (Tezawa, Gendai Kagaku, December 1973 issue, p. 18).
It is. That is, a pair of graphite substrates (9.5 cm x 1
t, (1 am, thickness 2 儂) are closely combined to form the outer shell of the cell, and each have two connections "1",
From here, a current collector (5 crrL x 5 (-In
), or the generated gas can be discharged. This current collector contains 0.75% platinum as a catalyst.
m9/cIrL2 coated graphite fiber cloth (thickness 0.5 mm
A gas diffusion electrode made of tantalum oxide woven fabric (thickness Q, 75 mm, fiber thickness 5 μm) was stacked on top of the gas diffusion electrode (fiber thickness 5 μm), and a dense gas diffusion electrode made of tantalum oxide fabric (thickness Q, 75 mm, fiber thickness 5 μm) was placed so as to space this pair of electrodes apart. A matrix impregnated with phosphoric acid (85%) is placed. Therefore, the experimental electrolytic cell consisted of a lower anode chamber and an upper cathode chamber symmetrically centering on this matrix fabric, and the entire cell was placed in an air constant temperature chamber and maintained at a predetermined temperature. The electrical resistance of the electrolytic cell at 150°C is approximately 0.
It is 1 ohm.

原料のヨウ化水素ガス(混合モル比HI/l−1zO/
N2= 0.50/ 0.41 / 0.09)を大気
圧下、500ml/minの速さで陽極室に供給し、1
50℃で電解を行ったところ、電解は、セル電圧約0.
08Vから開始し、0.4Vでの電流密度は” Om’
/lx 2であった。陰極室からは水蒸気と水素が排出
し、ヨウ化水素含量は僅少(水素量の5モル係以下)で
、取付けたコンデンサー容器内で水蒸気と共に凝縮した
。一方、陽極には液状のヨウ素を生成したことを、冷却
後の装(I/it 711体によって認めた。発生水素
tfLから求めた電流効率は約95係であった。
Raw material hydrogen iodide gas (mixed molar ratio HI/l-1zO/
N2 = 0.50/0.41/0.09) was supplied to the anode chamber at a rate of 500 ml/min under atmospheric pressure.
When electrolysis was performed at 50°C, the cell voltage was approximately 0.
Starting from 08V, the current density at 0.4V is "Om'
/lx 2. Water vapor and hydrogen were discharged from the cathode chamber, and the hydrogen iodide content was very small (less than 5 molar proportion of hydrogen) and was condensed together with the water vapor in the attached condenser vessel. On the other hand, it was confirmed by the I/it 711 unit after cooling that liquid iodine was produced at the anode.The current efficiency determined from the generated hydrogen tfL was about 95 coefficients.

実施例2 本実施例は、ヨウ化水素ガスの電解に及ぼす共存水蒸気
の効宋を示す。原料ガスとして、無水のヨウ化水素ガス
(混合モル比1(I/N2=0.510.5)を用い、
実施例1と同じ実験を行ったところ、セル市川0.4 
V以下での5流密度は30mAにとどまった。
Example 2 This example shows the effect of coexisting water vapor on the electrolysis of hydrogen iodide gas. As the raw material gas, anhydrous hydrogen iodide gas (mixed molar ratio 1 (I/N2 = 0.510.5) was used,
When the same experiment as in Example 1 was conducted, the cell Ichikawa was 0.4
5 current density below V remained at 30 mA.

実施例3゜ 本実施例では、臭化水素ガスの電解について述べる。原
料臭化水素ガス$勃≦(混合モル比HB r/Ll 2
0 /N 2SO,47/ 0.44 / 0.09 
)につき、実施例1の装置を用いて、温度143℃、大
気下、500me/minの速さで陽極室に供給した。
Example 3 In this example, electrolysis of hydrogen bromide gas will be described. Raw material hydrogen bromide gas $≦(Mixed molar ratio HB r/Ll 2
0/N2SO,47/ 0.44/0.09
) was supplied to the anode chamber at a rate of 500 me/min at a temperature of 143° C. in the atmosphere using the apparatus of Example 1.

電解は0.58V前鏝から開始し、084vにおける電
流密度は1 o o mAであり、陰極室から発生した
水素量から求ぬた電流効率は約95俤であった。
Electrolysis was started with a 0.58V pretrowel, the current density at 084V was 1 o mA, and the current efficiency calculated from the amount of hydrogen generated from the cathode chamber was about 95 yen.

第1頁の続き @発 明 者 河村千章 高槻市域西町6番6号湯浅電池 株式会社内 (7■発 明 者 油布宏 高槻市域西町6番6号湯浅電池 株式会社内 ■出 願 人 湯浅電池株式会社 高槻市域西町6番6号 う■代 理 人 弁理士 池浦敏明 45Continuation of page 1 @ Originated by Chisho Kawamura Takatsuki City Area Nishimachi 6-6 Yuasa Battery Inside the corporation (7) Author: Hiroshi Aburofu Takatsuki City Area Nishimachi 6-6 Yuasa Battery Inside the corporation ■Submitted by: Yuasa Battery Co., Ltd. 6-6 Kennishimachi, Takatsuki City Patent attorney Toshiaki Ikeura 45

Claims (1)

【特許請求の範囲】 (])一対の隔置さrl−たガス拡散電極と、前記電極
間に配置さrtた多孔質保持マトリン2スと前記マトリ
ックスに含浸させた亨リン酸電解′Cとを丼む電解セル
の陽極室にヨウ化水素または臭化水素ガスを導入し、電
解により前記陽極室からヨウ素または臭素を、陰極室か
ら水素を取り出すことを特徴とする電解水素の製造法。 (2)  前記ヨウ化水素ガスまたは臭化水素ガスは水
蒸気を含むことを特徴とする特許請求の範囲第1項の方
法。 (3)該水蒸気の量は、ヨウ化水素または臭化水素ガス
1モルに対し0.01〜20モルである特許請求の範囲
第2項の方法。
[Scope of Claims] (]) a pair of spaced apart gas diffusion electrodes, a porous retention matrix disposed between the electrodes, and a hyperphosphoric acid electrolyte impregnated into the matrix; A method for producing electrolytic hydrogen, which comprises introducing hydrogen iodide or hydrogen bromide gas into the anode chamber of an electrolytic cell containing hydrogen, and removing iodine or bromine from the anode chamber and hydrogen from the cathode chamber by electrolysis. (2) The method according to claim 1, wherein the hydrogen iodide gas or hydrogen bromide gas contains water vapor. (3) The method according to claim 2, wherein the amount of water vapor is 0.01 to 20 moles per mole of hydrogen iodide or hydrogen bromide gas.
JP56168446A 1981-10-21 1981-10-21 Method for producing electrolytic hydrogen Expired JPS5853074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56168446A JPS5853074B2 (en) 1981-10-21 1981-10-21 Method for producing electrolytic hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56168446A JPS5853074B2 (en) 1981-10-21 1981-10-21 Method for producing electrolytic hydrogen

Publications (2)

Publication Number Publication Date
JPS5871380A true JPS5871380A (en) 1983-04-28
JPS5853074B2 JPS5853074B2 (en) 1983-11-26

Family

ID=15868258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56168446A Expired JPS5853074B2 (en) 1981-10-21 1981-10-21 Method for producing electrolytic hydrogen

Country Status (1)

Country Link
JP (1) JPS5853074B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219593A (en) * 1987-03-09 1988-09-13 Hitachi Ltd Hydrogen production
EP1106714A1 (en) * 1999-12-10 2001-06-13 Basf Aktiengesellschaft Gas phase electrolytic generation of halogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219593A (en) * 1987-03-09 1988-09-13 Hitachi Ltd Hydrogen production
EP1106714A1 (en) * 1999-12-10 2001-06-13 Basf Aktiengesellschaft Gas phase electrolytic generation of halogen

Also Published As

Publication number Publication date
JPS5853074B2 (en) 1983-11-26

Similar Documents

Publication Publication Date Title
US4235863A (en) Method of and cell for generating hydrogen
US4595469A (en) Electrolytic process for production of gaseous hydrogen chloride and aqueous alkali metal hydroxide
US3113049A (en) Direct production of electrical energy from liquid fuels
EP3461275B1 (en) Electrochemical method and apparatus for generation of ammonia
JPH09505636A (en) Anode useful for electrochemical conversion of anhydrous hydrogen halide to halogen gas
JPH02226668A (en) Balancing cell for cr/fe redox ion accumulator
SU797594A3 (en) Method of electrolysis of aqueous solutions of sodium and potassium compounds or their mixture
JPH03111587A (en) Electrolytic bath for reduction of carbon dioxide
US4460444A (en) Hydriodic acid-anode-depolarized hydrogen generator
US4305793A (en) Method of concentrating alkali metal hydroxide in hybrid cells having cation selective membranes
GB959846A (en) An electrolytic process for producing halogen gases and the apparatus therefor
JPS5871380A (en) Production of hydrogen by electrolysis
US3256163A (en) Process for the continuous production of deuterium-rich water by stepwise enrichment with deuterium and electrolysis of water
US4389287A (en) Withdrawal of molten alkali hydroxide through an electrode for depletion of water dissolved therein
JP4671398B2 (en) Water decomposition method and apparatus, and water decomposition catalyst
US3441488A (en) Electrolytic desalination of saline water by a differential redox method
JPS62182292A (en) Diaphragm electrolysis of hci
US4322270A (en) Process for depleting an impurity by electrolysis and recovering electrical energy from its decomposition products
Otsuka et al. Electrolytic carbonylation of methanol over the CuCl2 anode in the gas phase
US3894887A (en) Hydrogen-bromine secondary battery
JPH08246178A (en) Electrochemical recovering method of salts and device therefor
US3577329A (en) Process for the production of high purity hydrogen
JPH0153201B2 (en)
US3796647A (en) Apparatus for hydrogen production
JP2699793B2 (en) Method for producing hydrogen peroxide