JPS63219593A - Hydrogen production - Google Patents

Hydrogen production

Info

Publication number
JPS63219593A
JPS63219593A JP5193587A JP5193587A JPS63219593A JP S63219593 A JPS63219593 A JP S63219593A JP 5193587 A JP5193587 A JP 5193587A JP 5193587 A JP5193587 A JP 5193587A JP S63219593 A JPS63219593 A JP S63219593A
Authority
JP
Japan
Prior art keywords
anode
hydrogen
methanol
cathode
hydrogen production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5193587A
Other languages
Japanese (ja)
Inventor
Teruo Kumagai
熊谷 輝夫
Yuichi Kamo
友一 加茂
Tatsuo Horiba
達雄 堀場
Seiji Takeuchi
瀞士 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5193587A priority Critical patent/JPS63219593A/en
Publication of JPS63219593A publication Critical patent/JPS63219593A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce hydrogen by electrolysis, by using an aqueous solution of sulfuric acid or an aqueous solution containing high-polymer sulfonic acid as an electrolyte, by using an electrolytic cell having a diaphragm, and by supplying a specific reductant into an anode chamber so as to carry out electrolysis. CONSTITUTION:An aqueous solution of sulfuric acid or an aqueous solution containing high-polymer sulfonic acid is poured, as an electrolyte 5, into an electrolytic cell having a diaphragm 10 composed of ion exchange membrane, glass filter, nonwoven fabric, etc., and partitioned into an anode chamber 11 and a cathode chamber 12, and, a substance in which the metallic elements of groups VI, VII, and VIII, such as Pt, Ru, Re, Ir, etc., are dispersed and incorporated into a conductive carbon carrier is used as an anode 1 and, as a cathode 2, a substance in which noble metals such as Pt, Au, Ir, etc., or metals such as Pb, Nb, Ta, etc., or graphite, etc., are dispersed and incorporated into a conductive carbon carrier is used. A reductant composed of liquid fuel of aqueous solution of methanol, ethanol, etc., is added into the anode chamber 11 to carry out electrolysis. Hydrogen due to the decomposition of methanol, etc., is evolved from the surface of the cathode 2, and taken out from an exhaust port 15.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素の製造方法に係り、特に電気化学的な方
法により、湿式でメタノール、エタノール、ホルムアル
デヒド、ギ酸を水素に改質する水素製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing hydrogen, particularly hydrogen production in which methanol, ethanol, formaldehyde, and formic acid are wet-modified into hydrogen by an electrochemical method. Regarding the method.

〔従来の技術〕[Conventional technology]

水素は、工業的なものをみると、一般的には、(1)コ
ークスと水蒸気による水性ガス反応()によるもの、(
2)天然ガスやメタノールのリホーミング反応(198
1,National Fuel S1l Sesinar、 Abstractや特開昭6O−2
24166)によるもの、(3)水の電気分解()など があり、さらに規模が大きいところでは、(4)石油類
や石炭のガス化などにより製造されている。
From an industrial perspective, hydrogen is generally produced through (1) a water gas reaction between coke and steam ();
2) Reforming reaction of natural gas and methanol (198
1, National Fuel S1l Sesinar, Abstract and JP-A-6O-2
(24166), (3) electrolysis of water (), and on a larger scale, (4) gasification of petroleum and coal.

【発明が解決しようとする問題点〕[Problem that the invention attempts to solve]

上記、従来技術をみてみると、コークスと水蒸気の水性
ガス反応は、(1)式に示す反応を約1000℃という
高温で進めるものであるとともに、水蒸気の供給等、高
圧下での水素の製造である。メタノールのリホーミング
反応、(2)式は、メタノールと水を蒸気で供給し、通
常は銅−亜鉛などの触媒上で250〜450℃の高温で
反応を進めるものである。
Looking at the above-mentioned conventional technology, the water gas reaction between coke and steam is a reaction shown in equation (1) that proceeds at a high temperature of about 1000°C, and hydrogen production under high pressure such as supply of steam. It is. In the methanol reforming reaction, formula (2), methanol and water are supplied as steam, and the reaction usually proceeds over a catalyst such as copper-zinc at a high temperature of 250 to 450°C.

C+H20→CO+ Hz          ・・・
(1)CHsOH+HzO→CO2+3H2−(2)ま
た、規模の大きくなる石油類や石炭のガス化は高温、高
圧での反応であるとともにシステムも複雑になっている
C+H20→CO+Hz...
(1) CHsOH + HzO → CO2 + 3H2- (2) In addition, gasification of petroleum and coal, which is becoming larger in scale, involves reactions at high temperatures and high pressures, and the systems are also becoming more complex.

上記の製造方法は、水素の製造反応においても一酸化炭
素や炭酸ガスの生成があり、ほかに副反応も平衡的に進
むことが避けられなく、純度の高い水素を得るには、さ
らに工程が必要となる。また、不均化反応(2C○=C
+CO,)によりカーボンの析出による閉塞等を考慮す
る必要がある。
In the above production method, carbon monoxide and carbon dioxide gas are generated even in the hydrogen production reaction, and it is inevitable that side reactions will proceed in equilibrium, so additional steps are required to obtain highly pure hydrogen. It becomes necessary. In addition, disproportionation reaction (2C○=C
It is necessary to take into account blockages caused by carbon precipitation due to +CO, ).

電子材料プロセスなど、比較的規模の小さいもの、ある
いは高純度の水素供給源をみると、一般的には水の電気
分解反応や酸と金属の反応などで製造したボンベを用い
ている。
When looking at relatively small-scale processes such as electronic material processes, or high-purity hydrogen supply sources, cylinders produced by electrolysis of water or reactions between acids and metals are generally used.

水の電気分解は、下記に示すように正極と負極の間に、
電流を通じて電気的エネルギーを加えた負極:2HzO
→02+ 4 H++ 4 e     −(3)(E
o= 1. 、23 V) 正極: 4 H++ 4 e −+ 2 H2−(4)
(E o = OV ) total  2HzO→Oz+ 2 Hz     
  −(5)状態で水素を発生させるものである。この
反応の仕事量(W)は、通じた電流(i)と両極間の電
圧(V)の積であり、両極間の電圧を理論電圧1.23
 Vに近づ W=iXV           ・・・(6)けるこ
とにより効率がよいということになる。
In water electrolysis, as shown below, between the positive and negative electrodes,
Negative electrode with electrical energy added through current: 2HzO
→02+ 4 H++ 4 e -(3)(E
o=1. , 23 V) Positive electrode: 4 H++ 4 e −+ 2 H2− (4)
(E o = OV) total 2HzO→Oz+2Hz
It generates hydrogen in the -(5) state. The work (W) of this reaction is the product of the current (i) passed and the voltage (V) between the two poles, and the voltage between the two poles is the theoretical voltage 1.23
By approaching V, W=iXV (6), efficiency is improved.

現在、電子材料プロセスなどの高純度の水素供給源は、
上記の水電解が主であるが、電力消費が大きい点で問題
がある。
Currently, high-purity hydrogen sources such as electronic material processes are
The above-mentioned water electrolysis is the main method, but there is a problem in that it consumes a lot of power.

本発明の目的は、比較的低温(〜60℃)、常圧でシス
テムが簡単であり、電気的仕事量を低減しうる電気化学
的な補により高純度の水素を製造する方法を提供するこ
とである。
An object of the present invention is to provide a method for producing high-purity hydrogen using electrochemical supplementation, which is relatively low temperature (~60°C), normal pressure, has a simple system, and can reduce electrical work. It is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、酸化反応をするアノードと還元反応をす
るカソード及び前記両者間に位置する電解質から成る電
解セルにおいて、アノードには還元体を供給し、カソー
ドは酸化体を不共存にすることにより、電気化学的にカ
ソードから水素を発生させることにより達成される。
The present inventors have proposed that in an electrolytic cell consisting of an anode that performs an oxidation reaction, a cathode that performs a reduction reaction, and an electrolyte located between the two, a reductant is supplied to the anode, and an oxidant is made non-coexisting with the cathode. This is achieved by electrochemically generating hydrogen from the cathode.

〔作用〕[Effect]

以下に1本発明の詳細な説明するが、特にメタノールの
リホーミング反応及び水の電気分解と比較して述べる。
The present invention will now be described in detail, particularly in comparison to the reforming reaction of methanol and the electrolysis of water.

電気化学的なメタノールの酸化反応は、アノード(負極
)で下記の反応が進行する。
In the electrochemical methanol oxidation reaction, the following reaction proceeds at the anode (negative electrode).

アノード: CHsOH+HzO−+COx+6旧+6
e  ・=(7)(標準電位Eo=0.04V) これと、カソードに酸化体(例えば酸素)を供給しない
で、通電すれば下記の反応になる。
Anode: CHsOH+HzO-+COx+6 old+6
e.=(7) (Standard potential Eo=0.04V) If current is applied without supplying an oxidant (eg, oxygen) to the cathode, the following reaction will occur.

アノード: CHaOH+ )120→C(h+6旧+
6e  −(7)カソード:61N++6e→3Hz 
        ・・・(8)(標準電位E o = 
OV ) total    CHaolI + H2,O→CO
z+3Hz      ”・(2)このtotalの式
は、前述したメタノールのリホーミング反応であり、こ
れは通常は 300℃ と触媒反応であり、高温で進められている。これを(7
) 、 (8)式と電気化学的に反応させることにより
、湿式、低温でメタノールをリホーミングすることにな
り、メリットが大きい。
Anode: CHaOH+ )120→C(h+6 old+
6e - (7) Cathode: 61N++6e→3Hz
...(8) (Standard potential E o =
OV) total CHaolI + H2,O→CO
z+3Hz ''・(2) This total equation is the methanol reforming reaction mentioned above, which is usually a catalytic reaction at 300℃ and is proceeded at high temperature.
), By electrochemically reacting with formula (8), methanol can be reformed wet and at low temperatures, which has great merits.

また、電気化学反応である水の電気分解は、下記の反応
で進行し アノード: 2H20→Oz+411++4e (Eo= 1 、2
3 V) −(3)カソード: 4H++4e−+2Hz (Eo=OV)   −(4
)2H20→Oz+2Hz アノード1(負極)反応の標準電位が1.23Vであり
、カソード2(正極)の標準電位はOvである。これか
ら、この両極に電流を通じた場合のモデルを第1図示す
、第1図に示すように、アノードからは酸素が発生し、
カソードからは水素が発生する。 (3) 、 (4)
式に示すように電流量により、水素の発生量を制御する
が、第1図に示すように通ずる電流を大きくすると、ア
ノードは正側に、カソードは負側に分極が大きくなり、
加電圧が大きくなる。
In addition, the electrolysis of water, which is an electrochemical reaction, proceeds as follows: anode: 2H20→Oz+411++4e (Eo=1,2
3 V) -(3) Cathode: 4H++4e-+2Hz (Eo=OV) -(4
)2H20→Oz+2Hz The standard potential of the anode 1 (negative electrode) reaction is 1.23V, and the standard potential of the cathode 2 (positive electrode) is Ov. Figure 1 shows a model when current is passed through these two electrodes. As shown in Figure 1, oxygen is generated from the anode,
Hydrogen is generated from the cathode. (3), (4)
As shown in the formula, the amount of hydrogen generated is controlled by the amount of current, but as shown in Figure 1, when the current is increased, the anode becomes more polarized to the positive side and the cathode to the negative side.
The applied voltage increases.

これに対して、本発明であるところのメタノールの酸化
をみると(7) 、 (8)式から標準電圧は0.04
 Vであり、水の電解の標準電圧1.23Vより電圧の
低い分だけ効率がよくなる。第2図に実験の1例を、第
3図に電流を通じたときのモデル図を示す。
On the other hand, looking at the oxidation of methanol, which is the subject of the present invention, the standard voltage is 0.04 from equations (7) and (8).
The voltage is lower than the standard voltage for water electrolysis, which is 1.23V, and the efficiency is higher. Fig. 2 shows an example of the experiment, and Fig. 3 shows a model diagram when current is applied.

第2図は、電解セルにアノード1及びカソード2をガス
フィルター(4G)を介して1mの間隔で位置させ、セ
ル内には電解液としては1 、5 mol/Q硫酸水溶
液を用い、これに4%のメタノールを含有させる。外部
から電流を通ずると、アノードでは炭酸ガス3 (Co
w) 、カソードでは水素4が生成する。第3図から、
電流を通ずるとアノード及びカソードとも分極が大きく
なる。しかし、(7)式の標準電位が低い分だけ、水の
電解分解に比べ加電圧が低減されることがわかる。これ
により、外部から電気を与える。すなわち電気化学的仕
事量(W=iXV)のV(両極間電圧)が低い分だけ効
率がよく、本発明のメリットが明らかである。
In Figure 2, an anode 1 and a cathode 2 are placed in an electrolytic cell at a distance of 1 m through a gas filter (4G), and a 1.5 mol/Q sulfuric acid aqueous solution is used as an electrolytic solution in the cell. Contains 4% methanol. When an electric current is passed from outside, carbon dioxide gas 3 (Co
w) , hydrogen 4 is produced at the cathode. From Figure 3,
When a current is passed through the anode and cathode, the polarization increases. However, it can be seen that the applied voltage is reduced compared to water electrolysis due to the lower standard potential in equation (7). This gives electricity from the outside. In other words, the efficiency is good because the electrochemical work amount (W=iXV) is low (V (voltage between electrodes)), and the merits of the present invention are obvious.

本発明における電極としては、電解液に対して化学的に
安定で、かつ導電性であれば使用可能であり、アノード
としてはメタノールの酸化活性に優れている(第3図の
アノードの分極が小さいもの程、活性が優れている)白
金、ルテニウム、レニウム、スズ、イリジウムなどの金
属を1種以上含有、または反応面積を多くするための、
上記金属を導電性の炭素担体に分散含有させる等が適用
できる。カソードとしては、白金、金、イリジウム、ロ
ジウム、ルテニウム、オスミウム等の貴金属や、鉛、ニ
オブ、タンタル、ジルコニウム、ハフニウム等の卑金属
及び黒鉛等の炭素材料の1種以上を含有、または導電性
の炭素担体に分散含有させる等が適用できる。含有方法
は、沈着法、含浸法、インタカレント法、混練性等の通
常の触媒調製法のいずれであってもよい。
As an electrode in the present invention, it can be used as long as it is chemically stable with respect to the electrolyte and conductive, and as an anode, it has excellent methanol oxidation activity (the anode shown in Figure 3 has small polarization). containing one or more metals such as platinum, ruthenium, rhenium, tin, iridium, etc., or to increase the reaction area.
The above-mentioned metal may be dispersed and contained in a conductive carbon carrier. The cathode may contain one or more of noble metals such as platinum, gold, iridium, rhodium, ruthenium, and osmium, base metals such as lead, niobium, tantalum, zirconium, and hafnium, and carbon materials such as graphite, or conductive carbon. Dispersion and inclusion in a carrier can be applied. The method of containing the catalyst may be any of the usual catalyst preparation methods such as a deposition method, an impregnation method, an intercurrent method, and a kneading method.

本発明方法における電解質としては電解液及び/又は電
解液を含有した隔膜が用いられ、電解液の具体例として
は、硫酸水溶液および/又は高分子スルフォン酸を含有
する水溶液があげられる。
As the electrolyte in the method of the present invention, an electrolytic solution and/or a diaphragm containing an electrolytic solution are used, and specific examples of the electrolytic solution include an aqueous sulfuric acid solution and/or an aqueous solution containing a polymeric sulfonic acid.

反応条件としては、電解液の硫酸濃度は、第4図に示す
ように、アノードの酸化電位(電流密度60mA/ad
)の小さい0.5〜3.0Ilol / Q(4%メタ
ノール)が適する。反応温度は、第5図の7ノード特性
(4%メタノール−1,5n+ol/Q硫酸水溶液中)
より、温度が高い程、酸化電位は低くなるが、メタノー
ルの分解温度が64℃(100%メタノール)であり、
利用率から室温〜60℃が望ましい。
As for the reaction conditions, the sulfuric acid concentration in the electrolyte is set to the oxidation potential of the anode (current density 60 mA/ad) as shown in Figure 4.
) of 0.5 to 3.0 Ilol/Q (4% methanol) is suitable. The reaction temperature is based on the 7-node characteristic shown in Figure 5 (in 4% methanol-1,5n+ol/Q sulfuric acid aqueous solution)
The higher the temperature, the lower the oxidation potential, but the decomposition temperature of methanol is 64 ° C (100% methanol),
Room temperature to 60°C is desirable from the utilization rate.

また、メタノール純度は、100%のものである必要が
なく、水素の製造量にも関係するが、数%程度からの適
用できるメリットもある。
Moreover, the methanol purity does not need to be 100%, and although it is related to the amount of hydrogen production, there is an advantage that it can be applied from about a few percent.

また、メタノールのほかギ酸やホルムアルデヒド及びエ
タノール等の混入したものも適用可能である。
In addition to methanol, substances mixed with formic acid, formaldehyde, ethanol, etc. can also be used.

〔実施例〕〔Example〕

以下に、実施例によりさらに本発明を詳しく示すが、本
発明は以下の実施例に限定されるものではない。
EXAMPLES The present invention will be illustrated in more detail by examples below, but the present invention is not limited to the following examples.

実施例−1 本実施例は、還元体として、特にメタノール及びエタノ
ールを用いて電気化学的に水素に改質する方法に使用す
る電極の作製である。
Example 1 This example describes the production of an electrode used in a method of electrochemically reforming hydrogen into hydrogen using particularly methanol and ethanol as reductants.

(1)アノード 炭素担体(ファーネスブラック:キャボット社)に白金
を30vし%担持した触媒粉末を4.5gとり水を加え
て混線後、ポリフロンディスパージョン(D−1:ダイ
キン社)液をポリテトラフルオロエチレンとして30v
t%になるように添加し、次にカーボンペーパ(E−7
15:呉羽化学社)250x300に塗布し、風乾後、
空気極中で300℃、30分間燃成しアノードAとした
(1) Take 4.5 g of catalyst powder carrying 30v and % of platinum on an anode carbon carrier (Furnace Black: Cabot), add water, mix, and add Polyflon dispersion (D-1: Daikin) to Polyflon dispersion (D-1: Daikin). 30v as tetrafluoroethylene
t%, and then carbon paper (E-7
15: Kureha Kagakusha) Coated on 250x300, after air drying,
Anode A was obtained by burning in an air electrode at 300°C for 30 minutes.

炭素担体に白金とルテニウムとして5C)++t%担持
した触媒を6.7 gとり、以下アノードAの同じ仕様
でアノードBを作製した。
Anode B was prepared using the same specifications as anode A by taking 6.7 g of a catalyst in which 5C++t% of platinum and ruthenium were supported on a carbon carrier.

炭素担体に白金とスズとして50tzt%担持した触媒
を6.7 gとり、以下アノードAと同じ仕様でアノー
ドCを作製した。
6.7 g of a catalyst in which 50 tzt% of platinum and tin were supported on a carbon carrier was taken, and anode C was produced with the same specifications as anode A.

(2)カソード 炭素担体に白金を20wt%担持した触媒粉末を4.5
 gとり、水を加えて混線後、ポリテトラフルオロエチ
レンとして50wt%になるように添加し、以下アノー
ドAと同様の方法にて、カソードA作製した。
(2) Catalyst powder with 20 wt% platinum supported on cathode carbon carrier
After mixing by adding water, polytetrafluoroethylene was added in an amount of 50 wt %, and cathode A was produced in the same manner as anode A.

40a+esh白金の網を、カソードBとした。A 40a+esh platinum mesh was used as cathode B.

実施例−2 第2図に示した電解セル(容積1ρ)に1.5mol/
12硫酸と5wt%メタノールを入れ、アノードにアノ
ードA(50X50am)をカソードにカソードA(5
0X501111) を位置させ、60℃で電流密度6
0mA/dの電流を通じ、水素を製造した。この時の、
両極間の電圧を測定したところ30.69 Vであった
Example-2 1.5 mol/
12 Add sulfuric acid and 5wt% methanol, and place anode A (50x50am) on the anode and cathode A (50x50am) on the cathode.
0x501111) at a current density of 6 at 60°C.
Hydrogen was produced by passing a current of 0 mA/d. At this time,
When the voltage between the two electrodes was measured, it was 30.69V.

実施例−3 アノードにアノードBを使用する以外は、実施例−2と
同様に両1!極間の電圧を測定した。
Example-3 Same as Example-2 except that Anode B is used as the anode. The voltage between the electrodes was measured.

その結果、0.43Vであった。The result was 0.43V.

実施例−4 アノードにアノードCを使用する以外は、実施例−2と
同様に両電極間の電圧を測定した。
Example-4 The voltage between both electrodes was measured in the same manner as in Example-2 except that Anode C was used as the anode.

その結果、0.45Vであった。The result was 0.45V.

実施例−5 アノードのアノードBを使用し、カソードにカソードB
を用いて、実施例−2と同様の試験をした。両電極間の
電圧は0.44Vであった。
Example-5 Anode B is used as the anode, and cathode B is used as the cathode.
The same test as in Example 2 was conducted using the following. The voltage between both electrodes was 0.44V.

比較例−1 アノードにアノードA、カソードにカソードAを使用し
、1 、5 mol/ Qの硫酸電解液を用い実施例−
2と同様の条件で、水の電圧分解を実施した。この時、
両極間の電圧を測定したところ2.33Vであった。
Comparative Example-1 Anode A was used as the anode, cathode A was used as the cathode, and a sulfuric acid electrolyte of 1.5 mol/Q was used.
Voltage decomposition of water was carried out under the same conditions as in Example 2. At this time,
When the voltage between the two electrodes was measured, it was 2.33V.

比較例−2 実施例−3と同じ電極を使用し、比較例−1と同様の試
験をした。両極間の電圧は2.32Vであった。
Comparative Example-2 The same electrode as in Example-3 was used, and the same test as in Comparative Example-1 was conducted. The voltage between the two poles was 2.32V.

比較例−3 実施例−4と同じ電極を使用し、比較例−1と同様の試
験をした。両極間の電圧は2.33Vであった。
Comparative Example-3 Using the same electrode as in Example-4, the same test as in Comparative Example-1 was conducted. The voltage between the two poles was 2.33V.

比較例−4 実施例−5と同じ電極を使用し、比較例−1と同様の試
験をした。両極間の電圧はoOvであった。
Comparative Example-4 Using the same electrode as in Example-5, the same test as in Comparative Example-1 was conducted. The voltage between the two poles was oOv.

実施例−6 第6図に概略を示す単位セルを構成する。これは、10
0 X 128m(7)7/−ドBと1.5mol/Q
の硫酸を保持したカソードAを用いて、両極間に1 、
5 mol/ Qの硫酸を含有したイオン交換膜(CM
V:M硝子)を介在させ、それぞれを密着させる。この
セルのアノード室に、1、 、5 mol/ Qメタノ
ールと1.5mol/Qの硫酸を200mQ/1lin
で循環供給し、セルの温度を60℃一定とした。このセ
ルに外部から電流7.7Aを通じ、その時のセル電圧を
測定した。
Example 6 A unit cell schematically shown in FIG. 6 is constructed. This is 10
0 x 128m (7) 7/-do B and 1.5mol/Q
Using cathode A holding sulfuric acid, 1,
Ion exchange membrane (CM) containing 5 mol/Q sulfuric acid
V:M glass) to bring them into close contact with each other. Into the anode chamber of this cell, add 1, , 5 mol/Q methanol and 1.5 mol/Q sulfuric acid at 200 mQ/1 lin.
The temperature of the cell was kept constant at 60°C. A current of 7.7 A was applied to this cell from the outside, and the cell voltage at that time was measured.

その結果、電圧は0.42Vであった。As a result, the voltage was 0.42V.

比較例−5 実施例−6の単位セルのアノード室に、■、5mol/
12  の硫酸水溶液を供給する以外は、実施例−6と
同様にセル電圧を測定した。その結果は、2.30Vで
あった。
Comparative Example-5 In the anode chamber of the unit cell of Example-6, ■, 5 mol/
The cell voltage was measured in the same manner as in Example 6, except that 12 sulfuric acid aqueous solution was supplied. The result was 2.30V.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によるメタノール等の還元体を電
気化学的に水素に改質する方法は、従来の水素製造方法
に比べ (イ)低温、常圧で動作しうる。
As described above, the method of electrochemically reforming a reductant such as methanol into hydrogen according to the present invention can (a) operate at a lower temperature and normal pressure than conventional hydrogen production methods.

(ロ)高純度の水素の製造が可能である。(b) High purity hydrogen can be produced.

(ハ)電気化学的仕事量を低減しろる。(c) Reduce electrochemical workload.

・仕事W=iXVのV:電圧を低くできる。・V of work W=iXV: Voltage can be lowered.

・(イ)と(ロ)を満足しながら水の電気分解の115
以下が可能であった。
・115 of water electrolysis while satisfying (a) and (b)
The following was possible.

という利点を有する。It has the advantage of

さらに、実施例−6に示すような単位セルを複数個積層
することにより、コンパクト化が可能である。
Further, by stacking a plurality of unit cells as shown in Example 6, it is possible to make the device compact.

以上、本発明の他の水素製造方法に比べすぐれた効果を
有する。
As described above, the present invention has superior effects compared to other hydrogen production methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水の電気分解の電流密度−電位特性モデル図、
第2図はメタノールの水素への改質装置概略図、第3図
はメタノール改質の電流密度−電位特性モデル図、第4
図は電解液中の硫酸濃度とアノード性能図、第5図は作
動温度とアノード性能図、第6図はメタノールの水素へ
の改質装置概略図。 1・・・アノード、2・・・カソード、3・・・炭酸ガ
ス、4・・・水素、5・・・硫酸+メタノール水溶液、
6・・・電源、7・・・電圧計、8・・・電流計、9・
・・ガラスフィルタ、10・・・イオン交換膜、11・
・・アノード室、12・・・カソード室・13°゛°ア
′−ド端子・14°°°力y+、、、、ド端子、15・
・・水素出口。
Figure 1 is a current density-potential characteristic model diagram for water electrolysis.
Figure 2 is a schematic diagram of a methanol reformer to hydrogen, Figure 3 is a current density-potential characteristic model diagram for methanol reforming, and Figure 4 is a diagram of a current density-potential characteristic model diagram for methanol reforming.
The figure shows the sulfuric acid concentration in the electrolytic solution and the anode performance diagram, Figure 5 shows the operating temperature and anode performance diagram, and Figure 6 shows the schematic diagram of the methanol reformer to hydrogen. 1... Anode, 2... Cathode, 3... Carbon dioxide gas, 4... Hydrogen, 5... Sulfuric acid + methanol aqueous solution,
6...Power supply, 7...Voltmeter, 8...Ammeter, 9.
...Glass filter, 10...Ion exchange membrane, 11.
...Anode chamber, 12...Cathode chamber, 13°゛°Ad'-terminal, 14°° Power y+,... Do terminal, 15.
...Hydrogen outlet.

Claims (1)

【特許請求の範囲】 1、酸化反応をするアノードと還元反応をするカソード
及び前記両者間に位置する電解質から成る電解セルにお
いて、アノードには還元体を供給し、かソードは酸化体
を不共存にすることにより、電気化学的にカソードから
水素を発生させることを特徴とする水素製造方法。 2、アノードが1種類以上のVI、VII、VIII族元素を含
有および/あるいは導電性炭素物質を共存してなること
を特徴とする特許請求の範囲第1項記載の水素製造方法
。 3、カソードが白金および/あるいは導電性炭素物質を
共存してなることを特徴とする特許請求の範囲第1項記
載の水素製造方法。 4、電解質が電解液および/あるいは電解液を含有して
なる隔膜であることを特徴とする特許請求の範囲第1項
記載の水素製造方法。 5、電解液が硫酸水溶液および/あるいは高分子スルフ
ォン酸を含有する水溶液からなることを特徴とする特許
請求の範囲第4項記載の水素製造方法。 6、隔膜がイオン交換膜、ガラスフィルタ、不織布の1
種以上であることを特徴とする特許請求の範囲第4項記
載の水素製造方法。 7、還元体が液体燃料からなることを特徴とする特許請
求の範囲第1項記載の水素製造方法。 8、液体燃料がメタノールおよび/あるいはエタノール
水溶液からなることを特徴とする特許請求の範囲第7項
記載の水素製造方法。 9、液体燃料がホルムアルデヒド、ギ酸、メタノール、
エタノールの1種以上であることを特徴とする特許請求
の範囲第7項記載の水素製造方法。 10、液体燃料がメタノール水溶液からなり、メタノー
ル1モルに対して水1モル以上を混合してなることを特
徴とする特許請求を範囲第8項記載の水素製造方法。
[Scope of Claims] 1. In an electrolytic cell consisting of an anode that undergoes an oxidation reaction, a cathode that undergoes a reduction reaction, and an electrolyte located between the two, a reductant is supplied to the anode, and an oxidant does not coexist with the anode. A hydrogen production method characterized by electrochemically generating hydrogen from a cathode by. 2. The hydrogen production method according to claim 1, wherein the anode contains one or more types of group VI, VII, or VIII elements and/or coexists with a conductive carbon material. 3. The method for producing hydrogen according to claim 1, characterized in that the cathode contains platinum and/or a conductive carbon material. 4. The hydrogen production method according to claim 1, wherein the electrolyte is an electrolytic solution and/or a diaphragm containing an electrolytic solution. 5. The hydrogen production method according to claim 4, wherein the electrolyte comprises an aqueous sulfuric acid solution and/or an aqueous solution containing a polymeric sulfonic acid. 6. The diaphragm is an ion exchange membrane, a glass filter, or a nonwoven fabric.
5. The method for producing hydrogen according to claim 4, wherein the hydrogen production method is characterized in that the hydrogen production method comprises at least one species. 7. The method for producing hydrogen according to claim 1, wherein the reductant is a liquid fuel. 8. The hydrogen production method according to claim 7, wherein the liquid fuel consists of methanol and/or ethanol aqueous solution. 9. Liquid fuel is formaldehyde, formic acid, methanol,
8. The hydrogen production method according to claim 7, wherein the hydrogen production method is one or more types of ethanol. 10. The method for producing hydrogen according to claim 8, wherein the liquid fuel is composed of an aqueous methanol solution, and 1 mole or more of water is mixed with 1 mole of methanol.
JP5193587A 1987-03-09 1987-03-09 Hydrogen production Pending JPS63219593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5193587A JPS63219593A (en) 1987-03-09 1987-03-09 Hydrogen production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5193587A JPS63219593A (en) 1987-03-09 1987-03-09 Hydrogen production

Publications (1)

Publication Number Publication Date
JPS63219593A true JPS63219593A (en) 1988-09-13

Family

ID=12900724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5193587A Pending JPS63219593A (en) 1987-03-09 1987-03-09 Hydrogen production

Country Status (1)

Country Link
JP (1) JPS63219593A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252017A (en) * 2001-02-26 2002-09-06 Furuya Kinzoku:Kk Methanol fuel cell
WO2003101603A1 (en) * 2002-05-13 2003-12-11 M. & R. Consulting Dba Med. E. Cell Electrochemical generation of carbon dioxide and hydrogen from organic acids
JP2007224382A (en) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Hydrogen feed system
JP2007224381A (en) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Hydrogen feed system
JP2007223860A (en) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Hydrogen supply system
JP2007239038A (en) * 2006-03-09 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> Hydrogen supply method
JP2007246953A (en) * 2006-03-14 2007-09-27 Nippon Telegr & Teleph Corp <Ntt> Electrolytic cell and hydrogen supply system
JP2007265757A (en) * 2006-03-28 2007-10-11 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3446674A (en) * 1965-07-07 1969-05-27 United Aircraft Corp Method and apparatus for converting hydrogen-containing feedstocks
JPS5871380A (en) * 1981-10-21 1983-04-28 Agency Of Ind Science & Technol Production of hydrogen by electrolysis
JPS6046383A (en) * 1978-07-19 1985-03-13 エナジ− デイベロツプメントアソシエイツ,インコ−ポレ−テツド Manufacture of hydrogen
JPS62256976A (en) * 1986-04-30 1987-11-09 Mitsubishi Heavy Ind Ltd Production of hydrogen
JPS62260085A (en) * 1986-05-01 1987-11-12 Mitsubishi Heavy Ind Ltd Method for decomposing methanol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3446674A (en) * 1965-07-07 1969-05-27 United Aircraft Corp Method and apparatus for converting hydrogen-containing feedstocks
JPS6046383A (en) * 1978-07-19 1985-03-13 エナジ− デイベロツプメントアソシエイツ,インコ−ポレ−テツド Manufacture of hydrogen
JPS5871380A (en) * 1981-10-21 1983-04-28 Agency Of Ind Science & Technol Production of hydrogen by electrolysis
JPS62256976A (en) * 1986-04-30 1987-11-09 Mitsubishi Heavy Ind Ltd Production of hydrogen
JPS62260085A (en) * 1986-05-01 1987-11-12 Mitsubishi Heavy Ind Ltd Method for decomposing methanol

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252017A (en) * 2001-02-26 2002-09-06 Furuya Kinzoku:Kk Methanol fuel cell
WO2003101603A1 (en) * 2002-05-13 2003-12-11 M. & R. Consulting Dba Med. E. Cell Electrochemical generation of carbon dioxide and hydrogen from organic acids
JP2007224382A (en) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Hydrogen feed system
JP2007224381A (en) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Hydrogen feed system
JP2007223860A (en) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Hydrogen supply system
JP4728837B2 (en) * 2006-02-24 2011-07-20 日本電信電話株式会社 Hydrogen supply system
JP2007239038A (en) * 2006-03-09 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> Hydrogen supply method
JP2007246953A (en) * 2006-03-14 2007-09-27 Nippon Telegr & Teleph Corp <Ntt> Electrolytic cell and hydrogen supply system
JP4728846B2 (en) * 2006-03-14 2011-07-20 日本電信電話株式会社 Electrolysis cell and hydrogen supply system
JP2007265757A (en) * 2006-03-28 2007-10-11 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system

Similar Documents

Publication Publication Date Title
Mayousse et al. Synthesis and characterization of electrocatalysts for the oxygen evolution in PEM water electrolysis
Audichon et al. Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile
US20070163889A1 (en) Method and apparatus for producing hydrogen
Spataru et al. Electrochemical reduction of carbon dioxide at ruthenium dioxide deposited on boron-doped diamond
US4311569A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
Bo et al. Microstructural characterization and electrochemical properties of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ and its application for anode of SOEC
US4528083A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
US4707229A (en) Method for evolution of oxygen with ternary electrocatalysts containing valve metals
Yin et al. Ionic conduction in BaCe0. 85− xZrxEr0. 15O3-α and its application to ammonia synthesis at atmospheric pressure
JPS6025508B2 (en) How to generate gas by electrolytic reaction
Ishihara et al. Oxidative reforming of methane using solid oxide fuel cell with LaGaO3-based electrolyte
KR20180124921A (en) Metal-doped tin oxide for electrocatalyst applications
Marini et al. Oxygen evolution in alkali with gas diffusion electrodes
JPH11229167A (en) Electrolytic hydrogen generating device
JPS63219593A (en) Hydrogen production
JP3455779B2 (en) Apparatus for producing hydrogen comprising semiconductor photocatalyst reactor and electrolyzer
Lamy Electrocatalytic oxidation of low weight oxygenated organic compounds: A review on their use as a chemical source to produce either electricity in a Direct Oxidation Fuel Cell or clean hydrogen in an electrolysis cell
EP0972855A1 (en) Method and apparatus for ammonia synthesis at atmospheric pressure
CN111962099A (en) Electrode for electrocatalytic production of hydrogen peroxide, preparation method and application thereof
Carmo et al. Electrocatalysts for the hydrogen evolution reaction
Dilimon et al. Impedance spectroscopy study of Au electrodes on Gd-doped CeO2 (GDC)–Molten Li2CO3+ Na2CO3 (LNC) composite electrolytes
CN113802130B (en) Electrolytic water catalyst and preparation method thereof
KR100570689B1 (en) Catalyst for fuel cell and fuel cell comprising same
JP4353657B2 (en) Method for separating hydrogen from hydrocarbon reformed gases using high temperature proton conductors
Dong et al. Ion-conducting ceramic membranes for renewable energy technologies