JPS5871306A - Production of powder - Google Patents

Production of powder

Info

Publication number
JPS5871306A
JPS5871306A JP17011381A JP17011381A JPS5871306A JP S5871306 A JPS5871306 A JP S5871306A JP 17011381 A JP17011381 A JP 17011381A JP 17011381 A JP17011381 A JP 17011381A JP S5871306 A JPS5871306 A JP S5871306A
Authority
JP
Japan
Prior art keywords
molten metal
cooling medium
rotating
liquid cooling
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17011381A
Other languages
Japanese (ja)
Other versions
JPH0151523B2 (en
Inventor
Akira Horata
亮 洞田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP17011381A priority Critical patent/JPS5871306A/en
Publication of JPS5871306A publication Critical patent/JPS5871306A/en
Publication of JPH0151523B2 publication Critical patent/JPH0151523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain metallic powder which causes less segregation and contains no impurities with a device of simple construction and a cooling medium of small consumptions by plunging the molten metal particles which are atomized by centrifugal forces into the liquid cooling medium held centrifugally in a rotating vessel. CONSTITUTION:In a hermetic vessel 1 maintained in a gaseous Ar atmosphere under reduced pressure, liquefied Ar 12 as a cooling medium introduced through a supply pipe 14 for liquid cooling medium is held in a rotating vessel 11 which consists of a material having good heat conductivity such as copper and is rotated by a motor 25 via gears 24, 23, 19, 18, etc. On the other hand, molten metal 3 is supplied from a high frequency induction melting furnace 2 through a tundish 4 onto a rotating body 5. The molten metal 3 is atomized by the centrifugal forces of the body 5 which is rotated at about 12,000 (rpm) by an air motor 6, and the particles 13 of the molten metal formed by this atomization are plunged into the liquefied Ar 12, whereby the particles are cooled and solidified at about 10<5> deg.C/sec. cooling rate and the metallic powder of less segregation is obtained.

Description

【発明の詳細な説明】 この発明は、遠心力(よって溶融金属を霧化す;−一頁 ある。[Detailed description of the invention] This invention utilizes centrifugal force (thus atomizing molten metal; be.

近年、高性能の耐熱合金の粉末冶金法が開発され、実用
化されつつある。このような耐熱合金の輪車冶金に用い
る原料役は、■酸素による汚染が十分小さいこと、例え
ば50 ppm以下の程度であること、■不活性ガスの
含有量が極めて少ないこと、例えば1 ppm以下であ
ること、■偏析が十分   。
In recent years, powder metallurgy methods for producing high-performance heat-resistant alloys have been developed and are being put into practical use. The raw materials used for wheel metallurgy of such heat-resistant alloys are: 1. Contamination by oxygen is sufficiently low, for example, 50 ppm or less; 2. The content of inert gas is extremely low, for example, 1 ppm or less. ■segregation is sufficient.

少ないこと、などの条件を満足する必要がある。It is necessary to satisfy the following conditions:

そして、これらO条件を満足させるために1■の場合に
1溶解原料の選定は当然として、溶屏および噴霧時に酸
素の混入を防ぎ得ること、■の場合に、不活性ガスによ
って溶融金属が撹乱されないこと、■の場合に冷却速度
を大きくとること、例えば10″℃/+s@a以上とす
ること、などが必要である。
In order to satisfy these O conditions, it goes without saying that one molten raw material should be selected in case 1. In case 1, oxygen can be prevented from being mixed in during melting and spraying, and in case 1, molten metal should be disturbed by inert gas. In the case of ①, it is necessary to set the cooling rate high, for example, to 10″°C/+s@a or more.

このような条件に近づけ得る粉末の製造法としては、違
心噴暢法がtbろ。この遠心噴霧法社、例えば、回転す
る円板上に溶融金属を流下させ、この溶融金属を遠心力
で霧化させた後凝固させて粉ている。この場合、遠心力
により霧化された金属粒子が溶融状態で飛行するので、
これら金属粒子の融着′ft肪ぐ九めに、冷却に必要な
十分な飛行距離をとる必要があり、装置が極めて大きく
なるという問題を有している。そこで、装置を小さくす
ることができ、しかも溶融金属粒子の融着を防ぐことが
できるような種々の改善策が従来より試みられてきてい
る。例えば、溶融金属粒子の融着管防ぐ九めに、水を冷
却媒体として用いることが試みられている。この−例を
示すと、回転する円板上に溶融金W4を流下させ、この
溶融金属を遠心力で霧化させたのち、この溶融金属粒子
を容器内壁に垂らした水に当てて冷却する方法があり、
溶融金属粒子の急速冷却を行なうようにしている。
As a method for producing powder that can approximate these conditions, the Isshin Futsunobu method is recommended. In this centrifugal atomization method, for example, molten metal is made to flow down onto a rotating disc, atomized by centrifugal force, and solidified into powder. In this case, the atomized metal particles fly in a molten state due to centrifugal force, so
Furthermore, the fusion of these metal particles requires a sufficient flight distance for cooling, which poses a problem in that the apparatus becomes extremely large. Therefore, various improvement measures have been attempted in the past to reduce the size of the device and prevent the fusion of molten metal particles. For example, attempts have been made to use water as a cooling medium to prevent fusion tubes of molten metal particles. An example of this is a method in which molten gold W4 is made to flow down onto a rotating disc, the molten metal is atomized by centrifugal force, and then the molten metal particles are cooled by hitting water dripping down on the inner wall of the container. There is,
The molten metal particles are rapidly cooled.

しかしながら、このような方法では、上記し念特(耐熱
合金の粉末冶金に用いる原料粉に要求される各条件を十
分に満足することができないという問題金有してい九。
However, this method has the problem of not being able to fully satisfy the various conditions required for the raw material powder used in powder metallurgy of heat-resistant alloys as described above.

とくに、粉末の偏析を小さくするためには、金属の完全
溶融状態から固化して原子が拡散して偏析が生ずる前に
当該原子が拡散できない温度にまで急速に冷却させるこ
とが必要であり、耐熱超合金の場合にはこの冷却速度1
に10’〜1G”C/s・・以上とすることが必要であ
るとされている。
In particular, in order to reduce the segregation of powder, it is necessary to rapidly cool the metal from a completely molten state to a temperature at which the atoms cannot diffuse before solidifying and causing segregation. In the case of superalloys, this cooling rate 1
It is said that it is necessary to set the speed to 10' to 1 G''C/s or more.

そζで、上記した104〜b 却速度會得る方法としてs Heを使用する方法(If
#開昭52−107259号公報参照)がある。
Therefore, the above-mentioned 104-b method of using s He as a method of obtaining a cooling rate meeting (If
#Refer to Publication No. 107259/1983).

この方法は、高速He流体中に10〜50Pの溶融金属
粒子を高速飛行させて冷却するものであるが、資源に乏
しく高価であるH・を使用するのに加えて、このHeを
高速流体にする必要があり、さらに10〜50μ情の溶
融金属粒子を高速飛行させるために、回転体の回転数を
かなり多く(例えば、20 、00 Or、p、m、程
度)する必要があるという問題を有している。
This method cools molten metal particles of 10 to 50P by flying them in a high-speed He fluid at high speed.In addition to using H, which is a scarce resource and expensive, In addition, in order to make molten metal particles of 10 to 50 microns fly at high speed, the number of revolutions of the rotating body must be considerably increased (for example, about 20,000 Or, p, m, etc.). have.

この発明は、上記したような従来の問題点に着目して一
&−gれた−ので、溶融金属粒子に対する冷却速度が十
分に大きく、偏析の小さい粉末を得ることができると同
時に、液状冷却媒体の消費量が少なくて済み、不純物に
よる粉末の汚染も防ぐことができる粉末の製造方法を提
供することを目的としている。
The present invention has been developed by focusing on the above-mentioned conventional problems, so that the cooling rate for molten metal particles is sufficiently high and powder with small segregation can be obtained, and at the same time, liquid cooling is possible. It is an object of the present invention to provide a method for producing powder that requires less consumption of a medium and can prevent contamination of the powder with impurities.

この発明は、遠心力によって溶融金属(合金を含む)を
霧化することにより粉末を製造する方法において、遠心
力によって霧化された溶融金属粒子を、回転容器に遠心
保持され友液状冷却媒体中に飛込ませ、前記液状冷却媒
体中で急冷して粉末とするよう和したことを特徴として
いる。
This invention relates to a method for producing powder by atomizing molten metal (including alloys) by centrifugal force, in which molten metal particles atomized by centrifugal force are centrifugally held in a rotating container and placed in a liquid cooling medium. It is characterized in that it is immersed in the liquid cooling medium, quenched in the liquid cooling medium, and then mixed to form a powder.

次に、この発明の実施蓉様を説明する。Next, the implementation of this invention will be explained.

第1図はこの発明による粉末の製造に使用する装置の一
構造例を示すもので、1は図示しない真空排気装置に接
続して、内部の真空排気を可能にし九容器、2は容器1
内に設置した高周波誘導溶解炉、6は高周波誘導溶解炉
2内で溶解された溶融金属、4は溶融金W43を受ける
タンディツシュ、5はダンディツシュ4からの溶融金属
3t−遠心力によって霧化する回転体、6は峙記回転体
5を回転軸6ILを介して高速回転させるエアモータ、
7はエアモータ6に加圧空気を供給する送気管である。
FIG. 1 shows an example of the structure of an apparatus used for producing powder according to the present invention, in which 1 is connected to a vacuum evacuation device (not shown) to enable vacuum evacuation of the inside, and 2 is a container 1.
6 is a molten metal melted in the high frequency induction melting furnace 2; 4 is a tundish that receives the molten metal W43; A rotating body, 6 is an air motor that rotates the rotating body 5 at high speed via a rotating shaft 6IL;
7 is an air supply pipe that supplies pressurized air to the air motor 6.

tた、11は前記回転体5と略同心円状に配、6−。t, 11 is arranged substantially concentrically with the rotating body 5, and 6-.

設されかつ遠心力によって液状冷却媒体12を保持し、
前記回転体5によって霧化された溶融金属粒子1st−
液状冷却媒体12中に飛込ませる回転容器、14は液状
冷却媒体12を供給する冷却媒体供給管、15は回転容
器11の底面側に設は九断熱材、16は断熱材15f:
介して回転容器11を回転可能に支持する軸受、17F
i軸受16を介して回転容器11を支える支持体、18
は回転容器11C)外周部に設は友歯車、19は歯車1
8とかみ合う歯車、20m、20bは前記歯車19の回
転輪21t−回転可能に保持する軸受、22は軸受20
aの保持部材、26は回転軸21の他端側に固定した歯
車、24は前記歯車26にかみ合うビニオン歯車、25
は上記歯車機構を介して回転容器11を回転させるモー
タである。
and retains the liquid cooling medium 12 by centrifugal force;
Molten metal particles 1st- atomized by the rotating body 5
A rotating container to be plunged into the liquid cooling medium 12, 14 a cooling medium supply pipe for supplying the liquid cooling medium 12, 15 a heat insulating material provided on the bottom side of the rotating container 11, and 16 a heat insulating material 15f:
A bearing, 17F, rotatably supports the rotating container 11 through the
A support that supports the rotating container 11 via the i-bearing 16, 18
11C) is a companion gear installed on the outer periphery of the rotating container 11C, and 19 is a gear 1.
A gear 20m meshes with 8, 20b is a rotating wheel 21t of the gear 19 - a bearing that rotatably holds the gear 19, and 22 is a bearing 20.
a holding member, 26 a gear fixed to the other end of the rotating shaft 21, 24 a binion gear meshing with the gear 26, 25
is a motor that rotates the rotary container 11 via the gear mechanism described above.

次に作用を説明すると、まず、図示しない真空排気装置
によって容器1内を真空排気し、その後適宜不活性ガス
管導入して容器内金非暖化性雰囲気とする。また、高周
波誘導溶解炉2内で母合金を溶解して溶融金属6を得る
と共に、モータ251h を作動させて回転容器11を回転させ、冷却媒体供給管
14より液状冷却媒体12を供給して、この液状冷却媒
体12を回転容器11に遠心保持させる。次いで、エア
モータ6によって回転体5を高速回転させ、この回転体
5上にタンディツシュ4から溶融金属3を流下して、当
該溶融金属3を回転体5上で遠心力によって霧化させる
。遠心力によって霧化され九溶融金属粒子1!1は、回
転容器11に遠心保持された液状冷却媒体12中に飛込
み、回転容器11に到達して粉末となる。この場合、飛
行中の冷却を少なくするために、減圧下の方がより有効
である。
Next, the operation will be described. First, the inside of the container 1 is evacuated using a vacuum evacuation device (not shown), and then an inert gas pipe is appropriately introduced to create a non-globalizing atmosphere inside the container. Further, the master alloy is melted in the high frequency induction melting furnace 2 to obtain the molten metal 6, and the motor 251h is operated to rotate the rotating container 11, and the liquid cooling medium 12 is supplied from the cooling medium supply pipe 14. This liquid cooling medium 12 is centrifugally held in the rotating container 11. Next, the rotary body 5 is rotated at high speed by the air motor 6, and the molten metal 3 flows down from the tundish 4 onto the rotary body 5, and the molten metal 3 is atomized on the rotary body 5 by centrifugal force. The nine molten metal particles 1!1 atomized by the centrifugal force fly into the liquid cooling medium 12 centrifugally held in the rotating container 11, reach the rotating container 11, and become powder. In this case, reduced pressure is more effective to reduce cooling during flight.

次に実施の一例を示すと、まず、図示しない真空排気装
置IKよって容器1内を10−’ Torr程度オで排
気し、その後Arガスを導入して置換することによって
容器1内を大気圧程度とする。次いで、高周波誘導炉解
炉2によって母合金(IN 100)を溶解すると共に
、モータ25によって回転容器11を約20 Orpm
で回転させ、冷却媒体供給管14より液化Ar f供給
して回転容器11に液化M%tS8−7130G(3) Ar冷却媒体12t−遠心保持させる。また、エア毫−
タ6t−作動させて回転体5を約1200Orpmの速
度で回転させ、この回転体5上に溶融金属6を流下させ
、遠心力によって霧化させる。霧化され九溶融金属粒子
1Mは液化Ar冷却媒体12内に飛込むが、このとき、
液化Atは急速に気化し、溶融金属粒子16から気化熱
を奪うことによって粒子表面が固化する。続いて表面が
固化した金属粒子16は、液化Arによって冷却された
鋼110囲転容器11に達し、そこでさらに急速冷却さ
れて、偏析の少ない耐熱金属粉末となる。このようにし
て得られた金属粉末の断面を走査型電子顕微鏡写真(x
loooo)で調べたところ、第2図に示す如くであっ
た。第2図から明らかなように、組織は極めて微細であ
り、マクロ的な偏析も全くなく、理想的なミクロ組織を
有する耐熱超合金費末であった。また、二次デンドライ
トの間隔から、冷却速度は106℃/ secであると
推定される。
Next, an example of implementation will be described. First, the inside of the container 1 is evacuated to about 10-' Torr using a vacuum evacuation device IK (not shown), and then Ar gas is introduced and replaced to bring the inside of the container 1 to about atmospheric pressure. shall be. Next, the master alloy (IN 100) is melted by the high-frequency induction furnace melting 2, and the rotating vessel 11 is heated to about 20 Orpm by the motor 25.
Then, liquefied Arf is supplied from the cooling medium supply pipe 14, and liquefied M%tS8-7130G(3) Ar cooling medium 12t is centrifugally held in the rotating container 11. Also, air
The rotary body 5 is rotated at a speed of about 1200 rpm by operating the rotary body 5, and the molten metal 6 is caused to flow down onto the rotary body 5 and atomized by centrifugal force. The nine molten metal particles 1M that are atomized fly into the liquefied Ar cooling medium 12, but at this time,
The liquefied At rapidly vaporizes and removes vaporization heat from the molten metal particles 16, thereby solidifying the particle surfaces. Subsequently, the metal particles 16 whose surfaces have been solidified reach the steel 110 surrounding vessel 11 cooled by liquefied Ar, where they are further rapidly cooled and become heat-resistant metal powder with less segregation. A scanning electron micrograph (x
As a result of checking with LOOOOO), it was as shown in Fig. 2. As is clear from FIG. 2, the structure was extremely fine and there was no macroscopic segregation, making it a heat-resistant superalloy with an ideal microstructure. Furthermore, the cooling rate is estimated to be 106°C/sec from the spacing of the secondary dendrites.

第3図は回転容器の別構造例を示すもので、第、9f 1図に示す回転容器11は、液状冷却媒体12の保持部
分がわん自形をなしているが、この場合、金属粉末の保
持容量社比較的少ないものとなる。
FIG. 3 shows another structural example of a rotating container. In the rotating container 11 shown in FIG. The holding capacity is relatively small.

そのため、第3図(1)のように、液状冷却媒体12の
保持部分を矩形状にすることもできる。しかし、液状冷
却媒体12に接触して表面が固化した金属粒子16を鋼
製の回転容器11Km触させてさらに急冷凝固させると
いう観点か□らは、第3図(&)の構造ではさほどの向
上はない。そこで、第3図(b)。
Therefore, as shown in FIG. 3(1), the holding portion of the liquid cooling medium 12 may be formed into a rectangular shape. However, from the point of view of bringing the metal particles 16 whose surfaces have solidified by contacting the liquid cooling medium 12 into contact with the steel rotating container 11 km to further rapidly solidify them, the structure shown in Fig. 3 (&) does not improve much. There isn't. Therefore, Fig. 3(b).

(C)に示すように、回転容器11に傾斜面11 at
設けた構造とし、金属粒子13を回転容器11の傾斜面
11aK接触させてさらに急冷凝固させ、その後急冷−
固した粉末が貯′蔵室11b内に入るようにしておけば
、粉末量が多いときでも後続の金属粒子15は良好に回
転容if!11の傾斜面11aK接触して急冷凝固され
ることになる。この場合、回転客器11は熱伝導性の良
好な材料から形成することが望ましいが、傾斜面1・1
aのみを熱伝導性の良好な鋼郷の材料から形成し、貯蔵
室11bはステンレス鋼等の比較的安価でかつ強度を有
する10  。
As shown in (C), the rotating container 11 has an inclined surface 11 at
The structure is such that the metal particles 13 are brought into contact with the inclined surface 11aK of the rotating container 11 and further rapidly solidified, and then rapidly cooled.
If the solidified powder is allowed to enter the storage chamber 11b, the subsequent metal particles 15 can be easily rotated even when the amount of powder is large! The inclined surface 11aK of No. 11 contacts and is rapidly solidified. In this case, it is desirable that the rotating passenger device 11 be made of a material with good thermal conductivity, but the inclined surfaces 1 and 1
Only the storage chamber 11b is made of a steel material with good thermal conductivity, and the storage chamber 11b is made of relatively inexpensive and strong material such as stainless steel.

材料から形成することもできる。It can also be formed from materials.

第4図は回転体5の他の構造例を示す図であって、第1
図に示す回転体5では直接回転軸6aK取付けた構造と
なっているため、溶融金属6の熱が直接回転軸6a側に
伝達される。そこで、第4図の回転体5では、溶融金属
受部51と回転軸取付部52とt間隔をおいて止A5M
により固定し、これらの間に繊維状断熱材54を配設し
た構造とし、溶融金属6の熱が回転軸6&側に伝達され
るOをなるぺ〈防ぐようにしている。
FIG. 4 is a diagram showing another example of the structure of the rotating body 5, in which the first
Since the rotating body 5 shown in the figure has a structure in which the rotating shaft 6aK is directly attached, the heat of the molten metal 6 is directly transmitted to the rotating shaft 6a side. Therefore, in the rotating body 5 shown in FIG.
The structure is such that a fibrous heat insulating material 54 is arranged between these to prevent the heat of the molten metal 6 from being transmitted to the rotating shaft 6 side.

なお、上述した実施態様においては、溶解炉に高周波誘
導炉を使用したが、そのほか、汚染度の小さいプラズマ
溶解炉、電子ビーム溶解炉等も当然使用可能である。ま
た、液状冷却媒体としては、At ()ほか、t(e 
@ N2等を使用することができ、容器1内の雰囲気と
しては、Arのほか、H・、N!#真空真空等用使用こ
とができる。さらに、粉末中のAr含有量を少なくする
ためには、液状冷却媒体として液化N、を使用するのが
曳い。1+、液状冷却媒体の層厚さは、飛行してくる溶
融金属粒子の材質、温度、大きさ等によって適宜定める
のが望ましく、液状冷却媒体が気化する量に見合う分量
の液状冷却媒体を供給管14より補給することによって
、その層厚さを一定に保持することが望ましい。
In the embodiments described above, a high-frequency induction furnace is used as the melting furnace, but it is also possible to use a plasma melting furnace, an electron beam melting furnace, etc., which have a low degree of contamination. In addition, as a liquid cooling medium, At(), t(e
@N2 etc. can be used, and the atmosphere inside the container 1 can be Ar, H, N! # Can be used for vacuum, etc. Furthermore, in order to reduce the Ar content in the powder, it is recommended to use liquefied N as a liquid cooling medium. 1+. It is desirable to determine the layer thickness of the liquid cooling medium appropriately depending on the material, temperature, size, etc. of the flying molten metal particles, and to supply the liquid cooling medium in an amount corresponding to the amount to be vaporized by the supply pipe. It is desirable to keep the layer thickness constant by replenishing from 14.

以上説明してきたように、この発明では、遠心力によっ
て溶融金属を霧化する方法において、遠心方圧よって霧
化された溶融金属粒子を、回転容器に遠心保持された液
状冷却媒体中に飛込ませて凝固させるようKしたから、
霧化された溶融金属粒子を非常に短かい飛行距離で液状
冷却媒体中に飛込ませることができるので、装置の著し
い小型化管実現することが可能であり、この液状冷却媒
体を通過後に回転容器に迅速に到達させることによって
、溶融金属粒子の冷却速II!を著しく高めることがで
き、金属粉末の偏析を非常に少ないものとすることが可
能であり、また、液状冷却媒体はこれを流下させる従来
方式のものと異なり、回転容器に遠心保持畜せているた
め、液状冷却媒体が気化した分に相幽する分量を補給す
れば曳く、液状冷却媒体の消費量が少なくて済むほか、
不純物による粉末の汚染も容易に防ぐようになすことが
でき、装置も簡単な構造とすることが可能であるなどの
数々の優れ友効果を有し、工業的利用価値は大なる4の
がある。
As explained above, in this invention, in a method of atomizing molten metal by centrifugal force, molten metal particles atomized by centrifugal pressure are plunged into a liquid cooling medium centrifugally held in a rotating container. I gave K so that it would coagulate and coagulate.
Since the atomized molten metal particles can be flown into the liquid cooling medium over a very short flight distance, it is possible to achieve a significant miniaturization of the equipment, and after passing through this liquid cooling medium, the rotating tube can be realized. By quickly reaching the container, the cooling rate of the molten metal particles II! It is possible to significantly increase the metal powder segregation, and the liquid cooling medium is centrifugally held in a rotating container, unlike the conventional method in which it flows down. Therefore, by replenishing the amount of liquid coolant that evaporates, the amount of liquid coolant consumed can be reduced.
It has many excellent benefits such as being able to easily prevent contamination of the powder with impurities and allowing the device to have a simple structure, and has four great industrial utility values. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を実施する友めの粉末製造装置の一構
造例を示す断面説明図、第2図は一実施例におiて得ら
れ喪金属粉末の一黴鍵写真、第3図(a)、(6)、(
C)は共に第1図の回転容器の他の構造例を示す断面説
明図、第4図は第1図の回転体の他の構造例を示す断面
説明図である。 1・−容器、2・・・溶鱗炉、6・・・溶融金属、5・
・・回転体、6・・・モータ、11・・・回転容器、1
2・・・液状冷却媒体、16・・・溶融金属粒子、14
・・・液状冷却媒体供給管、25・・・モータ。 第1図 。。・・°。    −一 、14   0゜ 〆4 −  二 − 11、+2−’ −1,2,18 \1、  13 18  、          1 61116      ・ m−17、,7うり  [ ■              P 2″″″/l+’
=’l−,7 第3図 (b) (C)
Fig. 1 is an explanatory cross-sectional view showing an example of the structure of a companion powder manufacturing apparatus for carrying out the present invention, Fig. 2 is a photograph of a molded metal powder obtained in one embodiment, Fig. 3 (a), (6), (
C) is an explanatory cross-sectional view showing another example of the structure of the rotating container shown in FIG. 1, and FIG. 4 is an explanatory cross-sectional view showing another example of the structure of the rotating body shown in FIG. 1.-container, 2.. melting furnace, 6.. molten metal, 5.
... Rotating body, 6... Motor, 11... Rotating container, 1
2... Liquid cooling medium, 16... Molten metal particles, 14
...Liquid coolant supply pipe, 25...Motor. Figure 1. . ...°. -1, 14 0゜〆4 - 2 - 11, +2-' -1,2,18 \1, 13 18, 1 61116 ・ m-17,,7 ri [■ P 2″″″/l+'
='l-,7 Figure 3(b) (C)

Claims (4)

【特許請求の範囲】[Claims] (1)遠心力によって溶融金属を霧化する方法において
、遠心力によって霧化された溶融金属粒子を、回転容s
K遠心保持され友液状冷却媒体中に飛込ませることを特
徴とする粉末の!1造方法。
(1) In a method of atomizing molten metal by centrifugal force, the molten metal particles atomized by centrifugal force are
A powder characterized by being centrifugally held and immersed in a liquid cooling medium! 1 method.
(2)  回転容器が、熱伝導性の曳好な材料から成る
ものである特許請求の範囲第(1)項記載の粉末の製造
方法。
(2) The method for producing powder according to claim (1), wherein the rotating container is made of a thermally conductive and malleable material.
(3)  回転容器が、溶融金属粒子の方向に対して傾
斜間を有するものである特許請求の範囲第(1)項1f
F、は第(2)項記載の粉末の製造方法。
(3) Claim 1f, in which the rotating container has an inclination with respect to the direction of the molten metal particles.
F. is the method for producing the powder described in item (2).
(4)  液状冷却媒体が、液化不活性ガスiたは液化
窒素である特許請求の範囲第(1)項、第(2)項また
は第(3)項記載OII末の製造方法。
(4) The method for producing OII powder according to claim (1), (2) or (3), wherein the liquid cooling medium is liquefied inert gas i or liquefied nitrogen.
JP17011381A 1981-10-26 1981-10-26 Production of powder Granted JPS5871306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17011381A JPS5871306A (en) 1981-10-26 1981-10-26 Production of powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17011381A JPS5871306A (en) 1981-10-26 1981-10-26 Production of powder

Publications (2)

Publication Number Publication Date
JPS5871306A true JPS5871306A (en) 1983-04-28
JPH0151523B2 JPH0151523B2 (en) 1989-11-06

Family

ID=15898874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17011381A Granted JPS5871306A (en) 1981-10-26 1981-10-26 Production of powder

Country Status (1)

Country Link
JP (1) JPS5871306A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114507A (en) * 1981-11-04 1985-06-21 ヨセフ エム ウエンツエル Manufacture of metal fine powder
JPS62167807A (en) * 1985-11-14 1987-07-24 ドレツサ−・インダストリ−ズ・インコ−ポレ−テツド Apparatus for producing quenched metal particle
FR2595595A1 (en) * 1986-03-17 1987-09-18 Aubert & Duval Acieries Method for cooling and collecting metallic powders produced by atomisation of liquid metal
JPH01111805A (en) * 1987-09-24 1989-04-28 General Motors Corp <Gm> Rapid solidification of plasma spray magnetic alloy
EP0331562A2 (en) * 1988-02-29 1989-09-06 Nuclear Metals, Inc. Method and apparatus for producing fine metal powders
KR100386896B1 (en) * 2002-05-28 2003-06-18 에드호텍(주) apparatus for producing fine powder from molten liquid by high-pressure spray
CN103406543A (en) * 2013-07-31 2013-11-27 攀钢集团攀枝花钢铁研究院有限公司 Ultrafine titanium powder or titanium alloy powder and production method and device thereof
CN103769596A (en) * 2013-11-26 2014-05-07 王利民 Method for preparing high-stacking-density oblate powder material
CN105728738A (en) * 2016-03-21 2016-07-06 孙颖 Mechanical centrifugal atomization device with stepless speed change function
CN105798314A (en) * 2016-03-21 2016-07-27 江苏志远节能炉业设备有限公司 Mechanical centrifugal atomization device used for efficient metallurgy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105057687A (en) * 2015-07-29 2015-11-18 厦门理工学院 Metal liquid drop cooling device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114507A (en) * 1981-11-04 1985-06-21 ヨセフ エム ウエンツエル Manufacture of metal fine powder
JPS62167807A (en) * 1985-11-14 1987-07-24 ドレツサ−・インダストリ−ズ・インコ−ポレ−テツド Apparatus for producing quenched metal particle
FR2595595A1 (en) * 1986-03-17 1987-09-18 Aubert & Duval Acieries Method for cooling and collecting metallic powders produced by atomisation of liquid metal
JPH01111805A (en) * 1987-09-24 1989-04-28 General Motors Corp <Gm> Rapid solidification of plasma spray magnetic alloy
JPH0353361B2 (en) * 1987-09-24 1991-08-14 Gen Motors Corp
EP0331562A3 (en) * 1988-02-29 1990-03-28 Nuclear Metals, Inc. Method and apparatus for producing fine metal powders
JPH0270012A (en) * 1988-02-29 1990-03-08 Nuclear Metals Inc Device and method for manufacture of fine metallic powder
EP0331562A2 (en) * 1988-02-29 1989-09-06 Nuclear Metals, Inc. Method and apparatus for producing fine metal powders
KR100386896B1 (en) * 2002-05-28 2003-06-18 에드호텍(주) apparatus for producing fine powder from molten liquid by high-pressure spray
CN103406543A (en) * 2013-07-31 2013-11-27 攀钢集团攀枝花钢铁研究院有限公司 Ultrafine titanium powder or titanium alloy powder and production method and device thereof
CN103769596A (en) * 2013-11-26 2014-05-07 王利民 Method for preparing high-stacking-density oblate powder material
CN105728738A (en) * 2016-03-21 2016-07-06 孙颖 Mechanical centrifugal atomization device with stepless speed change function
CN105798314A (en) * 2016-03-21 2016-07-27 江苏志远节能炉业设备有限公司 Mechanical centrifugal atomization device used for efficient metallurgy

Also Published As

Publication number Publication date
JPH0151523B2 (en) 1989-11-06

Similar Documents

Publication Publication Date Title
Joly et al. Complex alloy powders produced by different atomization techniques: relationship between heat flow and structure
JPS5871306A (en) Production of powder
US4996025A (en) Engine bearing alloy composition and method of making same
JPS62167807A (en) Apparatus for producing quenched metal particle
US4482375A (en) Laser melt spin atomized metal powder and process
US4824478A (en) Method and apparatus for producing fine metal powder
CN108436095A (en) A method of preparing metal powder using high-temperature evaporation, spheroidization processing
JPH059482B2 (en)
EP0017723A1 (en) Method and apparatus for making metallic glass powder
WO2009153865A1 (en) Micropowder producing apparatus and process
JPH0754019A (en) Production of powder by multistage fissure and quenching
WO2010010627A1 (en) Device and method for manufacturing fine powder by using rotary crucible
Zdujić et al. Production of atomized metal and alloy powders by the rotating electrode process
JP2946256B2 (en) Method for producing long tube-shaped preform by spray-deposit method
US4279843A (en) Process for making uniform size particles
US4626410A (en) Method of making composite material of matrix metal and fine metallic particles dispersed therein
JPS63290210A (en) Production of metal powder
JPS63111101A (en) Spheroidizing method for metal or alloy powder
TW527241B (en) Method for forming metal oxide powder by means of spray of pressurized water containing oxygen dissolved therein
JPH075938B2 (en) Method for producing rapidly solidified metal-based powder
USH1193H (en) Method of producing copper alloys with manganese and selenium to improve thermal stability
JPH0665616A (en) Production of spherical powder and apparatus therefor
JP2001089292A (en) Method of producing high quality crystal material by collision solidification of freely falling liquid drop
KR100256017B1 (en) Manufacturing method of metal ball using vapor tunic of liquid coolant
JP2001172704A (en) Method of manufacturing metallic flake