JPS5870960A - Continuous casting method for steel - Google Patents

Continuous casting method for steel

Info

Publication number
JPS5870960A
JPS5870960A JP16865081A JP16865081A JPS5870960A JP S5870960 A JPS5870960 A JP S5870960A JP 16865081 A JP16865081 A JP 16865081A JP 16865081 A JP16865081 A JP 16865081A JP S5870960 A JPS5870960 A JP S5870960A
Authority
JP
Japan
Prior art keywords
rolls
ingot
slab
molten steel
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16865081A
Other languages
Japanese (ja)
Inventor
Yoshio Miyashita
宮下 芳雄
Yasushi Ueno
康 上野
Shinobu Miyahara
忍 宮原
Mikio Suzuki
幹雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP16865081A priority Critical patent/JPS5870960A/en
Publication of JPS5870960A publication Critical patent/JPS5870960A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Abstract

PURPOSE:To make production of a high-temp. ingot for hot charging possible by controlling the static pressure of the molten steel in the unsolidified ingot to decrease bulging force and widening roll pitches to decrease the heat transfer of the rolls near the crater end. CONSTITUTION:In the stage of producing an ingot by drawing an unsolidified ingot 8 from the bottom end of a mold 10 which is open at both ends continuously, the vertical distance alpha between the final solidifying position 16 of said ingot 8 and the molten steel surface in said mold 10 is maintained in the range of the equation -1.4<=alpha<=3.0 (m), whereby the transfer heat of the rolls near the crater end 16 is decreased, and the temp. drop of the ingot is prevented. The ingots cut by a cutter 12 are conveyed in the state of high temp. to rolling stages. The static pressure of the molten steel is decreased and the pitches of rolls 15 are widened by the above-mentioned method within the range where the excellent quality of the ingots can be maintained. It is possible to decrease the transfer heat of the rolls and the radiation transfer heat between the rolls by providing a heat insulating installation 13.

Description

【発明の詳細な説明】 この発明は、鋼の連続鋳造方法1%に凋温の鋳片を鋳造
することが可能が連続鋳造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous casting method for steel, which is capable of casting slabs at a temperature of 1%.

従来の両端開放の鋳型を用いた連続鋳造方法の概略を第
1図を参照しながら説明する。
An outline of a conventional continuous casting method using a mold with both ends open will be explained with reference to FIG.

取鍋1からタンディツシュ2に注入された溶鋼は、ノズ
ル3を介して鋳型4に注入される。鋳型4内の溶鋼は、
鋳型4に続いて設けられた案内ロール5および2次冷却
帯6によって冷却されつつ下方に引抜れる。冷却されて
凝固シェルが次第に厚く形成された未凝固鋳片は、矯正
ロール7によって水平に矯正され、その後、完全に凝固
が完了した一片8は、切断機9によって所定長さに切断
され、製品となる。
Molten steel injected into a tundish 2 from a ladle 1 is injected into a mold 4 via a nozzle 3. The molten steel in the mold 4 is
The mold 4 is cooled by a guide roll 5 and a secondary cooling zone 6 provided next to the mold 4, and is then pulled out. The unsolidified slab, which has been cooled and has a solidified shell gradually thickened, is straightened horizontally by a straightening roll 7. After that, the completely solidified piece 8 is cut into a predetermined length by a cutting machine 9, and a product is produced. becomes.

上述した連続鋳造方法において、鋳片の生産性の向上を
図るために、鋳片引抜速度を増加させると、クレータエ
ンド位置は引抜方向に移動する。
In the continuous casting method described above, when the slab drawing speed is increased in order to improve the productivity of slabs, the crater end position moves in the drawing direction.

クレータエンド近傍の凝固シェルには1通常、6〜10
 Kg/cr/1  もの静圧が作用するため、従来、
第2図に示されるように、鋳片の水平軌道Oロールピッ
チは、114接するロール間に設置される冷却ノズル1
4のスペースを残してできる限シ接近させて設置されて
いる。ロールピッチが離れていると。
1, usually 6 to 10 for the solidified shell near the crater end
Since static pressure of Kg/cr/1 is applied, conventionally,
As shown in Fig. 2, the horizontal orbit O roll pitch of the slab is 114, and the cooling nozzle 1 installed between the adjacent rolls is
They are placed as close together as possible, leaving 4 spaces. If the roll pitch is far apart.

ロール間の凝固シェルに前述した大きな静圧がかかるた
めバルジング力が異常に太きくなり、鋳片の品質、鋳造
操業上問題となる。
Since the above-mentioned large static pressure is applied to the solidified shell between the rolls, the bulging force becomes abnormally large, which causes problems in the quality of the slab and casting operations.

一方、近年のエネルギ一対策の一環として、ホットチャ
ージが行われつつある。これは、既存の連続鋳造7機と
圧延工程とを短時間に結合し、鋳造から圧延までの鋳片
の温度低下を防止し、そのまま圧延工程に搬送するもの
である。
On the other hand, hot charging is becoming popular as part of energy conservation measures in recent years. This system combines seven existing continuous casting machines with the rolling process in a short time, prevents the temperature of the slab from decreasing from casting to rolling, and transports the slab as it is to the rolling process.

一般に、連続鋳造装置内の鋳片抜熱速度iは、次式で示
される。
Generally, the heating rate i of slab removal in a continuous casting apparatus is expressed by the following formula.

Q −(hconv、 十り。and、 +ThRa’
d、 + ”spr、) (〒s’a)= h7ota
l(〒5−Ta) 但し、MConv、:ロール間自然対流熱伝達率(平均
)。
Q - (hconv, tenri.and, +ThRa'
d, + ”spr,) (〒s'a)= h7ota
l (〒5-Ta) However, MConv: Natural convection heat transfer coefficient between rolls (average).

hco、d、 :ロール伝達熱伝達率(平均)、”Ra
d、  :ロール間輻射熱伝達率(平均)、hs、r、
  :強制水冷熱伝達率(平均)、Ta:[辺温度、 hTotal :ロール間平均熱伝達 率 〒8  :鋳片表面温度(平均)。
hco, d: Roll transfer heat transfer coefficient (average), “Ra
d, : radiant heat transfer coefficient between rolls (average), hs, r,
: Forced water cooling heat transfer coefficient (average), Ta: [side temperature, hTotal: Average heat transfer coefficient between rolls〒8: Slab surface temperature (average).

本願発明者等は、現状の連続鋳造機におけるクレータエ
ンド近傍での鋳片抜熱状況につき詳細に調べた結果、前
述したK。and 、ζ−hRad、  の寄与がきわ
めて大きく、はぼ同程度の大きさであ91反面、h C
onv、は1Orca+/靜hr℃以下で、はぼ無視で
きるオーダーであることを見出した。即ち、900〜1
200℃程度の表面温度を有する鋳片の場合、’F’C
ona、および”Rad、  はそれぞれ50〜100
w/m”hr’cおよび60−100 、(cal/m
”hr’C程度であり、”Totalとしてほぼ110
〜200+c4/ihr’cの範囲内であることを見出
した。
The inventors of the present application conducted a detailed investigation into the heat extraction situation of the slab near the crater end in the current continuous casting machine, and found that the above-mentioned K. The contribution of and , ζ-hRad, is extremely large, and is about the same size91, while h C
It was found that onv is less than 1 Orca+/hr°C, which is of an almost negligible order. That is, 900-1
In the case of slabs with a surface temperature of about 200℃, 'F'C
ona and “Rad” are each 50 to 100
w/m"hr'c and 60-100, (cal/m
It is about hr'C, and the total is about 110.
It was found to be within the range of ~200+c4/ihr'c.

本願発明者等は、上述した事実から連続鋳造機によって
高温鋳片を鋳造するためには、ロール間輻射伝達熱制御
のみならず、ロール伝達熱制御をも併せて実施する必要
があることを見出した。
Based on the above-mentioned facts, the inventors of the present application found that in order to cast high-temperature slabs using a continuous casting machine, it is necessary to perform not only inter-roll radiation transfer heat control but also roll transfer heat control. Ta.

前記ロール間輻射伝達熱の減少については、鋳片の軌道
に断熱カバー等を設けることによって可能となるが、ロ
ール伝達熱を減少させることは。
Although it is possible to reduce the radiant heat transferred between the rolls by providing a heat insulating cover or the like on the track of the slab, it is not possible to reduce the heat transferred by the rolls.

従来方法では不可能であった。例えば、高温鋳片を鋳造
するだめの方法として実公昭56−10442号公報に
開示されるものがある。これは、ロール間に断熱板を設
けて輻射伝達制御を行ったものであるが、既存の連続鋳
造7機を対象としているため、前記断熱板のロール間へ
の設置スペースが狭く最大でも40%程度しか鋳片をカ
バーできず、本願発明者等が目的とする高温鋳片の製造
は行えない。
This was not possible using conventional methods. For example, as an alternative method for casting high-temperature slabs, there is a method disclosed in Japanese Utility Model Publication No. 10442/1983. This is a system that controls radiation transmission by installing heat insulating plates between the rolls, but since it is aimed at seven existing continuous casting machines, the installation space for the heat insulating plates between the rolls is narrow and the space for installing the heat insulating plates between the rolls is limited by 40% at most. This method can only cover the slab to a certain extent, and it is not possible to manufacture the high-temperature slab that the inventors of the present application are aiming for.

しかも、ロール伝達熱については全く考慮されていない
Furthermore, roll transfer heat is not considered at all.

本願発明者等は、上述した事実に基き種々検討を加えた
結果、クレータエンド近傍のロール伝達熱を減少させる
ためにはロールピッチを広げれば良いが、このようにす
ると、前述したように、ロール間の凝固シェルにかかる
バルジング力による問題が生じる。従って、前記バルジ
ング力を減少させれば、ロールピッチを広げることがで
き、これによってロール伝達熱が減少するので高温鋳片
の嫡造が可能となるといった知見を得た。
As a result of various studies based on the above-mentioned facts, the inventors of the present application have found that in order to reduce the roll transfer heat near the crater end, it is sufficient to widen the roll pitch. Problems arise due to bulging forces on the solidified shell in between. Therefore, it has been found that by reducing the bulging force, the roll pitch can be increased, which reduces roll transfer heat, making it possible to produce high-temperature slabs in a permanent manner.

この発明は、上記知見に基きなされたものであって、 両端が開放された鋳型の下端から、軌道を矯正しながら
未凝固鋳片を引抜くことによって鋳片を鋳造する鋼の連
続鋳造方法において、前記未凝固鋳片の最終凝固位置と
、前記鋳型内溶鋼湯面との垂直距離αを下式の範囲に維
持し、 −1,4≦α≦3.0  (m) これによって、クレータエンド近傍のロール伝達熱を減
少させ、高温鋳片を鋳造することに特徴を有する。
This invention has been made based on the above knowledge, and provides a continuous steel casting method in which a slab is cast by pulling out an unsolidified slab from the lower end of a mold with both ends open while straightening the trajectory. , the vertical distance α between the final solidification position of the unsolidified slab and the molten steel surface in the mold is maintained within the range of the following formula, −1,4≦α≦3.0 (m). It is characterized by reducing the heat transferred from nearby rolls and casting high-temperature slabs.

この発明において、未凝固鋳片の最終凝固位置と鋳型内
溶鋼湯面との垂直距離αを上述した範囲に限定した理由
について説明する。
In this invention, the reason why the vertical distance α between the final solidification position of the unsolidified slab and the molten steel surface in the mold is limited to the above-mentioned range will be explained.

第3図に、クレータエンド近傍のロール間のバルジング
量とロール曲シ量を現状の連続鋳造機と同様とし、鋳片
品質を良好に維持するという前提で溶−静圧を低下させ
たときのロールピッチ比r、/ L 0とロール径比D
/D0との関係を示す。
Figure 3 shows the results when the amount of bulging between the rolls near the crater end and the amount of roll bending are the same as in the current continuous casting machine, and the melt-static pressure is reduced on the premise that good slab quality is maintained. Roll pitch ratio r, / L 0 and roll diameter ratio D
/D0 shows the relationship.

なお、上記現状の連続鋳造機とは、湾曲半径10.5m
の全湾曲型の高速連続鋳造機であり、この場合のクレー
タエンド近傍の溶鋼静圧はほぼ7.5Kg/cMであり
、クレータエンド近傍に設置さeシとル 。
The current continuous casting machine mentioned above has a bending radius of 10.5 m.
This is a fully curved high-speed continuous casting machine, and in this case, the static pressure of molten steel near the crater end is approximately 7.5 Kg/cM, and the e-seal is installed near the crater end.

れたロールヒツチをり。、 ロール径をり。とじた。Roll hitchori. , roll diameter. Closed.

第3図から明らかなように、溶鋼静圧を2 Kg/cA
以下、即ち、上記αに換算して3.0m以下にするとロ
ールピッチの拡大およびロール径の減少を図ることがで
き、この結果、前述したロール伝達熱が減少するので、
高温鋳片の鋳造が可能となることがわかる。
As is clear from Fig. 3, the static pressure of molten steel is 2 Kg/cA.
Below, in other words, if α is set to 3.0 m or less, the roll pitch can be increased and the roll diameter can be decreased, and as a result, the roll transfer heat described above is reduced.
It can be seen that it is possible to cast high-temperature slabs.

一方、鋳型内溶鋼には常時大気圧が作用しているため、
大気圧とバランスする溶鋼静圧までクレータエンド位置
を鋳型内、容鋼湯面より上げることができる。
On the other hand, since atmospheric pressure is always acting on the molten steel in the mold,
The crater end position can be raised above the surface of the molten steel inside the mold until the static pressure of the molten steel balances with the atmospheric pressure.

従って、この発明では上記αを−1,4≦α≦3.0(
m)  の範囲に限定した。
Therefore, in this invention, the above α is −1,4≦α≦3.0 (
m).

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

両端が開放された水冷調型10内に注入した溶鋼を、2
次冷却帯11によって冷却しながら湾曲軌道にそって引
抜き、この後、未凝固鋳片を−Hフラットに矯正した後
、今度は前記湾曲軌道とは逆向きに湾曲した軌道にそっ
て引抜き、最終的に水平に矯正した。水平軌道内で未凝
固鋳片8は完全に凝固が完了し、この後、ガストーチ1
2によって所定長さに切断した。所定長さに切断した高
温鋳片は、圧延工程に引き続き搬送した。
The molten steel injected into the water-cooled control mold 10, which is open at both ends, is
Next, the unsolidified slab is pulled out along a curved trajectory while being cooled by the cooling zone 11, and after this, the unsolidified slab is straightened to -H flat, and then pulled out along a trajectory curved in the opposite direction to the curved trajectory, and finally It was corrected horizontally. The unsolidified slab 8 is completely solidified in the horizontal orbit, and then the gas torch 1
2 to a predetermined length. The hot slab cut into a predetermined length was transported following the rolling process.

この場合、未凝固鋳片の最終凝固位dl 6 (クレー
タエンド)と、鋳型内溶鋼湯面との垂直距離αは、3.
0mとした。従って、クレータエンド近傍の溶鋼静圧は
減少し、この部分のロール15のロールピッチを広げる
ことが出来たので、ロール伝達熱は最少限に押えられ、
更に、隣接する谷ロール間にはカバー率の大きい強断熱
設備13を設けたので鋳片の製置を高温に保ったまま圧
延工程に搬送することができた。
In this case, the vertical distance α between the final solidification level dl 6 (crater end) of the unsolidified slab and the molten steel surface in the mold is 3.
It was set to 0m. Therefore, the static pressure of the molten steel near the crater end was reduced, and the roll pitch of the rolls 15 in this area was able to be widened, so the roll transfer heat was kept to a minimum.
Furthermore, since a strongly insulated equipment 13 with a large coverage ratio was provided between adjacent valley rolls, the slab could be transported to the rolling process while being kept at a high temperature.

第5図に、この発明の別の実施例を示す。FIG. 5 shows another embodiment of the invention.

両端か開放された水冷鋳型10内に注入した溶鋼を、2
次冷却帯11によって冷却しながら湾曲軌道にそって引
抜き、この後、未凝固鋳片をフラットに矯正し、そのま
ま直線軌道にそって引抜き、凝固が完了した鋳片をガス
トーチ12によって所定長さに切断した。所定長さに切
断した高温鋳片は、圧延工程に引き続き搬送した。
The molten steel injected into the water-cooled mold 10, which is open at both ends, is
Next, the unsolidified slab is pulled out along a curved trajectory while being cooled by the cooling zone 11. After that, the unsolidified slab is straightened flat and then pulled out along a straight trajectory. The solidified slab is cut into a predetermined length by a gas torch 12. Amputated. The hot slab cut into a predetermined length was transported following the rolling process.

この場合、未凝固鋳片の最終凝固位置16(クレータエ
ンド)と、鋳型内溶鋼湯面との垂直距離αは、1.07
71とした。従って、第4図に示した実施例と同様に、
クレータエンド近傍の溶鋼静圧は減少し、この部分のロ
ールピッチを広げることが出来たので、ロール伝達熱は
最少限に押えられ、史に、各ロール間には断熱設備13
を設けたので鋳片の温度を高温に保ったまま圧延工程に
搬送することがでさた。
In this case, the vertical distance α between the final solidification position 16 (crater end) of the unsolidified slab and the molten steel surface in the mold is 1.07
It was set at 71. Therefore, similar to the embodiment shown in FIG.
The static pressure of molten steel near the crater end was reduced, and the roll pitch in this area was able to be widened, so the roll transfer heat was kept to a minimum.
The provision of a breaker made it possible to maintain the temperature of the slab at a high temperature while transporting it to the rolling process.

以上説明したように、この発明によれば、連続駒造によ
って高温鋳片を鋳造することが可能となるので、鋳片を
再加熱することなく圧延することが可能となり、エネル
ギーを著しく削減でさるとともに、製品の生産性の大巾
な向上を図ることができるといった有用な効果がもたら
される。
As explained above, according to the present invention, it is possible to cast high-temperature slabs by continuous piece making, so it is possible to roll the slabs without reheating them, which significantly reduces energy consumption. At the same time, useful effects such as the ability to greatly improve product productivity are brought about.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の連続鋳造方法を示す図、第2図は、ロ
ールピッチ間のバルジングの説明図、第3図は、溶鋼静
圧と、ロールピッチ比およびロール径比との関係を示す
図、第4図は、この発明の方法の一実施例を示す図、第
5図は、他の実施例を示す図である。図面において、 ■・・取鍋       2・・・タンディツシュ3・
・・ノズル      4・・・鋳型5・・・案内ロー
ル    6・・・2次冷却帯7・・・矯正ロール  
  8・・・鋳片9・・・切断機      1o・・
・鋳型11・・・2次冷却帯    12・・・ガスト
ーチ13・・・断熱設備     14・・・冷却ノズ
ル15・・・ロール      16・・・クレータエ
ンド位置 出願人  日本鋼管株式会社 代理人   堤  敬太部(面ユ名) 、第1図 第2図 +4 14 14 第3図 溶aS折(Kgん一ン 第4図
Figure 1 is a diagram showing the conventional continuous casting method, Figure 2 is an explanatory diagram of bulging between roll pitches, and Figure 3 is a diagram showing the relationship between molten steel static pressure, roll pitch ratio, and roll diameter ratio. FIG. 4 is a diagram showing one embodiment of the method of the present invention, and FIG. 5 is a diagram showing another embodiment. In the drawing, ■...Ladle 2...Tandish 3.
... Nozzle 4 ... Mold 5 ... Guide roll 6 ... Secondary cooling zone 7 ... Straightening roll
8... Slab 9... Cutting machine 1o...
・Mold 11... Secondary cooling zone 12... Gas torch 13... Heat insulation equipment 14... Cooling nozzle 15... Roll 16... Crater end position Applicant Nippon Steel Tube Co., Ltd. Agent Keita Tsutsumi (Menu name), Figure 1 Figure 2 +4 14 14 Figure 3 Melt aS fold (Kgn 1 Figure 4

Claims (1)

【特許請求の範囲】 両端が開放された鋳型の下端から、軌道を矯正しながら
未凝固鋳片を引抜くことによって鋳片を鋳造する鋼の連
続鋳造方法において、前記未凝固鋳片の最終凝固位置と
、前記鋳型内溶餉湯面との垂直距離αを下式の範囲に維
持し、 −1,4≦α≦3.0  (m) これによって、クレータエンド近傍のロール伝達熱を減
少させ、高温鋳片を鋳造することを特徴とする鋼の連続
鋳造方法。
[Scope of Claims] In a continuous steel casting method in which a slab is cast by pulling the unsolidified slab from the lower end of a mold with both ends open while straightening the trajectory, the final solidification of the unsolidified slab is performed. The perpendicular distance α between the position and the surface of the molten metal in the mold is maintained within the range of the following formula: -1,4≦α≦3.0 (m) This reduces the roll transfer heat near the crater end. , a continuous steel casting method characterized by casting a hot slab.
JP16865081A 1981-10-23 1981-10-23 Continuous casting method for steel Pending JPS5870960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16865081A JPS5870960A (en) 1981-10-23 1981-10-23 Continuous casting method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16865081A JPS5870960A (en) 1981-10-23 1981-10-23 Continuous casting method for steel

Publications (1)

Publication Number Publication Date
JPS5870960A true JPS5870960A (en) 1983-04-27

Family

ID=15871954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16865081A Pending JPS5870960A (en) 1981-10-23 1981-10-23 Continuous casting method for steel

Country Status (1)

Country Link
JP (1) JPS5870960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188380A (en) * 2009-02-18 2010-09-02 Sumitomo Metal Ind Ltd Continuous casting method for steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128625A (en) * 1974-03-29 1975-10-09
JPS5190931A (en) * 1975-02-07 1976-08-10 Haganeno renzokuchuzosochi
JPS51129820A (en) * 1975-05-06 1976-11-11 Nippon Steel Corp Molten metal continuous casting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128625A (en) * 1974-03-29 1975-10-09
JPS5190931A (en) * 1975-02-07 1976-08-10 Haganeno renzokuchuzosochi
JPS51129820A (en) * 1975-05-06 1976-11-11 Nippon Steel Corp Molten metal continuous casting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188380A (en) * 2009-02-18 2010-09-02 Sumitomo Metal Ind Ltd Continuous casting method for steel

Similar Documents

Publication Publication Date Title
US5414923A (en) Method and apparatus for intermediate thickness slab caster and inline hot strip and plate line
CN110666125B (en) Method for eliminating warping of continuous casting billet
WO1993023182A9 (en) Method and apparatus for intermediate thickness slab caster and inline hot strip and plate line
CN113145816B (en) Control method for reducing medium carbon steel structure defects
JP2003062647A (en) Direct rolling method for continuous cast steel piece
US4911226A (en) Method and apparatus for continuously casting strip steel
JPS5870960A (en) Continuous casting method for steel
FI78250B (en) FARING EQUIPMENT FOR DIRECTIVE PROCESSING OF SMALL METAL.
EP1419021B1 (en) Method for continuously casting a steel beam blank
CA1186473A (en) Process and machine for bow type continuous casting
JPS58167064A (en) Continuous casting method of steel
JP3146904B2 (en) Vertical continuous casting method for large section slabs
JPS6149749A (en) Continuous casting method of clad steel billet
JP2001137901A (en) Rolling method in hot-charge of continuously cast slab
JPH07241656A (en) Device for heating cast slab in continuous casting machine
US4030532A (en) Method for casting steel ingots
JPS58103947A (en) Continuous casting method for steel
US3435879A (en) Continuous casting method
JPS635857A (en) Continuous casting method for steel containing high silicon
JPH09285855A (en) Manufacture of ni containing steel
CN115090848A (en) Process method for preventing casting blank from bending deformation in continuous casting process
JPH0620625B2 (en) Temperature control method of steel slab in continuous casting process
JPS6261759A (en) Method and installation for producing thin ingot of high-carbon steel
JPS6213248A (en) Continuous casting machine
JPS59113964A (en) Continuous casting method