JPH0620625B2 - Temperature control method of steel slab in continuous casting process - Google Patents

Temperature control method of steel slab in continuous casting process

Info

Publication number
JPH0620625B2
JPH0620625B2 JP20484985A JP20484985A JPH0620625B2 JP H0620625 B2 JPH0620625 B2 JP H0620625B2 JP 20484985 A JP20484985 A JP 20484985A JP 20484985 A JP20484985 A JP 20484985A JP H0620625 B2 JPH0620625 B2 JP H0620625B2
Authority
JP
Japan
Prior art keywords
steel slab
unsolidified
continuous casting
machine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20484985A
Other languages
Japanese (ja)
Other versions
JPS6264462A (en
Inventor
裕 伊藤
佳彦 大堀
久雄 勝田
朝昭 山崎
高四郎 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20484985A priority Critical patent/JPH0620625B2/en
Publication of JPS6264462A publication Critical patent/JPS6264462A/en
Publication of JPH0620625B2 publication Critical patent/JPH0620625B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は連続鋳造工程における鋼スラブの温度調整方
法に関し、特に、広範囲の各種引き抜き速度で連続鋳造
されたそれぞれの鋼スラブの連鋳機械端での温度を、所
望の直接圧延、直接加熱炉装入が可能な温度にする鋼ス
ラブの温度調整方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for adjusting the temperature of a steel slab in a continuous casting process, and more particularly to a continuous casting machine end of each steel slab continuously cast at various drawing speeds in a wide range. The present invention relates to a method for adjusting the temperature of a steel slab in which the desired temperature is set to a temperature at which desired direct rolling and direct heating furnace charging can be performed.

(従来の技術) 近年、省エネルギーの観点から、又は、冶金学的理由か
ら、連続鋳造(以下C.C.と呼ぶ)された高温鋼スラブ
を直接熱間圧延機で圧延する方法(CC−DR法と呼
ぶ)或は直接加熱炉へ装入する方法(CC−DHC法と
呼ぶ)が多数提案され、そして一部で実施されている。
(Prior Art) In recent years, from the viewpoint of energy saving or metallurgical reasons, a method of directly rolling a continuously cast (hereinafter referred to as CC) high temperature steel slab with a hot rolling mill (CC-DR). Method) or a method of charging directly into a heating furnace (called CC-DHC method) has been proposed and partially implemented.

このCC−DR法、CC−DHC法が実施できるかどう
かは、C.C.装置の機端でスラブの全断面においてC
C−DR法、CC−DHC法の実施に必要な高温が確保
できるかどうかにかゝつている。高温の鋼スラブを得る
ためには、基本的には、特公昭49−6974号公報に
も示されている様に未凝固復熱が利用されている。
Whether or not the CC-DR method and the CC-DHC method can be carried out is determined by C.I. C. C at the cross section of the slab at the machine end
The question is whether or not the high temperature necessary for carrying out the C-DR method and CC-DHC method can be secured. In order to obtain a high-temperature steel slab, unsolidified recuperation is basically used as disclosed in Japanese Patent Publication No. 49-6974.

そして、未凝固復熱を行つて高温の鋼スラブを得る場合
に重要なことは、クレータエンド(完全凝固端)ができ
るだけC.C.装置の機端近くにあることである。
And, in the case of performing the non-solidification recuperation and obtaining the high temperature steel slab, it is important that the crater end (complete solidification end) is as close as possible to the end of the CC apparatus.

このクレータエンドの位置は、C.C.装置の引抜き速度
によつて機長方向に異なり、引抜き速度が早い場合には
メニスカスから遠くなり、一方引抜き速度が遅い場合に
はメニスカスの方へ近ずき、引抜き速度によつて変動す
る。
The position of this crater end varies in the machine length direction depending on the drawing speed of the C.C. device. When the drawing speed is fast, it becomes far from the meniscus, and when the drawing speed is slow, it approaches the meniscus. , It depends on the drawing speed.

そこで、未凝固復熱により高温の鋼スラブを得るための
C.C.装置の機長は、そのC.C.装置での最高引抜き速
度で鋳造した場合のクレータエンドの位置とほゞ同等位
置にC.C.装置の機端が位置する様に設計される。即
ち、一般に機端の直後にはスラブカツターが設けられ、
鋼スラブは所定長さに切断されるが、その際にクレータ
エンドが機端外に位置すると溶鋼が流出して極めて危険
であるからである。
Therefore, the captain of the CC equipment for obtaining the high temperature steel slab by the non-solidification recuperation is at a position almost equal to the position of the crater end when casting at the maximum drawing speed in the CC equipment. It is designed so that the end of the CC device is located. That is, generally, a slab cutter is provided immediately after the machine end,
This is because the steel slab is cut into a predetermined length, and if the crater end is located outside the machine end at that time, molten steel will flow out, which is extremely dangerous.

(発明が解決しようとする問題点) C.C.装置においては、 鋼種によつて最適の引抜き速度(鋳造速度)が与え
られ、また、 前工程の事情により不可避的に引き抜き速度が変る
ことがある。
(Problems to be Solved by the Invention) C. C. In the equipment, the optimum drawing speed (casting speed) is given depending on the steel type, and the drawing speed may inevitably change depending on the circumstances of the previous process.

等により引抜き速度が相当大巾に変動し、例えば、約
1.3m/分〜約2.2m/分の範囲で変動することは
稀れではない。
It is not uncommon that the drawing speed fluctuates considerably due to such factors as, for example, about 1.3 m / min to about 2.2 m / min.

上記のように引抜き速度が変動するのであるから、上記
の如く最高の引抜き速度に合せて機長を設計したC.C.
装置の場合には、それよりも遅い引抜き速度では未凝固
復熱後のクレータエンドが機内に位置し、従つて、機端
の位置にある鋼スラブの温度は、クレータエンドの温度
よりも、引抜き速度の減少に比例して低下する。
Since the drawing speed fluctuates as described above, the CC with the machine length designed according to the highest drawing speed as described above.
In the case of the equipment, at the slower drawing speed, the crater end after the unsolidified recuperation is located inside the machine, and therefore the temperature of the steel slab at the machine end is higher than the temperature of the crater end. It decreases in proportion to the decrease in speed.

例えば、最高引抜き速度が約2.2m/分で、これに合
せて前記の如く機長を設計したC.C.装置の場合、引抜
き速度が最も遅い約1.3m/分のときには、機端から
約23m手前の位置にクレータエンドがあり、機端にあ
る鋼スラブの温度はクレータエンドにおける温度よりも
約180℃の低下が見られ、CC−DR法、CC−DH
C法の実施に必要な高温度を確保することが不可能であ
つた。
For example, in the case of the CC device having the maximum drawing speed of about 2.2 m / min and the machine length designed according to this, when the drawing speed is the slowest of about 1.3 m / min, from the machine end There is a crater end at a position about 23 m before, and the temperature of the steel slab at the machine end is about 180 ° C lower than the temperature at the crater end. CC-DR method, CC-DH
It was impossible to secure the high temperature necessary for carrying out the method C.

したがつて本発明の目的は、広範囲の各種引抜き速度で
鋳造されたそれぞれの鋼スラブのC.C.装置の機端での
温度をCC−DR法、CC−DHC法の実施が可能な高
温とする鋼スラブの温度調整方法を提供することにあ
る。
Therefore, the object of the present invention is to determine the temperature at the machine end of the CC apparatus of each steel slab cast at a wide range of various drawing speeds so that the CC-DR method and the CC-DHC method can be performed at high temperatures. It is to provide a method for adjusting the temperature of a steel slab.

又、本発明の目的は機端での鋼スラブの温度を細かく調
整制御でき、これにより鋼種に応じて冶金学的効果が適
切に得られる鋼スラブの温度調整方法を提供することで
ある。
Another object of the present invention is to provide a method for adjusting the temperature of a steel slab capable of finely adjusting and controlling the temperature of the steel slab at the machine end, whereby a metallurgical effect can be appropriately obtained according to the type of steel.

更に又、本発明の目的は、C.C.装置の機長を短縮しコ
ンパクトな経済的C.C.装置を使用した鋼スラブの温度
調整方法を提供することにある。
Furthermore, it is an object of the present invention to provide a method for adjusting the temperature of a steel slab using a compact and economical CC apparatus that shortens the length of the CC apparatus.

(問題点を解決するための手段) 上記の目的を達成するために、この発明の温度調整方法
は、連続鋳造装置の水平部の未凝固復熱工程に、冷媒に
より直接に鋼スラブを冷却する鋼スラブの調整冷却装置
を設けると共に、連続鋳造装置の機長をその連続鋳造装
置での最高引抜き速度で鋳造して上記未凝固復熱工程で
復熱を行うと共に、鋼スラブの調整冷却を行つて鋼スラ
ブが所望の温度となる時点でのクレータエンド位置と略
々同等位置までの長さとし、未凝固復熱後のクレータエ
ンド位置が連続鋳造装置の機内となる引抜き速度の場合
には、未凝固復熱のみを行うか又はこれに調整冷却を併
用し、一方未凝固復熱後のクレータエンドの位置が連続
鋳造装置の機端外となる引抜き速度の場合には、未凝固
復熱に併用して調整冷却を行つて、クレータエンドを上
記機端とほぼ同位置若しくは機内とすることを特徴とす
る。
(Means for Solving Problems) In order to achieve the above-mentioned object, the temperature adjusting method of the present invention cools a steel slab directly by a refrigerant in an unsolidified reheat step of a horizontal portion of a continuous casting device. In addition to providing an adjusting cooling device for the steel slab, cast the captain of the continuous casting device at the maximum drawing speed in the continuous casting device to reheat the unsolidified recuperation process and adjust the steel slab. If the length of the steel slab is almost equal to the crater end position at the time when the steel slab reaches the desired temperature, and the crater end position after unsolidified recuperation is at the drawing speed within the machine of the continuous casting device, the unsolidified Perform only recuperation or use adjustment cooling together with this, and if the crater end position after unsolidified recuperation is at a drawing speed outside the machine end of the continuous casting machine, use it in unsolidified recuperation as well. Adjust the cooling to The data end is located at substantially the same position as the machine end or inside the machine.

(作 用) 以下に本発明方法を実施するための低機高のC.C.装
置の一例を示す第1図により、本発明方法の作用の説明
をする。
(Operation) The following is a low C.I. for carrying out the method of the present invention. C. The operation of the method of the present invention will be described with reference to FIG. 1 showing an example of the apparatus.

図において1はモールド、2は1次及び2次冷却帯から
成る第1冷却ゾーンで(冷却装置は図示省略)この第1
冷却ゾーン2の2次冷却帯では、スラブのワレ防止のた
め緩冷却を行なう。3は水平部であり、かつ未凝固復熱
ゾーンでもある。4は本発明方法を実施するために、上
記未凝固復熱ゾーン3内の第1冷却ゾーン2寄りに設け
た調整冷却ゾーンで、冷却装置として鋼スラブSの上下
にそれぞれ気水冷却ができる冷却装置5を設けた。この
冷却装置5で冷却しないときには、調整冷却ゾーン4は
未凝固復熱ゾーン3として作用する。
In the figure, 1 is a mold, 2 is a first cooling zone consisting of primary and secondary cooling zones (a cooling device is not shown).
In the secondary cooling zone of the cooling zone 2, gentle cooling is performed to prevent cracking of the slab. 3 is a horizontal part and is also a non-solidification recuperation zone. Reference numeral 4 denotes an adjustment cooling zone provided near the first cooling zone 2 in the unsolidified recuperation zone 3 for carrying out the method of the present invention. Cooling that allows steam cooling above and below the steel slab S as a cooling device. A device 5 was provided. When not cooled by the cooling device 5, the adjusted cooling zone 4 acts as the unsolidified recuperation zone 3.

この調整冷却ゾーン4を水平部に設けたことによりスラ
ブの長手方向、巾方向で均一に冷却が行えるという特長
がある。尚、図中Eはクレータエンドを示している。
By providing the adjustment cooling zone 4 in the horizontal portion, it is possible to uniformly cool the slab in the longitudinal direction and the width direction. Incidentally, E in the drawing indicates a crater end.

6は冷却装置5が設けられていない未凝固復熱ゾーン3
の残り部分である。機外には、油圧シヤー7、端部熱補
償装置8が設けられ、直結して或いは接近した別ライン
に熱間圧延装置9が設けられている。
6 is an unsolidified recuperation zone 3 in which the cooling device 5 is not provided.
Is the rest of. A hydraulic shear 7 and an end heat compensation device 8 are provided outside the machine, and a hot rolling device 9 is provided in another line which is directly connected or is close to it.

本発明方法を実施するC.C.装置の機長10を、特許請
求の範囲に記載した如く、最大の引抜き速度で鋳造し、
そして最大未凝固復熱ゾーン3で復熱を図ると共に冷却
ゾーン4で所望のCC−DR又はCC−DHCに必要な
温度が得られる様に調整冷却し、かくして鋼スラブSに
形成されたクレータエンドEの位置とほゞ同じ位置まで
の長さとした。従つて上記のC.C.装置の機長10は、
調整冷却ゾーンを、具備しない従来のC.C.装置の機長
に比較して大巾に短縮されている。
A captain 10 of a CC apparatus for carrying out the method of the present invention was cast at a maximum drawing speed as described in the claims,
Then, the maximum unsolidified recuperation zone 3 is used for recuperation, and the cooling zone 4 is conditioned and cooled so as to obtain a desired temperature for CC-DR or CC-DHC. Thus, the crater end formed on the steel slab S is obtained. The length to the position of E is almost the same as the position of E. Therefore, the captain 10 of the above CC device,
The length is greatly shortened compared to the length of a conventional CC apparatus that does not have an adjustment cooling zone.

上記機長10のC.C.装置を用いるときには、引抜き速
度が低速であつて、調整冷却ゾーン4で冷却しないとき
には水平部の未凝固復熱ゾーン3で復熱処理してもクレ
ータエンドE′の位置は機端11より上流となることが
あるが、上述した如く本発明方法を実施するC.C.装置
の機長は、従来のC.C.装置の機長よりも短縮している
ので、当該クレータエンドE′の位置から機端11まで
の距離が短かく、それだけ温度低下は少なく機端の鋼ス
ラブの温度は高くなつている。
When the CC device of the captain 10 is used, the drawing speed is low, and when cooling is not performed in the adjustment cooling zone 4, the position of the crater end E'even if the heat treatment is performed again in the unsolidified recuperation zone 3 in the horizontal portion. May be upstream from the machine end 11, but since the captain of the CC apparatus for carrying out the method of the present invention is shorter than that of the conventional CC apparatus as described above, the crater concerned. The distance from the position of the end E ′ to the machine end 11 is short, the temperature drop is small accordingly, and the temperature of the steel slab at the machine end is high.

一方、もし調整冷却ゾーン4で冷却しないとすると、ク
レータエンドの位置が機外となる引抜き速度の場合に
は、クレーターエンドの位置がほぼ機端11のところに
くるように調整冷却ゾーン4で制御冷却でき、これによ
つて機端11において鋼スラブの温度を所望の高温にな
し得る。この場合、機端11における鋼スラブの温度
は、調整冷却ゾーン4での冷却を細かくコントロールす
ることにより微妙にコントロールした温度となし得る。
On the other hand, if cooling is not performed in the adjustment cooling zone 4, the adjustment cooling zone 4 controls the crater end so that the position of the crater end is almost at the end 11 when the crater end is at the extraction speed outside the machine. It can be cooled, which allows the temperature of the steel slab at the end 11 to reach the desired high temperature. In this case, the temperature of the steel slab at the machine end 11 can be made a delicately controlled temperature by finely controlling the cooling in the adjustment cooling zone 4.

(実施例) (1) C.C.装置の形式…湾曲部3mRの湾曲式 (2) 引抜き速度の範囲…1.3〜2.2m/分 (3) スラブサイズ…250mm厚×1700mm巾 (4) 試験鋼種…低炭素アルミキルド鋼 上記の条件で、従来の機長のC.C.装置(従来例)と、
本発明方法の機長のC.C.装置(本発明例)とにより、
引抜き速度を0.1mづつ変えて引抜き、それぞれの速
度における機端での鋼スラブの断面平均温度を測定し
た。その結果を下表に示す。なお、本発明例では、引抜
き速度が1.8m/分以上においては調整冷却ゾーンで
冷却を行い、未凝固復熱を行った。また、引抜き速度が
1.7m/分以下においては調整冷却ゾーンで冷却を行
うことなく未凝固復熱を行い、更に、従来例では、全て
の引抜き速度において、水平部で未凝固復熱を行った。
(Example) (1) Type of C.C. device ... Bending type of bending portion 3mR (2) Range of drawing speed ... 1.3 to 2.2m / min. (3) Slab size ... 250mm thickness x 1700mm width ( 4) Test steel type: Low carbon aluminum killed steel Under the above conditions, the conventional captain's CC device (conventional example),
With the CC device of the captain of the method of the present invention (example of the present invention),
The drawing speed was changed by 0.1 m, and the drawing was performed, and the average temperature of the cross section of the steel slab at the machine end at each speed was measured. The results are shown in the table below. In the example of the present invention, when the drawing speed was 1.8 m / min or more, cooling was performed in the adjustment cooling zone to recover the unsolidified heat. Further, when the drawing speed is 1.7 m / min or less, the unsolidified recuperation is performed without cooling in the adjustment cooling zone, and in the conventional example, the unsolidified recuperation is performed in the horizontal portion at all drawing speeds. It was

上表の従来例の機長53mは、2.2mで引抜いた場合
の未凝固復熱後のクレータエンド位置とほぼ同位置が機
端となるように設計された従来の機長、本発明の機長4
1mは、2.2mで引抜き、CC−DR法の実施が可能
な温度(例えば、約1190℃以上)が得られるように
未凝固復熱及び調整冷却を行った場合のクレータエンド
位置とほぼ同位置が機端となるように設計された本発明
の機長を示す。上表から次のことが判明する。
The conventional captain 53m in the above table is a conventional captain designed so that the end of the crater end is approximately the same as the crater end position after the unsolidified recuperation when pulled out at 2.2m.
1 m is approximately the same as the crater end position when unsolidified recuperation and adjusted cooling are performed so that the temperature can be extracted at 2.2 m and the CC-DR method can be performed at a temperature (for example, about 1190 ° C. or higher). 1 shows a captain of the present invention designed so that the position is at the machine end. The following facts are found from the above table.

(1) 機長が従来例に比較して本発明例では12m短縮
されている。
(1) The captain of the present invention is shortened by 12 m as compared with the conventional example.

(2) 上記の低炭素アルミキルド鋼の場合には、CC−
DR法の実施が可能な最低温度は機暖で約1190℃以
上が必要であるが、従来例では引抜き速度が1.6m/
分以下の場合にはその温度が確保されない。これに対し
て本発明例では全引抜き速度においてCC−DR法可能
温度が確保される。
(2) In the case of the above low carbon aluminum killed steel, CC-
The minimum temperature at which the DR method can be carried out is about 1190 ° C. or higher in machine temperature, but in the conventional example, the drawing speed is 1.6 m /
If it is less than a minute, the temperature is not secured. On the other hand, in the example of the present invention, the CC-DR method possible temperature is secured at all the drawing speeds.

(3) 本発明例において、1.7m/分以下の引抜き速
度の場合に、調整冷却ゾーンにおいてきめ細かい調整冷
却を行うことにより、鋼スラブを加熱炉で加熱する場合
と同様の範囲に温度コントロールした鋼スラブを得るこ
とができる。
(3) In the present invention example, when the drawing speed was 1.7 m / min or less, the temperature was controlled within the same range as when heating the steel slab in the heating furnace by performing fine adjustment cooling in the adjustment cooling zone. A steel slab can be obtained.

尚、CC−DR法、CC−DHC法によつて冶金学的効
果により材質特性を高めること提案したものには、特公
昭56−21330号、特公昭56−24018号、特
公昭58−9812号、特公昭57−43130号、特
公昭59−37330号、特開昭59−219412号
等があり、本発明によれば、これらの提案の実施に好適
な温度のスラブを提供できる。
The proposals for improving the material properties by the metallurgical effect by the CC-DR method and the CC-DHC method include JP-B-56-21330, JP-B-56-24018, and JP-B-58-9812. JP-B-57-43130, JP-B-59-37330, JP-A-59-19412, and the like. According to the present invention, a slab having a temperature suitable for implementing these proposals can be provided.

(発明の効果) 以上詳述した如く、この発明によれば、この発明が規定
する条件で設計した機長であつて、水平部の未凝固復熱
ゾーンに調整冷却装置を設置したC.C.装置を用いて、
低引抜き速度サイドの引抜き速度のときには、調整冷却
を使用せず未凝固復熱のみとすることにより、クレータ
エンドは機端よりも上流にあるがクレータエンドと機端
の距離が従来のC.C.装置におけるときよりも短かくな
り、機端における鋼スラブは、尚高温に維持されている
という効果がある。また、高引抜き速度サイドの引抜き
では、調整冷却を細かくコントロールして使用すること
により、機端における鋼スラブ温度を所望高温とするこ
とができるという効果がある。従つてこの発明はCC−
DR法、CC−DHC法の実施に大きく貢献するもので
ある。
(Effects of the Invention) As described in detail above, according to the present invention, a captain designed under the conditions specified by the present invention, which has a C.C. With the device
At the low drawing speed side drawing speed, the crater end is located upstream of the machine end but the distance between the crater end and the machine end is the same as the conventional C.C. It has the effect that it is shorter than in the equipment and the steel slab at the end of the machine is still maintained at high temperature. Further, in the drawing at the high drawing speed side, there is an effect that the steel slab temperature at the machine end can be set to a desired high temperature by finely controlling and using the adjusted cooling. Therefore, this invention is CC-
This greatly contributes to the implementation of the DR method and CC-DHC method.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明方法を実施するC.C.装置の1例の説明図
である。 3……未凝固復熱工程、4……調整冷却ゾーン、5……
冷却装置、10……機長、11……機端、S……鋼スラ
ブ、E……クレーターエンド。
The drawing is an illustration of an example of a CC apparatus for carrying out the method of the present invention. 3 ... Unsolidified recuperation process, 4 ... Adjusting cooling zone, 5 ...
Cooling device, 10 ... Captain, 11 ... End, S ... Steel slab, E ... Crater end.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 朝昭 兵庫県姫路市広畑区富士町1 新日本製鐵 株式会社広畑製鐵所内 (72)発明者 野中 高四郎 東京都千代田区大手町2丁目6番3号 新 日本製鐵株式会社内 (56)参考文献 特開 昭58−168466(JP,A) 特開 昭60−54257(JP,A) 特開 昭57−139458(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Asaaki Yamazaki 1 Fuji-machi, Hirohata-ku, Himeji-shi, Hyogo Nippon Steel Corporation Hirohata Works (72) Inventor Takashiro Nonaka 2-chome, Otemachi, Chiyoda-ku, Tokyo No. 6-3 Shin Nippon Steel Co., Ltd. (56) Reference JP-A-58-168466 (JP, A) JP-A-60-54257 (JP, A) JP-A-57-139458 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】連続鋳造装置の水平部の未凝固復熱工程
に、冷媒により直接に鋼スラブを冷却する鋼スラブの調
整冷却装置を設けると共に、連続鋳造装置の機長をその
連続鋳造装置での最高引抜き速度で鋳造して上記未凝固
復熱工程で復熱を行うと共に鋼スラブの調整冷却を行っ
て鋼スラブが所望の温度となる時点でのクレータエンド
位置と略々同等位置までの長さとし、未凝固復熱後のク
レータエンド位置が連続鋳造装置の機内となる引抜き速
度の場合は、未凝固復熱のみを行うか又はこれに調整冷
却を併用し、一方未凝固復熱後のクレータエンド位置が
連続鋳造装置の機端外となる引抜き速度の場合は、未凝
固復熱に併用して調整冷却を行って、クレータエンドを
上記機端とほぼ同位置若しくは機内とすることを特徴と
する、連続鋳造工程に於ける鋼スラブの温度調整方法。
1. A steel slab adjustment cooling device for directly cooling a steel slab with a refrigerant is provided in the unsolidified recuperating process of a horizontal portion of the continuous casting device, and the cap length of the continuous casting device is set in the continuous casting device. Casting at the maximum drawing speed, reheating in the unsolidified recuperation process and adjusting cooling of the steel slab to make the length almost equal to the crater end position when the steel slab reaches the desired temperature. , If the crater end position after the unsolidified recuperation is the drawing speed so that it is within the machine of the continuous casting device, only the unsolidified reheat is performed or this is used together with the adjustment cooling, while the crater end after the unsolidified reheat is performed. When the position is a drawing speed that is outside the machine end of the continuous casting device, adjustment cooling is performed in combination with unsolidified recuperation heat, and the crater end is at substantially the same position as the machine end or inside the machine. , Continuous casting process Temperature adjustment method of in steel slab.
JP20484985A 1985-09-17 1985-09-17 Temperature control method of steel slab in continuous casting process Expired - Lifetime JPH0620625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20484985A JPH0620625B2 (en) 1985-09-17 1985-09-17 Temperature control method of steel slab in continuous casting process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20484985A JPH0620625B2 (en) 1985-09-17 1985-09-17 Temperature control method of steel slab in continuous casting process

Publications (2)

Publication Number Publication Date
JPS6264462A JPS6264462A (en) 1987-03-23
JPH0620625B2 true JPH0620625B2 (en) 1994-03-23

Family

ID=16497411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20484985A Expired - Lifetime JPH0620625B2 (en) 1985-09-17 1985-09-17 Temperature control method of steel slab in continuous casting process

Country Status (1)

Country Link
JP (1) JPH0620625B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529046A1 (en) * 1995-07-31 1997-02-06 Mannesmann Ag Method and device for operating a continuous caster
JP5119483B2 (en) * 2009-02-17 2013-01-16 新日鐵住金株式会社 Gas cutting method for continuous cast slabs
KR102638366B1 (en) 2019-07-11 2024-02-19 제이에프이 스틸 가부시키가이샤 Secondary cooling method and device for continuous casting cast steel

Also Published As

Publication number Publication date
JPS6264462A (en) 1987-03-23

Similar Documents

Publication Publication Date Title
JP4637580B2 (en) Magnesium alloy strip and method for producing the same
JP2005536358A5 (en)
US5528816A (en) Method and plant to produce strip, starting from thin slabs
EP3705198A1 (en) Continuous casting and rolling apparatus and continuous casting and rolling method
CA2228445C (en) Method and device for operating a continuous casting plant
RU2301121C2 (en) Method of and device for casting and subsequent rolling of metal billets
JPH0620625B2 (en) Temperature control method of steel slab in continuous casting process
KR100578823B1 (en) Method and installation for producing dual-phase steel
US4802356A (en) Apparatus of processing continuously cast slabs
JPS58167064A (en) Continuous casting method of steel
JPS58173005A (en) Endless rolling method
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JP2001137901A (en) Rolling method in hot-charge of continuously cast slab
JPH10211564A (en) Continuous casting method for high speed tool steel billet, and device therefor
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP3090183B2 (en) Austenitic stainless steel thin cast slab and method for producing the same
JPS6213248A (en) Continuous casting machine
JPH0424139B2 (en)
JP2002248553A (en) Method for controlling secondary cooling of continuous- cast steel piece
JP3389451B2 (en) Continuous casting method of unidirectional electromagnetic steel slab
JPH0484651A (en) Method for directly rolling steel
JPS6213249A (en) Continuous casting method
JPS5865555A (en) Continuous casting method
JPS58187254A (en) Continuous casting method of steel
JPS5870960A (en) Continuous casting method for steel