JPS587071B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS587071B2
JPS587071B2 JP51078317A JP7831776A JPS587071B2 JP S587071 B2 JPS587071 B2 JP S587071B2 JP 51078317 A JP51078317 A JP 51078317A JP 7831776 A JP7831776 A JP 7831776A JP S587071 B2 JPS587071 B2 JP S587071B2
Authority
JP
Japan
Prior art keywords
crystal
layer
substrate
epitaxial
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51078317A
Other languages
Japanese (ja)
Other versions
JPS533776A (en
Inventor
永田清一
深井正一
田中恒雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP51078317A priority Critical patent/JPS587071B2/en
Publication of JPS533776A publication Critical patent/JPS533776A/en
Publication of JPS587071B2 publication Critical patent/JPS587071B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/802Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with heterojunction gate, e.g. transistors with semiconductor layer acting as gate insulating layer, MIS-like transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Drying Of Semiconductors (AREA)
  • Weting (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 本発明は、選択エビタキシャル技術を応用した半導体装
置およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device using selective epitaxial technology and a method for manufacturing the same.

一般に結晶性基板上に同種又は異種の結晶をエビタキシ
ャル成長する手段は、液相法、気相法、分子線法に大別
される。
Generally, means for epitaxially growing crystals of the same type or different types on a crystalline substrate are broadly classified into liquid phase method, gas phase method, and molecular beam method.

液相法や大気圧下での気相法では結晶成長面上で結晶成
長に直接又は間接に関与する物質の密度が高く、エビタ
キシャル結晶を構成する元素(以下結晶構成元素という
)の平均自由行程が短かいため、これらの元素は全く無
作為の方向から基板上に供給される成長法である。
In the liquid phase method and the gas phase method under atmospheric pressure, the density of substances directly or indirectly involved in crystal growth is high on the crystal growth surface, and the mean freedom of the elements constituting the epitaxial crystal (hereinafter referred to as crystal constituent elements) is high. Due to the short steps, this is a growth method in which these elements are supplied onto the substrate from completely random directions.

一方分子線法や減圧下で結晶成長を行なう一部の気相法
(例えば熱分解法)に於では、結晶構成元素の供給源(
例えば分子線源、熱分解物質の供給ノズル)と基板面間
の距離Lよりも、分子線や被熱分解物質の分子の平均自
由行程lを十分に長く保つことができ(すなわちg》L
)、結晶構成元素の結晶成長面上への到達方向を規定す
ることができる。
On the other hand, in the molecular beam method and some gas phase methods (e.g. pyrolysis method) that grow crystals under reduced pressure, the supply source of the crystal constituent elements (
For example, the mean free path l of the molecules of the molecular beam or the pyrolyzed substance can be kept sufficiently longer than the distance L between the substrate surface (for example, the molecular beam source, the supply nozzle for the pyrolyzed substance) and the substrate surface (i.e., g》L).
), it is possible to define the direction in which the crystal constituent elements reach the crystal growth surface.

第1図にこの特徴を利用した分子線選択エビタキシーの
例を示す。
Figure 1 shows an example of molecular beam selective evitaxy that utilizes this feature.

この例は(A,Y,cho,App6 Phys Le
tters; 21 355,(1972))に述べ
られている。
This example is (A, Y, cho, App6 Phys Le
21 355, (1972)).

すなわち、基板1上に分子線源2よりGaおよびAs2
分子が、分子線源3よりAl分子が供給される。
That is, Ga and As2 are deposited on the substrate 1 from the molecular beam source 2.
Al molecules are supplied from the molecular beam source 3.

また分子線の通路中に細いタングステンワイヤ4を介在
せしめるように設けることによって、前記タングステン
ワイヤ4の影となった基板1上の部分5にはGaとAs
2のみが到達し基板1上の部分6にはAeのみが到達す
る。
Furthermore, by interposing a thin tungsten wire 4 in the path of the molecular beam, a portion 5 on the substrate 1 that is in the shadow of the tungsten wire 4 contains Ga and As.
Only Ae reaches the portion 6 on the substrate 1.

このようにして成長させたエビタキシャル層7中にはG
a I X A (l X A sの組成Xの異な
った成長層を作ることができることが知られている。
The epitaxial layer 7 grown in this way contains G
It is known that different growth layers of composition X of a I X A (l X A s) can be made.

しかし第1図の方法では組lxの異なった領域を図の紙
面垂直方向に直線状に形成することは可能であるが、任
意形状に屈曲した上記領域を形成することは困難である
However, with the method shown in FIG. 1, although it is possible to form the different regions of the set lx linearly in the direction perpendicular to the plane of the drawing, it is difficult to form the above-mentioned regions curved into an arbitrary shape.

本発明は前述したようなタングステンワイヤ等の特別な
遮蔽物を必要とせず、且つ屈曲した形状についても選択
エピクキシの可能なエビタキシャル成長方法を用い、新
しい自己整合配置を有する半導体装置およびその製造方
法を提供するものである。
The present invention uses an epitaxial growth method that does not require a special shield such as a tungsten wire as described above and allows selective epitaxy even for curved shapes, and a semiconductor device having a new self-aligned arrangement and a method for manufacturing the same. It provides:

ここで従来の自己整合形半導体について、本発明との差
異を明確にするために簡単に説明する。
Here, a conventional self-aligned semiconductor will be briefly explained in order to clarify the difference from the present invention.

第2図は従来周知のPn接合ゲートを有する自己整合配
置の電界効果トランジスタである。
FIG. 2 shows a conventionally known field effect transistor having a Pn junction gate and having a self-aligned arrangement.

まず半絶縁性G a A s基板10上にn型G a
A s活性層11、P型Ga1−XAlXAs層12、
P型GaAs層13を連続エビクキシャル成長を行なう
First, an n-type GaAs substrate 10 is formed on a semi-insulating GaAs substrate 10.
As active layer 11, P-type Ga1-XAlXAs layer 12,
The P-type GaAs layer 13 is continuously grown evixically.

その後ゲート部分を残してP型G a A s層13を
選択エッチングして、さらに前記ゲート部分であるP型
GaAs層13をマスクとしてGa1−XAlXASの
組成選択エッチによりP型Ga1 XAgXAS層12
をサイドエッチしていわゆるT型ゲート形状にして、n
型G a A s活性層11を露出させる。
Thereafter, the P-type GaAs layer 13 is selectively etched leaving the gate portion, and then the P-type Ga1
Side-etch the gate to form a so-called T-shaped gate, and
The GaAs active layer 11 is exposed.

つぎに電極層14を蒸着すれば、ソース、ドレイン、ゲ
ート領域が各々分離された形状で構成される。
Next, when the electrode layer 14 is deposited, the source, drain, and gate regions are separated from each other.

14a,14b,14c はそれぞれソース、ドレイン
、ゲート、ドレイン電極である。
14a, 14b, and 14c are a source, a drain, a gate, and a drain electrode, respectively.

この装置の問題点は半導体装置自身の設計上比較的低電
子濃度( 1 015<n<1 017)に制限され、
かつ薄いo.iμ〜1μの活性層11上に直接電極金属
を被着させるため、ソース14aおよびドレイン電極1
4cの接触抵抗を小さく保持することが困難であり、さ
らに基板上の薄いチャンネル領域となる活性層11を貫
通することなくオーミツク電極を作ることも難い点にあ
る。
The problem with this device is that it is limited to a relatively low electron concentration (1015<n<1017) due to the design of the semiconductor device itself.
And thin o. In order to deposit electrode metal directly on the active layer 11 of iμ to 1μ, the source 14a and drain electrode 1
It is difficult to keep the contact resistance of 4c low, and furthermore, it is difficult to form an ohmic electrode without penetrating the active layer 11, which is a thin channel region on the substrate.

第3図はショトキーバリャ電界効果トランジスタの従来
の構造を示す。
FIG. 3 shows the conventional structure of a Schottky barrier field effect transistor.

半絶縁性GaAs基板15上に活性層16をエビタキシ
ャル成長させ、これを図に示すようにメサエツチングし
て、チタン(Ti)1 7、モリブデン(Mo)18、
金(Au)19を連続蒸着した後、フォト加工により金
(Au)19よりなるゲートバクーンを作りこれをマス
クとしてモリブヂン(Mo)、チタン(Ti)をそれぞ
れサイドエッチングして実効ゲート長を決める。
An active layer 16 is epitaxially grown on a semi-insulating GaAs substrate 15 and mesa-etched as shown in the figure to form titanium (Ti) 17, molybdenum (Mo) 18,
After continuous vapor deposition of gold (Au) 19, a gate vacuum made of gold (Au) 19 is created by photo processing, and using this as a mask, molybdenum (Mo) and titanium (Ti) are side-etched to determine the effective gate length.

そしてオームミツク接触電極金属20を蒸着、合金化し
ソース、ゲート、ドレイン電極20a,20b,20c
を形成して半導体装置を構成する。
Then, ohmic contact electrode metal 20 is vapor deposited and alloyed to form source, gate, and drain electrodes 20a, 20b, 20c.
A semiconductor device is constructed by forming a semiconductor device.

この装置においても前述の説明と同様にソース、ドレイ
ン電極接触を低抵抗化することは難かしい点がある。
In this device as well, as in the above description, it is difficult to reduce the resistance of the source and drain electrode contacts.

第4図にも同じような電界効果トランジスタの別の従来
の構造例を示す。
FIG. 4 also shows another conventional structure example of a similar field effect transistor.

すなわち、半絶縁性基板21上にチャンネルとなるn型
活性層22、n+層23を連続エビタキシャル成長せし
める。
That is, an n-type active layer 22 and an n+ layer 23, which will become a channel, are continuously grown epitaxially on a semi-insulating substrate 21.

つぎにソース、ドレイン電極24a,24bを所定形状
に形成したのち、フォト加工によりゲート部のアンダー
カットマスクを作り、臭素一メタール系の異方性エッチ
ング液で前記層層23を図に示す形状すなわち25のご
とく逆メサエッチし、n型活性層22を露出させる。
Next, after forming the source and drain electrodes 24a and 24b into a predetermined shape, an undercut mask for the gate portion is created by photo processing, and the layer 23 is shaped into the shape shown in the figure using an anisotropic etchant of bromine-metal. Reverse mesa etching is performed as shown in 25 to expose the n-type active layer 22.

次に電極金属層26を蒸着法によりゲート部に被着させ
れば所定型状のショトキーゲートが形成される。
Next, by depositing the electrode metal layer 26 on the gate portion by vapor deposition, a Schottky gate of a predetermined shape is formed.

本装置の構成例ではソース、ドレイン接触をn+層23
の存在により低抵抗化することはできるが、微少ゲート
の場合ゲート構成金属の巾および厚さの制限を受けるた
め、前記ゲート部自体の低抵抗化が難しいという問題が
ある。
In the configuration example of this device, the source and drain contacts are made using the n+ layer 23.
However, in the case of a minute gate, there is a problem in that it is difficult to reduce the resistance of the gate part itself because it is limited by the width and thickness of the metal forming the gate.

本発明は以上説明したように従来におけるそれぞれの問
題点および製造工程上の難かしさの欠点を除去した構造
の半導体装置とその製造方法を提供するものである。
As explained above, the present invention provides a semiconductor device having a structure that eliminates the conventional problems and drawbacks such as difficulty in the manufacturing process, and a method for manufacturing the same.

まず本発明の概略を説明すると、特別な幾町学的形状の
構造を結晶性基板上に形成し、この構造と結晶構成元素
の入射方向との関係により、結晶性基板上の特定領域に
結晶構成元素を飛来せしめ他の部分には飛来しないよう
に、あるいは飛来確率を変化せしめることによって選択
エピタキシを行なうものである。
First, to explain the outline of the present invention, a structure with a special geometrical shape is formed on a crystalline substrate, and the relationship between this structure and the incident direction of the crystal constituent elements allows crystals to be formed in a specific region on the crystalline substrate. Selective epitaxy is performed by allowing the constituent elements to fly in and not to other parts, or by changing the flying probability.

エピタキシの手段としては、結晶構成元素の供給源と基
板面間の距離Lに比べ、結晶構成元素の平均自由行程e
を大ならしめる条件設定をするだけでよく、基板やエピ
クキシを行なう所望の物質が特に限定されることはない
As a means of epitaxy, the mean free path e of the crystal constituent elements is smaller than the distance L between the supply source of the crystal constituent elements and the substrate surface.
It is only necessary to set the conditions to increase the .

以下本発明の具体的な実施例としてG a A sを用
いた電界効果型トランジスタの構造と、製造方?につい
て詳細に図面と共に主要工程単位ごとに説明する。
Below, as a specific example of the present invention, the structure and manufacturing method of a field effect transistor using GaAs will be explained. Each major process unit will be explained in detail with drawings.

第5.6.7図は本発明により接合形電界効果トランジ
スタ(FET)を作成する方法を示すもので、第5図a
はFETのゲート部を形成した状態の平面概略図、同b
.c,dはaのB−B’. C−C’, D−o′線断
面図である。
Figure 5.6.7 shows a method of making a junction field effect transistor (FET) according to the present invention;
is a schematic plan view of the state in which the gate part of the FET is formed;
.. c, d are BB' of a. It is a sectional view taken along lines CC' and D-o'.

A 多層エビクキシャル工程 第5図で明らかなように(001)面をもつ半絶縁性基
板30上に5μm厚の半絶縁性バツファ層3 l 、
(n =5 X 1 016cm3、厚さ0.4μm)
のn型GaAs活性層32、(P>5×1017Cm−
3、厚さ3μm)のP+型G a0.7 Al.3 A
s層33、( P> 5 X 1 0−l7cx ”、
厚さ2μm)のP+型GaAs層34を順次それぞれ多
層エビタキシャル成長させる。
A. Multilayer eviction process As is clear from FIG. 5, a 5 μm thick semi-insulating buffer layer 3 l is formed on a semi-insulating substrate 30 having a (001) plane.
(n = 5 x 1016cm3, thickness 0.4μm)
n-type GaAs active layer 32, (P>5×1017 Cm−
3, thickness 3 μm) of P+ type Ga0.7 Al. 3 A
s layer 33, (P>5X10-l7cx",
P+ type GaAs layers 34 each having a thickness of 2 μm are sequentially grown epitaxially.

B エッチング工程 しかるのち、多層エビタキシャル工程で成長した多層膜
上に被着させたS L3 N4膜35によりゲート巾の
方向が<110>方向と平行となるようにフォトプロセ
スによりエッチングマスクを形成した。
B Etching process After that, an etching mask was formed by a photo process using the S L3 N4 film 35 deposited on the multilayer film grown in the multilayer epitaxial process so that the direction of the gate width was parallel to the <110> direction. .

つぎに異方性エッチング液(S,Iidaand K.
Ito : J. EJ?ectrochem
Sot.118 768(1971)に記載)を用い
て前述の半絶縁性層31に達するまでエッチングを行な
いその後Si3N4マスク35を除去する。
Next, an anisotropic etching solution (S, Iida and K.
Ito: J. EJ? electrochem
Sot. 118, 768 (1971)) until the aforementioned semi-insulating layer 31 is reached, and then the Si3N4 mask 35 is removed.

第5図aはこのようにして作成されたP+型GaAs層
34の形状を示し、この層34よりなるゲートパッド部
40と同じく34よりなるゲート電極部50よりなる結
晶軸方向の関係を示す。
FIG. 5a shows the shape of the P+ type GaAs layer 34 thus produced, and shows the relationship between the crystal axis directions of the gate pad portion 40 made of this layer 34 and the gate electrode portion 50 made of the same layer 34.

第5図aの破線はb,c,dの破線の下部を示す。The broken line in FIG. 5a indicates the lower part of the broken lines in b, c, and d.

さらにこの工程を説明すると、上記異方性エッチングに
より<110>方向にそった端面をもつゲート電極部5
0は傾斜45゜のメサ型に形成され、く1丁0〉および
<1 0 0>、<0 1 0>方向にそう境界をもつ
ゲートパッド部40は、それぞれ逆メサおよび垂直端面
を有するように構成される。
To further explain this process, the gate electrode portion 5 having an end surface along the <110> direction is formed by the anisotropic etching.
0 is formed in a mesa shape with an inclination of 45 degrees, and the gate pad portion 40 having boundaries in the <1 0 0>, <1 0 0>, and <0 1 0> directions has an inverted mesa and a vertical end face, respectively. It is composed of

更にエビタキシャル層33,をGa1−XAlXAsの
みを選択的に腐食するH3P04系の組成選択エッチン
グによりP十型QaAs層34をマスクとしてエビタキ
シャル層33の一部(33の点線より外・側の部分)を
サイドエッチングする。
Furthermore, the epitaxial layer 33 is etched by H3P04-based composition selective etching that selectively corrodes only Ga1-XAlXAs, using the P-type QaAs layer 34 as a mask to remove a part of the epitaxial layer 33 (the part outside and on the side of the dotted line 33). ) side etched.

この工程によりP十型GaAs層34よりも巾のせまい
P十型GaAs層33すなわちゲート領域を形成しn型
GaAs活性層32の一部が現れる。
Through this step, a P<0> type GaAs layer 33 having a width narrower than the P<0> type GaAs layer 34, that is, a gate region is formed, and a part of the n type GaAs active layer 32 is exposed.

この活性層32は主面垂直方向から見るとC−C′,D
−D′線部ではP WGaAs 層34のヒサシの陰
により、B−B’部分でのみ端部が露出している構造と
なる。
This active layer 32 is C-C', D when viewed from the direction perpendicular to the main surface.
-D' line part has a structure in which the end portion is exposed only at the BB' part due to the shadow of the canopy of the P WGaAs layer 34.

一方異方性エッチングにより得られる面精度は極めて高
く、フォトプロセスで形成されたエッチングマスク端面
の精度をはかるにしのいでいる。
On the other hand, the surface precision obtained by anisotropic etching is extremely high and exceeds the precision of the etching mask end face formed by photoprocessing.

したがって電界効果トランジスタの最も重要なゲート長
を決める本工程では先ず異方性エッチングによりP+型
GaA6As層34よりなるマスクおよびP+型GaA
il?As 3 3の端面を正確に形成し、次にP+型
GaAeAs層33の一部33′の選択的サイドエッチ
ングを行なってゲート巾全体にわたり均一で高精度のP
十型GaA13As残存部33(即ちゲート部)を形成
する。
Therefore, in this process of determining the most important gate length of a field effect transistor, first, anisotropic etching is performed to remove a mask made of the P+ type GaA6As layer 34 and a mask made of the P+ type GaA6As layer 34.
Il? After accurately forming the end face of the As 3 3, selective side etching of a portion 33' of the P+ type GaAeAs layer 33 is performed to form a uniform and highly accurate P layer over the entire gate width.
A ten-shaped GaA13As remaining portion 33 (ie, a gate portion) is formed.

C 選択エビクキシャル工程 つぎに前述の工程を経た結晶面(以下基板と言う)に分
子線法により層型Ga A s層36を成長せしめる。
C. Selective Ebiaxial Step Next, a layered GaAs layer 36 is grown by molecular beam method on the crystal plane (hereinafter referred to as substrate) that has gone through the above steps.

すなわち第6図aに分子線源および基板配置を示す様に
、加熱、温度制御可能な基板ホルダー60上に基板61
の裏面を液体金属を介して接触せしめる。
That is, as shown in FIG. 6a showing the arrangement of the molecular beam source and the substrate, a substrate 61 is placed on a substrate holder 60 that can be heated and temperature controlled.
The back sides of the metal are brought into contact with each other through the liquid metal.

62.63,64.65は独立に温度制御可能な分子線
源で高純度グラファイトで作られたクヌードセンセルを
有しそれぞれGa,As,Ge,Asを内蔵しており、
前記.A−sおよびGaAs線源は主に砒素分子を供給
するために使用されGe線源はn型ドーパントとして用
いられるGeの供給源である。
62.63 and 64.65 are molecular beam sources whose temperatures can be controlled independently, and each has a Knudsen cell made of high-purity graphite, each containing Ga, As, Ge, and As.
Above. As and GaAs sources are primarily used to supply arsenic molecules, and Ge sources are the source of Ge, which is used as an n-type dopant.

この構成で装置全体を5 X 1 0−10m7ILH
9以上の超高真空に排気したのち、As線源63.65
を加熱し基板上にAs4分子を供給しながら、基板を加
熱し610℃に10分間保持して表面の熱エッチを行な
い、次に基板温度を550℃に保持し、予め所定温度に
熱せられている分子線源63,64.65のシャッタを
開きエビタキシャル成長を行ない、1×1018C1r
L−3Geを添加したn十型GaAsを1μm成長させ
る。
With this configuration, the entire device is 5 x 1 0-10m7ILH
After evacuation to an ultra-high vacuum of 9 or higher, As radiation source 63.65
While heating and supplying As4 molecules onto the substrate, the substrate was heated and held at 610°C for 10 minutes to thermally etch the surface.Then, the substrate temperature was held at 550°C, and the substrate was heated to a predetermined temperature beforehand. The shutters of the molecular beam sources 63, 64, and 65 are opened to perform epitaxial growth, and 1×1018C1r
L-3Ge-doped n0-type GaAs is grown to a thickness of 1 μm.

成長時の荘置内の全圧は約5 X I Q ”myHg
であった。
The total pressure inside the manor during growth is approximately 5 x IQ ”myHg
Met.

この圧力では前記したように分子線の平均自由行程eは
基板・線源間距離(L=8cIrL)に比べ十分に大き
く、分子線はその径路中で散乱されることなく基板上に
到達する。
At this pressure, as described above, the mean free path e of the molecular beam is sufficiently larger than the distance between the substrate and the radiation source (L=8cIrL), and the molecular beam reaches the substrate without being scattered along its path.

一方基板上に構成された凹凸の程度(第5図参照)はた
かだかlOμmでLに比べると10−4程度の微小量で
あるため、各分子線はほとんど平行光線のように入射す
る。
On the other hand, since the degree of unevenness formed on the substrate (see FIG. 5) is at most 10 μm, which is a minute amount of about 10 −4 compared to L, each molecular beam is incident almost like a parallel ray.

即ち第6図bに示すように開口径2R=67n11Lを
有する線源62からの分子線照射に対し、巾2rを有す
るヒサシの形成されたP−GaAs層34によるチャン
ネルとなるn −GaA.s 3 2の表面への本影の
巾2wおよび中心より半影端までの距離Uは相似の関係
より、 で与えられる。
That is, as shown in FIG. 6B, in response to molecular beam irradiation from a radiation source 62 having an aperture diameter of 2R=67n11L, an n-GaAs. The width 2w of the umbra to the surface of s 3 2 and the distance U from the center to the edge of the penumbra are given by the following from the relationship of similarity.

d=3X1 0−4CrrL.L=8crnとしてd/
Lを1に対して無視すると、 上式の右辺第2項による影の巾への影響は0.2μの程
度であり、この値は加熱された基板面上の分子の表面拡
散長と同程度となる。
d=3X1 0-4CrrL. d/ as L=8crn
If L is ignored relative to 1, the influence of the second term on the right side of the above equation on the width of the shadow is about 0.2μ, and this value is about the same as the surface diffusion length of molecules on the heated substrate surface. becomes.

分子線入射方向の基板主面垂線からの傾き角θによる3
4のヒサシの下部への分子線のまわり込みの効果はこれ
より大きく、d・tanθの程度である。
3 due to the inclination angle θ of the molecular beam incident direction from the normal to the main surface of the substrate
The effect of the molecular beam wrapping around the lower part of the canopy in No. 4 is larger than this, and is on the order of d·tanθ.

θ−25゜でこの効果は約1μmに達する。この廻り込
み効果を利用するため本実施例では、第6図に示すよう
にGa線源62のみθ=〇位置に、他のAζGe,As
線源はθ−25゜〈1〒0〉軸よりの方位角ダが各々1
80゜ ,90゜ ,0°の位置に設置した。
At θ-25° this effect reaches about 1 μm. In order to utilize this wraparound effect, in this embodiment, as shown in FIG.
The ray sources each have an azimuth angle of 1 from the θ-25°〈1〒0〉 axis.
They were installed at 80°, 90°, and 0° positions.

こうしてGaやGeのヒサシの下部へ廻り込みを避ける
とともに、Asのみを選択的にヒサシ下部に導入し、露
出した薄い活性層のエピクキシの中に於る高抵抗化を防
ぐことができる。
In this way, it is possible to prevent Ga and Ge from going around to the bottom of the canopy, and to selectively introduce As only to the bottom of the canopy, thereby preventing a high resistance in the epitaxial layer of the exposed thin active layer.

以上により結晶はヒサシの影の部分では成長せず、且つ
非成長部分の巾はヒサシの巾とほとんど等しいことが明
白である。
From the above, it is clear that crystals do not grow in the shadow part of the canopy, and the width of the non-growing part is almost equal to the width of the canopy.

第5図の基板上にエピタキシャル成長を行なった後の構
造を第7図に示す。
FIG. 7 shows the structure after epitaxial growth has been performed on the substrate shown in FIG.

すなわちこの工程により、ヒサシの下(P一GaAlA
s33’の除去された部分へはn+型GaAs層36を
成長せず、半絶縁性層31上、n+形G a A s活
性層32上の一部、ゲート電極部ならびにゲートパッド
部を構成するP+形GaAs層34上にそれぞれ分離さ
れたn+型GaAs層36a,36b,36cを形成す
ることができる。
In other words, through this process, the bottom of Hisashi (P-GaAlA
The n+ type GaAs layer 36 is not grown on the removed portion of s33', and forms part of the semi-insulating layer 31, the n+ type GaAs active layer 32, the gate electrode portion, and the gate pad portion. Separated n+ type GaAs layers 36a, 36b, and 36c can be formed on the P+ type GaAs layer 34, respectively.

ここで36aはゲート電極部、36bはソース電極部、
36cはドレイン電極部となる。
Here, 36a is a gate electrode part, 36b is a source electrode part,
36c is a drain electrode portion.

すなわち、第7図aは各ゲート電極部を形成した後の平
面概略図、同b,c,dは同aのB −B’ , C
−C’ , D −D’線断面図である。
That is, FIG. 7a is a schematic plan view after forming each gate electrode part, and FIG. 7b, c, and d are B-B', C of FIG. 7a.
-C', D-D' line sectional view.

上記第7図a,b+c,d図から明らかなごとく異方性
エッチングによる傾斜端面構造と、GaAIJAs混晶
の組成選択エッチおよび選択エピタキシを用いることに
より、n+型GaAs選択エビタキシャル層36は活性
層n型GaAs32上に電気的接合を保ちながら自己整
合的に成長し、ソース,ドレイン領域を形成するととも
にゲートパッド下部の活性層n型GaAs32と、ソー
スおよびドレイン電極用n+型GaAs層36b ,3
6cとは絶縁分離された状態になっている。
As is clear from the above-mentioned figures 7a, b+c, and d, the n+ type GaAs selective epitaxial layer 36 is formed into an active layer by using the inclined end face structure by anisotropic etching and the composition selective etching and selective epitaxy of GaAIJAs mixed crystal. Grows in a self-aligned manner on the n-type GaAs 32 while maintaining electrical contact, forming the source and drain regions, as well as the active layer n-type GaAs 32 under the gate pad and the n+-type GaAs layers 36b and 3 for the source and drain electrodes.
It is insulated and separated from 6c.

更にゲート頂部のP+型GaAs層34とその上にエピ
クキシャルされたn+型GaAs層36aとは相互に高
ドーブ層であり、更に動作時においては順バイアスされ
るためゲート電圧印加における障害はない。
Furthermore, the P+ type GaAs layer 34 on the top of the gate and the N+ type GaAs layer 36a epitaxially formed thereon are mutually highly doped layers and are forward biased during operation, so there is no problem in applying the gate voltage.

D 電極形成工程 前記B,B,Cの工程終了後通常の蒸着法によりAu:
Ge/Ni等の電極金属を蒸着すれば電極金属(図示せ
ず)もC工程と同様にそれぞれ36a,36b,36c
上に自己整合的に配置される。
D Electrode Formation Step After completing steps B, B, and C, Au:
If electrode metals such as Ge/Ni are vapor-deposited, the electrode metals (not shown) will also become 36a, 36b, and 36c, respectively, as in step C.
self-aligned on top.

そしてこの電極を合金化すれば電界効果トランジスタが
完成されるものである。
Then, by alloying these electrodes, a field effect transistor is completed.

すなわち、この電極工程によると、低抵抗率のn+Ga
As層上に電極金属を接触させるため極めて小さな接触
抵抗となり、また、比較的厚いn +GaAs層36a
,361),36cに電極金属を合金化することができ
るため製造工程が容易になる。
That is, according to this electrode process, low resistivity n+Ga
Since the electrode metal is brought into contact with the As layer, the contact resistance is extremely small, and the relatively thick n+GaAs layer 36a
, 361), 36c can be alloyed with the electrode metal, which simplifies the manufacturing process.

なお本発明の内容について理解しやすくするためにGa
As/GaAlAs を用いた電界効果形トランジスタ
の製作例について説明したが、本発明が以上の例の範囲
にかぎられるものではなく、本発?の基本思想にそうも
のであれば、以下に述べるような各行程上及び材料につ
いて同様の効果が期待されることは言うまでもない。
In order to make it easier to understand the content of the present invention, Ga
Although an example of manufacturing a field effect transistor using As/GaAlAs has been described, the present invention is not limited to the scope of the above example. If this is true of the basic idea, it goes without saying that similar effects can be expected for each process and material as described below.

A 多層エビタキシャル行程;本行程は液相法気相法・
分子線法等の通常の公知の手段により,連続的にまたは
各手段を併用して実施できる。
A Multilayer epitaxial process; This process uses liquid phase method, gas phase method,
It can be carried out continuously or by a combination of conventional means such as molecular beam method.

B エッチング工程; b−1 異方性エッチングとしてH2SO4:H20
2:H20系の液を使用したが、その他の一般的な異方
性エッチング液(臭素・メタノール系,クエン酸:H2
0:H20系、NH40H:H20:H20系、H3P
O4;H20:H20系その他)も目的に応じて使い分
けられる。
B Etching process; b-1 H2SO4:H20 as anisotropic etching
2: H20-based solution was used, but other general anisotropic etching solutions (bromine/methanol-based, citric acid: H2
0:H20 system, NH40H:H20:H20 system, H3P
O4; H20: H20 series, etc.) can also be used depending on the purpose.

又通常のメサエツチング液を用いることもできる。Ordinary mesa etching solutions can also be used.

b−2 本実施例ではゲート部を除き、活性層を完全
に除去したが、これを一部残存させる変形も考えられる
b-2 In this example, the active layer was completely removed except for the gate portion, but a modification may be considered in which a portion of the active layer remains.

b−3 実施例ではGa Ag A s/GaAsの組
成選択エッチングを利用したが、混晶でなくとも不純物
濃度や不純物の種類によりエッチング速度の異なる化学
液・エピクキシャル層の組合せでも多層エピタキシャル
膜に本発明構造と同様の構造を形成することができる。
b-3 In the example, composition selective etching of GaAgAs/GaAs was used, but even if the composition is not a mixed crystal, a combination of a chemical solution and an epitaxial layer with different etching rates depending on the impurity concentration and type of impurity can also be used to create a multilayer epitaxial film. Structures similar to the inventive structure can be formed.

C 選択エピタキシャル工程; C−1 所望のエピタキシャル膜構成元素の基板上へ
の飛来方向の規定できる厳密な条件としてe >> L
を示したが、基板表面での構造物の配置や構造形状によ
るならばl≧Lでも所期の目的を達成できる。
C Selective epitaxial process; C-1 Strict conditions that can define the direction of the desired epitaxial film constituent elements onto the substrate e >> L
However, the intended purpose can be achieved even if l≧L, depending on the arrangement of the structure on the substrate surface and the structure shape.

c − 2実施例の本工程では分子線法を用いたが、他
の化学輸送法や熱分解法を減圧下(圧力<10−3im
Hg)で行なうならは゛l≧Lなる条件を満し、所望の
エピタキシャル結晶構成元素の飛来方向を定めることが
できる。
Although the molecular beam method was used in the main step of Example c-2, other chemical transport methods and thermal decomposition methods were used under reduced pressure (pressure < 10-3 im).
Hg), the condition of l≧L is satisfied, and the flying direction of the desired epitaxial crystal constituent elements can be determined.

D 材料;実施例ではGaAsを示したが、その他の■
・■族半導体やその混晶、■・■族半導体,GeやSi
等の■族半導体にも本発明の思想をそのまま適用できる
D Material: GaAs is shown in the example, but other ■
・■ Group semiconductors and their mixed crystals, ■ and ■ group semiconductors, Ge and Si
The idea of the present invention can be applied as is to group III semiconductors such as the following.

(特にサファイア上に成長させたSiに対しては,エッ
チング速度の不純物濃度依存を示す化学液処理と減圧下
での熱分解エピタキシyル法との組合せにより同様構造
の装置を作成できると推測される。
(In particular, for Si grown on sapphire, it is assumed that a device with a similar structure can be created by combining a chemical liquid treatment whose etching rate is dependent on impurity concentration and a pyrolytic epitaxy method under reduced pressure. Ru.

)以上詳述したように本発明の方法を適用して製作した
電界効果トランジスタは次の特長をもつ。
) As detailed above, the field effect transistor manufactured by applying the method of the present invention has the following features.

(1)ソース・ドレイン・ゲートが自己整合配置する。(1) Source, drain, and gate are arranged in self-alignment.

(2)ゲートパッドを含む装置全体としても自己整合が
可能である。
(2) Self-alignment is possible for the entire device including the gate pad.

(3)ソース・ドレイン電極の接触抵抗を低抵抗率の結
晶層の存在のため小さくできる, ?4)T型構造ゲートを作成できるため、微小ゲート長
の装置に於ても、ゲート抵抗が小さい。
(3) The contact resistance of the source and drain electrodes can be reduced due to the presence of the low resistivity crystal layer, ? 4) Since a T-shaped gate structure can be created, gate resistance is low even in devices with a minute gate length.

(5)異方性エッチと組成選択エッチを組合せたゲート
製作工程により、均一で精度の高いゲートを製作でき、
かつ容量の増加も生じない。
(5) A gate manufacturing process that combines anisotropic etching and compositional selective etching enables the manufacture of uniform and highly accurate gates.
Moreover, no increase in capacity occurs.

(6)以上により高周波化・低ノイズ化を期待できる。(6) With the above, higher frequency and lower noise can be expected.

(7)マスク合せの不必要な極めて簡単な工程で製作さ
れる。
(7) Manufactured using an extremely simple process that does not require mask alignment.

このように、本発明は自己整合配置を有する半導体装
置を容易に形成することができる。
In this manner, the present invention can easily form a semiconductor device having a self-aligned arrangement.

【図面の簡単な説明】 第1図は結晶構成元素の基板上への入射方向を特定した
従来の分子線エピタキシャル法の説明図2第2.3.4
図は自己整合型電界効果トランジスタの従来の構造図、
第5図は多層エピタキシャル膜を異方性エッチ及び組成
選択エッチにより結晶主面上に作成した本発明の一実施
例にかかる接合形電界効果トランジスタの製造途中を示
し、aはその平面概略図、b,c,dは同aのB−B′
,C一C’,D−D智断面図、第6図aは結晶構成元素
の基板上への入射方向を特定化するために本発明の実施
例に用いた分子線エピタキシャル法の説明図、同bはa
の要部構造図、第7図は第5図において第6図の方法を
適用し結晶構成元素の入射方向を特性化し,且つヒサシ
を用いたエピタキシ法により成長された電界効果トラン
ジスタにおける結晶層の配置を示し、同aはその平面概
略図、同b,c,dは同aのB−B’ , C −C’
, D−D’線断面図である。 30・・・・・・半絶縁性基板、33・・・・・・P十
型GaA11As層(ゲート)、34...−P+型G
aAs層、36 a , 36 b , 36c −n
+型G a A s層、62〜65・・・・・・分子線
源。
[Brief explanation of the drawings] Figure 1 is an illustration of the conventional molecular beam epitaxial method in which the direction of incidence of crystal constituent elements on the substrate is specified Figure 2 2.3.4
The figure shows the conventional structure of a self-aligned field effect transistor.
FIG. 5 shows the manufacturing process of a junction field effect transistor according to an embodiment of the present invention in which a multilayer epitaxial film is formed on the main crystal surface by anisotropic etching and composition selective etching, and a is a schematic plan view thereof; b, c, d are B-B' of the same a
, C-C', D-D cross section; FIG. 6a is an explanatory diagram of the molecular beam epitaxial method used in the embodiment of the present invention to specify the direction of incidence of crystal constituent elements onto the substrate; The same b is a
Figure 7 shows the structure of the main part of a field effect transistor grown by applying the method shown in Figure 6 to Figure 5, characterizing the incident direction of the crystal constituent elements, and epitaxy using a Hisashi. The layout is shown in the same figure, where a is a schematic plan view thereof, and b, c, and d are B-B', C-C' of the same a.
, is a sectional view taken along line DD'. 30... Semi-insulating substrate, 33... P-type GaA11As layer (gate), 34. .. .. -P+ type G
aAs layer, 36a, 36b, 36c-n
+ type Ga As layer, 62-65... Molecular beam source.

Claims (1)

【特許請求の範囲】 1 結晶性基板の少なくとも1主面に2層以上の異なる
性質のエビクキシャル結晶層を形成する工程と、前記最
上層のエビタキシャル結晶層にレジストパターンを形成
し、前記の多層のエビタキシャル結晶成長層をエッチン
グ手段により選択エッチせしめる工程と、しかるのち上
層のエビタキシャル結晶層をマスクとして下層のエビク
キシャル結晶層の一部を選択的にエッチングせしめ、前
記結晶性基板上に特定の構造体を形成せしめる工程と、
前記構造体を含む結晶面上に新たなエビタキシギル結晶
層を形成する工程を有し、前記新たなエビタキシャル結
晶層を形成する工程に於て、成長せしめる結晶構成元素
を供給する供給源と前記基板間距離に比べ、前記結晶構
成元素を含む気体分子の平均自由行程を大ならしめる条
件下で、結晶構成元素を含む分子の飛来方向を規定して
結晶成長させることを特徴とする半導体装置の製造方法
。 2 結晶成長せしめる手段として分子線エビタキシャル
法を用いることを特徴とする特許請求の範囲第1項に記
載の半導体装置の製造方法。
[Scope of Claims] 1. A step of forming two or more evictaxial crystal layers with different properties on at least one principal surface of a crystalline substrate, forming a resist pattern on the uppermost evitaxial crystal layer, and forming a resist pattern on the uppermost epitaxial crystal layer, A step of selectively etching the epitaxial crystal growth layer of the substrate by an etching means, and then selectively etching a part of the lower epitaxial crystal layer using the upper epitaxial crystal layer as a mask to form a specific pattern on the crystalline substrate. a step of forming a structure;
a step of forming a new epitaxygyl crystal layer on a crystal plane including the structure, in the step of forming the new epitaxial crystal layer, a supply source for supplying crystal constituent elements to be grown and the substrate; Manufacturing a semiconductor device, characterized in that crystal growth is performed by specifying the flying direction of the molecules containing the crystal constituent elements under conditions that increase the mean free path of the gas molecules containing the crystal constituent elements compared to the distance between the crystal constituent elements. Method. 2. A method for manufacturing a semiconductor device according to claim 1, characterized in that a molecular beam epitaxial method is used as a means for crystal growth.
JP51078317A 1976-06-30 1976-06-30 Manufacturing method of semiconductor device Expired JPS587071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51078317A JPS587071B2 (en) 1976-06-30 1976-06-30 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51078317A JPS587071B2 (en) 1976-06-30 1976-06-30 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS533776A JPS533776A (en) 1978-01-13
JPS587071B2 true JPS587071B2 (en) 1983-02-08

Family

ID=13658551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51078317A Expired JPS587071B2 (en) 1976-06-30 1976-06-30 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS587071B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242089A (en) * 1989-02-24 1990-09-26 Long Mfg Ltd In-tank type oil cooler
JPH08502651A (en) * 1992-11-02 1996-03-26 ストラサイヤー ピーティーワイ.リミテッド Turf products

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920005128B1 (en) * 1989-12-27 1992-06-26 재단법인 한국전자통신연구소 Manufacturing method of junction-type field effect transistor
JP2773425B2 (en) * 1990-11-21 1998-07-09 日本電気株式会社 Method for manufacturing field effect transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495582A (en) * 1972-05-03 1974-01-18
JPS509378A (en) * 1973-05-23 1975-01-30
JPS50138776A (en) * 1974-04-17 1975-11-05

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495582A (en) * 1972-05-03 1974-01-18
JPS509378A (en) * 1973-05-23 1975-01-30
JPS50138776A (en) * 1974-04-17 1975-11-05

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242089A (en) * 1989-02-24 1990-09-26 Long Mfg Ltd In-tank type oil cooler
JPH08502651A (en) * 1992-11-02 1996-03-26 ストラサイヤー ピーティーワイ.リミテッド Turf products

Also Published As

Publication number Publication date
JPS533776A (en) 1978-01-13

Similar Documents

Publication Publication Date Title
US4186410A (en) Nonalloyed ohmic contacts to n-type Group III(a)-V(a) semiconductors
Tung et al. Control of a natural permeable CoSi2 base transistor
US4707197A (en) Method of producing a silicide/Si heteroepitaxial structure, and articles produced by the method
JP2968014B2 (en) Micro vacuum tube and manufacturing method thereof
US4714948A (en) HEMT with epitaxial narrow bandgap source/drain contacts isolated from wide bandgap layer
JPS636877A (en) Manufacture of heterojunction type bipolar transistor
US5371378A (en) Diamond metal base/permeable base transistor and method of making same
EP0045181A2 (en) High electron mobility heterojunction semiconductor device and method of manufacturing
JPS5999776A (en) Manufacture of schottky gate type electric field effect transistor
US4785340A (en) Semiconductor device having doping multilayer structure
JPS587071B2 (en) Manufacturing method of semiconductor device
JPH02252267A (en) Manufacture of semeconductor device
JPS61131526A (en) Manufacture of semiconductor device
JPH0332208B2 (en)
JPH0329302B2 (en)
JP2803555B2 (en) Fabrication method of ultra-fine tunnel barrier
JP3020578B2 (en) Semiconductor device
JPS588151B2 (en) Manufacturing method of junction field effect transistor
JPH0422329B2 (en)
JPS60229375A (en) Manufacture of compound semiconductor device
JPS6050957A (en) Hetero junction bipolar semiconductor device
JP2660252B2 (en) Method for manufacturing compound semiconductor device
JPS5847867B2 (en) Hand tie souchi
JPS61248479A (en) Compound semiconductor device
JPS60136264A (en) Manufacture of semiconductor device