JPS5869020A - Method of heating molded item to be reformed into biaxially stretched bottle - Google Patents

Method of heating molded item to be reformed into biaxially stretched bottle

Info

Publication number
JPS5869020A
JPS5869020A JP56169276A JP16927681A JPS5869020A JP S5869020 A JPS5869020 A JP S5869020A JP 56169276 A JP56169276 A JP 56169276A JP 16927681 A JP16927681 A JP 16927681A JP S5869020 A JPS5869020 A JP S5869020A
Authority
JP
Japan
Prior art keywords
piece
heater
heaters
heat
molded item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56169276A
Other languages
Japanese (ja)
Other versions
JPH0420775B2 (en
Inventor
Hiroshi Uekusa
植草 広士
Shoichi Onodera
小野寺 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshino Kogyosho Co Ltd
Original Assignee
Yoshino Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshino Kogyosho Co Ltd filed Critical Yoshino Kogyosho Co Ltd
Priority to JP56169276A priority Critical patent/JPS5869020A/en
Publication of JPS5869020A publication Critical patent/JPS5869020A/en
Publication of JPH0420775B2 publication Critical patent/JPH0420775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/68Ovens specially adapted for heating preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles

Abstract

PURPOSE:To heat uniformly and precisely a molded item, by heating the molded item to be blow molded by the radiation heat from a plurality of heaters arranged side by side while the molded item is positioned horizontally and is being rotated about its axis. CONSTITUTION:When the cylindrical molded item (P) that has a bottom and is to be blow molded should be heated by the radiation heat of heaters, the molded item (P) is positioned horizontally and while the molded item (P) is being rotated about its axis, it is heated by the radiation heat of the plurality heaters H1-H7 arranged side by side so that interference of heat may not be caused which would be otherwise caused by the convection of heat due to heaters arranged oppositely above and below the molded item (P). In this method, the molded item (P) is heated uniformly as a whole, so that thickness deviation would not occur in the biaxially orientated and blow molded item. Furthermore, as there is no interference of heat, the control of the heaters (H) can be facilitated.

Description

【発明の詳細な説明】 本発明は、2軸延伸成形場体成形用1次成形品の加熱方
法であって、さらに評言すれば、1次成形品の均一な加
熱を簡単にかつ正確に達成することを目的としたもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for heating a primary molded product for biaxial stretching molding, and more specifically, uniform heating of the primary molded product can be easily and accurately achieved. It is intended to.

合成樹脂製増体のうち、射出成形された有底円筒形状を
した1次成形品(以下、単にピースと記す)を延伸効果
の出る温度まで再加熱し、このピースを2軸延伸ブロー
成形して成形された増体が。
A primary molded product (hereinafter simply referred to as a piece) made of synthetic resin and has a cylindrical shape with a bottom is reheated to a temperature that produces a stretching effect, and this piece is biaxially stretched and blow molded. Increased body mass is formed.

その機械的強度1種々の耐久性、そして価格の面から多
方面で使用されるよう和なっている。
Its mechanical strength, durability, and price make it suitable for use in a wide variety of fields.

この2軸延伸成形場体は、上記した如く、射出成形され
たピースを延伸効果の出る温度まで再加熱して2軸延伸
プ四−成形されるのであるが、このピースを延伸効果の
出る温度まで加熱する際忙は、ピース全°体をできる限
り均一な温度に加熱することが必要である。
As mentioned above, in this biaxial stretching molding facility, the injection molded piece is reheated to a temperature at which a stretching effect is produced, and then biaxially stretching is performed. When heating up to a certain temperature, it is necessary to heat the entire piece to as uniform a temperature as possible.

このピースに対する加熱が、ピースに対して部分的に不
均一となって部分的に温度差が生じるようなことがある
と、このピースから2軸延伸プロー成形される増体に扁
肉を発生させるととくなる。
If the heating of this piece becomes partially uneven and a temperature difference occurs locally, thinning will occur in the added body that is biaxially stretch-produced from this piece. That's it.

従来、このピースを延伸効果の出る温度まで加熱するの
は、第1図に示す如く、加熱炉内に、ピースPの移動路
Kff3って配置されたヒータ■を複数本上下に並列に
配置し、起立姿勢に保持されたピースPをその中心軸P
1を中心に自転させながら移動させ、このピースアの側
方に配置された複数本のヒータH1、H2・・・からの
輻射熱により加熱する手法がとられていた。
Conventionally, heating this piece to a temperature that produces a stretching effect is achieved by arranging a plurality of heaters (1) vertically in parallel in a heating furnace along the moving path Kff3 of the piece P, as shown in Fig. 1. , the piece P held in an upright position is centered around its central axis P.
A method has been adopted in which the peace zone is moved while rotating around the peace zone, and heated by radiant heat from a plurality of heaters H1, H2, . . . arranged on the sides of the peace zone.

こりよ5忙、各ヒータMl 、 H1!−・・け上下に
並列く配列されているため、各ヒータH1、H2・・・
を同一発熱量で作動させると、各ヒータH1,H2・・
・関に熱対流による熱干渉が発生し、各ヒータH1,H
2・・・からピースPK輻射される熱エネルギーが同一
とならない。
5 busy, each heater Ml, H1! -... Since they are arranged in parallel vertically, each heater H1, H2...
When operated with the same calorific value, each heater H1, H2...
・Thermal interference due to thermal convection occurs between the heaters H1 and H.
2... The thermal energy radiated from piece PK is not the same.

それゆえ、各ヒータH1、12・・・の発熱量を設定す
るkは、この各ヒータ111.)12・・・関忙発生す
る熱干渉を予め知り、この測定値に基づいて2例えば第
1図すの線図に示す如く、各ヒータEl、H2・・・の
発熱量を設定しなければならなかった。
Therefore, k, which sets the calorific value of each heater H1, 12,... )12...The thermal interference that occurs should be known in advance, and based on this measured value, the amount of heat generated by each heater El, H2, etc. should be set, for example, as shown in the diagram in Figure 1. did not become.

しかしながら、閉塞された9閾である加熱炉内とはいえ
、前記した熱干渉を正確に知ることは極めて難しく、か
つ各ヒータ11,12を発熱させて加熱炉を始動させた
後、加熱炉内が定常状態に落ち着くまでにかなりの時間
を要するため、加熱炉の駆動時間の割には、加熱炉がピ
ースPを加熱するのに動作する時間が短いものとならざ
るを得なかった。
However, it is extremely difficult to accurately know the thermal interference described above, even though the heating furnace has nine thresholds that are blocked. Since it takes a considerable amount of time for the temperature to settle down to a steady state, the time that the heating furnace operates to heat the piece P has to be short compared to the driving time of the heating furnace.

そして最も基本的な不都合は、前記したようにして各ヒ
ータMl、11!・・・の発熱量を設定したとしても、
熱干渉その、ものがピースPの移動動作そのものの影響
を受けて微妙に変化するものであるがため、またこの熱
干渉の変化は子側し得ないものであるために、ピースP
の全体を均一に加熱するということは全く不可能である
ということである。
The most basic inconvenience is that each heater Ml, 11! Even if you set the calorific value for...
Because the thermal interference itself changes slightly under the influence of the moving movement of the piece P, and because this change in thermal interference cannot occur on the child side, the
It is simply impossible to heat the entire area uniformly.

それゆえ従来は、ピースPを延伸効果の出る温度範囲内
の上限近くまで加熱し、これによってピースPの部分間
に温度差が生じても、その温度差の実際の加熱温度に対
する割合を小さくして、延伸成形にできる限り悪影響が
出ないようにしていたのである。
Therefore, conventionally, the piece P is heated to near the upper limit of the temperature range in which the stretching effect occurs, and even if a temperature difference occurs between parts of the piece P, the ratio of that temperature difference to the actual heating temperature is small. Therefore, they tried to avoid any negative effects on stretch forming as much as possible.

本発明は、上記従来例における不都合、欠点を解消すべ
く創案されたもので、複数本並列配置されるヒータ間に
、熱対流による熱干渉が発生しないようにして、ピース
を均一に加熱しよさとするものである。
The present invention was devised to eliminate the inconveniences and shortcomings of the above-mentioned conventional examples, and it is possible to uniformly heat a piece by preventing thermal interference due to thermal convection between multiple heaters arranged in parallel. That is.

以下本発明を図面に従って説明する。The present invention will be explained below with reference to the drawings.

本発明によるピースPの加熱方法は、横倒しの姿勢でそ
の一中心軸Piを中心に自転して加熱炉内を移動するピ
ースPを、このピースPの外周面に対向しかつ相互間に
熱対流による熱干渉の生じる上下関係を持たないように
並列配置されたヒータMl、H2・・・により輻射加熱
するのである。
The method of heating a piece P according to the present invention is to place a piece P that rotates around one central axis Pi in a sideways position and moves in a heating furnace, so that the piece P faces the outer circumferential surface of the piece P and heat convection occurs between them. Radiant heating is performed by heaters Ml, H2, etc., which are arranged in parallel so that there is no vertical relationship that would cause thermal interference.

すなわち1本発明を実施した最も基本的な構成は、第3
図和水す如く、横倒し姿勢で自転しながら移動するピー
スPの直下に、このピースPの移動方向く延びた複数本
のヒータMl、H2・・・を、ピースPの中心軸P1と
平行な水平面上に並列に配置した構成である。
In other words, the most basic configuration in which the first invention is implemented is the third one.
As shown in Figure 1, a plurality of heaters Ml, H2, etc., extending in the direction of movement of the piece P, are placed directly below the piece P, which is rotating while lying on its side, parallel to the central axis P1 of the piece P. They are arranged in parallel on a horizontal plane.

各ヒータIN、H2・・・は水平面上に並列配置されて
いるので、各ヒータHは、他のヒータHからの熱対流に
よる熱干渉を受けることが全くなく、このため各ヒータ
■の発する熱量は、この各ヒータ■の予め設定された値
、すなわち各ヒータHVC与えられる電力に応じた正確
な値となる。
Since each heater IN, H2, etc. are arranged in parallel on a horizontal plane, each heater H is not subject to thermal interference due to thermal convection from other heaters H, and therefore the amount of heat generated by each heater is a preset value for each heater (2), that is, an accurate value according to the electric power given to each heater HVC.

このように、各ヒータHは、予め設定された熱量で正確
に発熱することができるのであるから。
In this way, each heater H can accurately generate heat with a preset amount of heat.

ピースP全体を均一に加熱する忙は、各ヒータ1111
゜H2・・・の発熱量を対向するピー72部分までの距
離に合せて設定すれば良い。
Each heater 1111 is responsible for uniformly heating the entire piece P.
The amount of heat generated by °H2... may be set in accordance with the distance to the opposing part 72.

例えば、第3歯図示実施例の場合、各ヒータHの対向f
るビーxpの筒壁部社、成形金型からの型抜きを考慮し
て抜きテーパを有するものとなっているため、開口部か
ら底部に近づくに従って径を減少させる構造となってい
るため、ピースPの中心軸P1ど平行な水平面上に配置
された各ヒータH1,H2・・・は、ピースPの底部に
近い部分和対向するものほどピースPどの距離が大きく
なっている。
For example, in the case of the third tooth illustrated embodiment, the opposing f of each heater H
The cylindrical wall part of Bee Each of the heaters H1, H2, .

単位発熱源から任意の物体に輻射される熱量は。The amount of heat radiated from a unit heat source to any object is.

熱源と物体との間の距離の2乗にほぼ反比例するもので
あるから、各ヒータ■の発熱量を対向するピースPの部
分との距離の2乗に比例した値を基準に設定すれば、ピ
ースPはその全体を均一な温度に加熱されることKなる
Since it is almost inversely proportional to the square of the distance between the heat source and the object, if the heat generation amount of each heater (■) is set to a value proportional to the square of the distance from the opposing part of the piece P, then The entire piece P is heated to a uniform temperature.

もちろん、第2図aに示す如く、各ヒータH1。Of course, as shown in FIG. 2a, each heater H1.

H2・・・をピースPの筒壁部外周面に接する平面に平
行な平面上に並列配置した場合には、各ヒータH1,H
!・・・の対向するピー11部分との間の距離は全て等
しくなるので、各ヒータH1、H2・・・は等しい発熱
量で発熱すれば良いととくなる。
H2... are arranged in parallel on a plane parallel to the plane in contact with the outer peripheral surface of the cylindrical wall of piece P, each heater H1, H
! Since the distances between the opposing parts of the heaters H1, H2, and so on are all equal, it is sufficient for each heater H1, H2, and so on to generate heat with the same amount of heat.

ただし、第2図aに示す如く、ヒータ■を傾斜した面上
に並列酊、置する場合にFi、各ヒータH間にわずかで
はあるが上下関係が生じることになる。
However, as shown in FIG. 2a, when the heaters (2) are placed in parallel on an inclined surface, there will be a slight vertical relationship between Fi and each heater H.

この各ヒータH間の上下関係は、熱対流による熱干渉を
生じる原因となるものであるが、各ヒータHが間隔をも
って並列配電されかつその上下関係がきわめて小さい値
である場合には各ヒータH間に熱対流による熱干渉は生
じないので、第2図和水した程度の各ヒータH間の上下
関係であればヒータ8間に熱対流による熱干渉を生ずる
恐れは全くない。
This vertical relationship between each heater H causes thermal interference due to thermal convection, but if each heater H is distributed in parallel with intervals and the vertical relationship is an extremely small value, each heater H Since there is no thermal interference caused by thermal convection between the heaters 8, there is no possibility that thermal interference due to thermal convection will occur between the heaters 8 if the vertical relationship between the heaters H as shown in FIG.

なお、第2図に示したヒータHとピースPとの関係を持
たせれば、ピースP全体を均一に加熱するためのヒータ
Hの発熱制御は最も簡単でかつ正確に達成されることに
なるので、このヒータHとピースPとの関係を保持した
tまより加熱炉の構第3図の如く水平面上に並列配置し
、これ忙対し。
Furthermore, if the relationship between the heater H and the piece P shown in FIG. The structure of a heating furnace that maintains the relationship between the heater H and the piece P is arranged in parallel on a horizontal plane as shown in FIG.

ピースPをその外周面に接する平面が水平面となるよう
中心軸P1を傾斜させて保持するよう構成すれば良い。
The piece P may be held with the central axis P1 inclined so that the plane in contact with the outer circumferential surface of the piece P is a horizontal plane.

なお、上記した説明から明らかなように、理論的には、
第2図の如き各ヒータH1,H2・・・とピースPとの
位置関係であれば、各ヒータI’ll、H2・・・の発
熱量は同一で良いのであるが、実際忙閉塞された空間を
形成する加熱炉内で加熱運転すると。
Furthermore, as is clear from the above explanation, theoretically,
If the positional relationship between the heaters H1, H2... and the piece P is as shown in Fig. 2, the amount of heat generated by the heaters I'll, H2... may be the same, but in reality, the heat output from the heaters I'll, H2... may be the same. When heating is operated in a heating furnace that forms a space.

ピースPを保持して移動する治具が位置するピースPの
開口部側の熱損失が大きく、ピースPの底部側は完全に
閉塞された空間となるために熱損失が少なく、それだけ
雰囲気温度が高くなることから、各ヒータ11,1!!
・・・の設定温度は、第2図すに示す如く、ピースPの
開口部に対向するヒータH1が最も高く、ピースPの底
部に近づくに従って徐々に低くなり、ピースPの底部に
対向するH7が最も低い値に設定し、てfs−スP全体
を均−忙加熱している。
The heat loss is large on the opening side of the piece P, where the jig that holds and moves the piece P is located, and the bottom side of the piece P is a completely closed space, so there is less heat loss, and the ambient temperature is accordingly lower. Each heater 11,1! !
As shown in Figure 2, the set temperature of the heater H1 facing the opening of the piece P is highest, gradually decreases as it approaches the bottom of the piece P, and the set temperature of the heater H7 facing the bottom of the piece P is the highest. is set to the lowest value, and the entire fs-space P is evenly heated.

また、各ヒータHけ、ピースPの直下に配置しなければ
ならないということはなく、場合によっては、ピースP
の側方に並列配置しても良い。
In addition, each heater does not have to be placed directly under the piece P; in some cases, the piece P
They may be arranged in parallel on the sides.

ただし、このようにした場合忙は、ピースPの保持治具
の構造が複・雑となるばかりか、短いヒータHを多数用
いなげればならず、電気結線が複雑となるとい5欠点を
もつことになり、I11造的に不利となる。
However, in this case, not only does the structure of the holding jig for the piece P become complicated and complicated, but also a large number of short heaters H must be used, and the electrical connection becomes complicated. Therefore, it is disadvantageous from a structural point of view.

以上の説明から明らかなよ5に#本発明は、各ヒータH
間の熱対流による熱干渉を生じないようにしたので、各
ヒータ■は設定された発熱量でビースアを加熱すること
ができ、かつこの各ヒータHの発熱量は単純に設定でき
るので、ピースP全体を均一に加熱することができるば
かりかピースPの加熱温度制御が簡単にかつ正確に達成
することができ、さらに半和ピースPの姿勢とヒータH
の取付は位置を変更するだけですでに製造されている加
熱炉に簡単に実施することができる等多くの優れた作用
効果を有するものである。
As is clear from the above explanation, in #5 the present invention
Since thermal interference due to thermal convection between the two heaters is prevented, each heater (■) can heat the bea with the set amount of heat, and since the amount of heat generated by each heater (H) can be simply set, the piece P Not only can the whole be heated uniformly, but the heating temperature of the piece P can be easily and accurately controlled, and the posture of the half-wax piece P and the heater H can be easily and accurately controlled.
It has many excellent functions and effects, such as being able to be easily installed in an already manufactured heating furnace by simply changing its position.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のピース加熱方法を示′すもので。 第1図aはピースに対する各ヒータの配置関係を。 そして第1図1は、各ヒータの設定温度を示すものであ
る。 第2図4は本発明を実施例を示すもので、第2図aはピ
ースに対するヒータの配置関係を、そしてfs2図すは
各ヒータの設定温度関係を示すものである。 第3図は1本発明方法の基本的なピースに対するヒータ
の配置関係を示すものである。 符号の説明 P・・・1次成形品(ピース)、 a、at、a2・山
・・・・ヒータj PI・・・中心軸。 発明者  植草広士 発明者     小野寺 昭 − 出願人 株式会社吉野工業所 頽者 吉 野 弥太薦 2ツソ7つ (a)             (b)T(’C) グ戸z4の
Figure 1 shows a conventional piece heating method. Figure 1a shows the arrangement of each heater with respect to the piece. FIG. 1 shows the set temperature of each heater. FIG. 2A shows an embodiment of the present invention, and FIG. 2a shows the arrangement of heaters with respect to the piece, and fs2 shows the relationship between the set temperatures of each heater. FIG. 3 shows the arrangement of heaters for the basic pieces of the method of the present invention. Explanation of symbols P...Primary molded product (piece), a, at, a2, mountain...Heater j PI...Center axis. Inventor: Hiroshi Uekusa Inventor: Akira Onodera - Applicant: Yoshino Kogyo Co., Ltd. User: Yata Yoshino 2 Recommendations: 7 (a) (b) T ('C) Gudo Z4

Claims (1)

【特許請求の範囲】[Claims] 2軸延伸ブI−成形される合成樹脂製壜体成形用の有底
円筒形状をした1次成形品のヒータによる輻射加熱方法
であって、横銅し姿勢で中心軸を中心として回転動され
た前記1次成形品を、#1次成形品の外周面に対向して
相互間に熱対流による熱干渉が発生する上下関係をもた
ないように並列配量された複数のヒータにより輻射加熱
する2軸延伸成形場体成形用1次成形晶の加熱方法。
Biaxially Stretched Bulb I - A method of radiant heating using a heater for a primary molded product in the shape of a cylinder with a bottom for molding a synthetic resin bottle, in which the product is rotated around the central axis in a horizontal copper position. The primary molded product is radiantly heated by a plurality of heaters arranged in parallel to face the outer peripheral surface of the #1 primary molded product so as not to have a vertical relationship that would cause thermal interference due to thermal convection between them. A method for heating a primary formed crystal for forming a biaxially stretched forming field body.
JP56169276A 1981-10-22 1981-10-22 Method of heating molded item to be reformed into biaxially stretched bottle Granted JPS5869020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56169276A JPS5869020A (en) 1981-10-22 1981-10-22 Method of heating molded item to be reformed into biaxially stretched bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56169276A JPS5869020A (en) 1981-10-22 1981-10-22 Method of heating molded item to be reformed into biaxially stretched bottle

Publications (2)

Publication Number Publication Date
JPS5869020A true JPS5869020A (en) 1983-04-25
JPH0420775B2 JPH0420775B2 (en) 1992-04-06

Family

ID=15883505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56169276A Granted JPS5869020A (en) 1981-10-22 1981-10-22 Method of heating molded item to be reformed into biaxially stretched bottle

Country Status (1)

Country Link
JP (1) JPS5869020A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535111U (en) * 1976-06-30 1978-01-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535111U (en) * 1976-06-30 1978-01-18

Also Published As

Publication number Publication date
JPH0420775B2 (en) 1992-04-06

Similar Documents

Publication Publication Date Title
US9532401B2 (en) Susceptor support shaft with uniformity tuning lenses for EPI process
WO2017059645A1 (en) Heating device and heating chamber
CN104275782B (en) Heater, forming machine and heating process of semi-finished
JPH06103670B2 (en) Semiconductor wafer heating device
US4605839A (en) Dual parison heating reflector and method
JPH0137252B2 (en)
RU2429121C2 (en) Billet heater
JPS5869020A (en) Method of heating molded item to be reformed into biaxially stretched bottle
CN110435165A (en) A kind of macromolecule plate heat radiation flexibility forming device and method
BR112013010475B1 (en) System, method and apparatus for manufacturing by solar heating
CN109747148A (en) A kind of 3D printer cavity heat wind circulation heating equipment
JPH03125935A (en) Thermopile
JPS6277919A (en) Blow molding method for bottle
JP4341280B2 (en) Heated crystallization apparatus for saturated polyester hollow body and heating method thereof
ES357903A1 (en) Improvements in or relating to processes for the manufacturing of shaped articles
CN213878027U (en) Heating device with consistent wafer surface temperature
JPH0512011Y2 (en)
JPS588522Y2 (en) parison heating furnace
CN113325901B (en) Large-caliber nonlinear crystal heating method, system and device
JPS61114827A (en) Method of heating and cooling mold for molding plastic
JPS6038197Y2 (en) pseudo blackbody radiation source
CN209162179U (en) Heating device and filming equipment
JPH0425132B2 (en)
KR101726379B1 (en) Infrared ray steel heater of temperature correction and that method
JPH03210784A (en) Semiconductor manufacturing device