JPH03125935A - Thermopile - Google Patents

Thermopile

Info

Publication number
JPH03125935A
JPH03125935A JP1263839A JP26383989A JPH03125935A JP H03125935 A JPH03125935 A JP H03125935A JP 1263839 A JP1263839 A JP 1263839A JP 26383989 A JP26383989 A JP 26383989A JP H03125935 A JPH03125935 A JP H03125935A
Authority
JP
Japan
Prior art keywords
layer
insulating substrate
coating layer
pattern
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1263839A
Other languages
Japanese (ja)
Other versions
JP2929204B2 (en
Inventor
Michio Nemoto
根本 道夫
Akihiro Enomoto
榎本 明宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP1263839A priority Critical patent/JP2929204B2/en
Publication of JPH03125935A publication Critical patent/JPH03125935A/en
Application granted granted Critical
Publication of JP2929204B2 publication Critical patent/JP2929204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To improve the efficiency of a temperature rise in the warm contact portion of a thermocouple pattern with respect to an incident infrared ray power by forming an elastic resin coating layer coated with the thermocouple pattern thereon an insulating substrate. CONSTITUTION:An elastic resin (usually polyimide resin is used) coating layer 3 is formed on the surface of an insulating substrate 1 on which a thermocouple pattern 2 is formed. The thickness of the elastic resin coating layer 3 is smaller than that of the substrate 1 and usually set to 5mum or less. The coating layer 3 has a heat conductivity of the same order as that of the substrate 1. The layer 3 is formed by a spin coating method. The surface of the pattern 2 is processed to be insulated by the layer 3. Thus, the infrared ray absorbing layer 4 of gold black can be formed on a circular region with a radius larger than that of a circle on which a warm contact 20 is arranged approximately by a clearance (k). Thus, heat is applied to the warm contact 20 from the peripheral portion of the absorbing layer 4 directly via the layer 3. This improves the efficiency of a temperature rise in the pattern 2 coupled with the fact that the thickness of the layer 3 is small.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は9人体の検知、あるいは各種の非接触温度検出
に用いられる赤外線を検出するサーモパイルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermopile that detects infrared rays used for human body detection or various types of non-contact temperature detection.

[従来の技術] 従来のサーモパイルの構成を第2図に示す。絶縁性基板
1の上に熱電材料2a及び熱電材料2bの組合せで直列
に配列された熱電対パターン2が蒸着等の手段により形
成されている。熱電材料としてはB1−8b、B1−T
e等の高熱電能を持つ材料が選択される。熱電対パター
ン2の内側には温接点20が配列され、外側には冷接点
21が配置される。
[Prior Art] The configuration of a conventional thermopile is shown in FIG. 2. A thermocouple pattern 2, which is a combination of thermoelectric materials 2a and 2b arranged in series, is formed on an insulating substrate 1 by means such as vapor deposition. B1-8b, B1-T as thermoelectric materials
A material with high thermoelectric power such as e is selected. Hot junctions 20 are arranged inside the thermocouple pattern 2, and cold junctions 21 are arranged outside.

そして冷接点21をその上面にて含む形にて絶縁性基板
1がヒートシンク5の上に固定されている。
The insulating substrate 1 is fixed on the heat sink 5 so as to include the cold junction 21 on its upper surface.

熱電対パターン2の温接点20の内側部分には。In the inner part of the hot junction 20 of the thermocouple pattern 2.

クリアランスd(dは50〜100μm前後)をもって
赤外線吸収層4が形成されている。赤外線吸収層4は通
常最も赤外線の吸収率がすぐれている金魚が用いられる
The infrared absorbing layer 4 is formed with a clearance d (d is approximately 50 to 100 μm). For the infrared absorbing layer 4, goldfish, which has the highest infrared absorption rate, is usually used.

サーモパイルが赤外線を検出する原理は以下のごとくで
ある。被検出物体(人体等)から発生した赤外線は、赤
外線吸収層4に吸収され赤外線吸収層4の温度が上昇す
る。この温度上昇による熱がクリアランスdの区間を介
して基板1上を伝達して、熱電対パターン2の温接点2
0を温度上昇させる。冷接点21の温度はほぼヒートシ
ンク5の温度(室温に等しい)に保たれているので、温
接点20と冷接点21の間には温度差ΔTが生じる。こ
のΔTにもとずいて出力電圧V。が出力端子5a、 6
b間に生ずる。
The principle by which a thermopile detects infrared rays is as follows. Infrared rays generated from an object to be detected (such as a human body) are absorbed by the infrared absorbing layer 4, and the temperature of the infrared absorbing layer 4 increases. Heat due to this temperature rise is transferred over the substrate 1 through the section of clearance d, and the hot junction 2 of the thermocouple pattern 2
0 to raise the temperature. Since the temperature of the cold junction 21 is maintained approximately at the temperature of the heat sink 5 (equal to room temperature), a temperature difference ΔT occurs between the hot junction 20 and the cold junction 21. The output voltage V is based on this ΔT. are output terminals 5a, 6
Occurs between b.

尚、出力電圧V。は(熱電材料2a及び2bによる熱伝
能α(μV/”C))X (熱電対の対数)である。
Furthermore, the output voltage V. is (thermal conductivity α (μV/”C) due to thermoelectric materials 2a and 2b)X (logarithm of thermocouple).

赤外線吸収層4は、比抵抗が低くほぼ金属並の比抵抗を
示すので、熱電対パターンの温接点と直接接触すると熱
電対の出力電圧を著しく低下させてしまう。そのため、
赤外線吸収層4はクリアランスdをもって温接点20の
内側へ形成せざるを得ない。又クリアランスdの大きさ
は熱伝達上はなるべく小さい方が好ましいが、現実には
量産上の歩留り等を考慮すると約50〜100μm前後
の値に設定せざるを得ない。したがって、赤外線吸収層
4の周辺部の温度と温接点20の間には。
Since the infrared absorbing layer 4 exhibits a low specific resistance almost equal to that of a metal, if it comes into direct contact with the hot junction of the thermocouple pattern, it will significantly reduce the output voltage of the thermocouple. Therefore,
The infrared absorbing layer 4 must be formed inside the hot junction 20 with a clearance d. Although it is preferable for the size of the clearance d to be as small as possible from the viewpoint of heat transfer, in reality it has to be set to a value of about 50 to 100 μm when considering the yield in mass production. Therefore, between the temperature of the peripheral part of the infrared absorbing layer 4 and the hot junction 20.

クリアランスdの分に相当する温度差が生じてしまう。A temperature difference corresponding to the clearance d will occur.

従って、赤外線入射パワーに対する温接点20の温度上
昇に対する熱的な効率が低い。
Therefore, the thermal efficiency with respect to the temperature rise of the hot junction 20 with respect to the infrared incident power is low.

上記欠点の一つの改良法として、第3図に示すごとく、
絶縁性基板1の熱電対2の形成された面とその面と反対
の面に赤外線吸収層4を設ける方法がある。尚、赤外線
吸収層4の大きさは温接点20を完全に含むようにする
As shown in Figure 3, one way to improve the above drawbacks is to
There is a method of providing an infrared absorbing layer 4 on the surface of the insulating substrate 1 on which the thermocouple 2 is formed and the surface opposite to that surface. Note that the size of the infrared absorbing layer 4 is such that it completely includes the hot junction 20.

[発明が解決するための課題] しかしながら、この場合も絶縁性基板が通常20〜50
μ震の有機系フィルムであるため、この厚みの熱分布が
無視できない。即ち、赤外線入射パワーに対する温接点
の温度上昇の熱的効率が低い。しかも、熱電対の面とヒ
ートシンク(通常アルミ等の金属が用いられる)とが対
向する形となるため、熱電対とヒートシンクとの絶縁性
処理及び外部端子の引き出し処理が複雑となり、製造工
程が複雑になるという欠点を持つ。
[Problem to be solved by the invention] However, in this case as well, the insulating substrate usually has a density of 20 to 50
Since it is an organic film with μ earthquakes, the heat distribution in this thickness cannot be ignored. That is, the thermal efficiency of increasing the temperature of the hot junction with respect to the incident infrared power is low. Moreover, since the surface of the thermocouple and the heat sink (usually made of metal such as aluminum) face each other, the insulation process between the thermocouple and the heat sink and the process for drawing out the external terminals are complicated, which complicates the manufacturing process. It has the disadvantage of becoming

本発明の技術的課題は、従来の欠点を改善し。The technical problem of the present invention is to improve the conventional drawbacks.

赤外線入射パワーに対する熱電対パターンの温接点部の
温度上昇の効率を向上させ、しかも組立てやすい量産に
適したサーモパイルを提供することである。
It is an object of the present invention to provide a thermopile which improves the efficiency of temperature rise of a hot junction part of a thermocouple pattern with respect to infrared incident power, and which is easy to assemble and suitable for mass production.

[課題を解決するための手段] 本発明によれば、絶縁性基板と、該絶縁性基板に形成さ
れた温接点及び冷接点を有する熱電対パターンと、前記
温接点を加熱するために赤外線を吸収する赤外線吸収層
とを有するサーモパイルにおいて、前記絶縁性基板は前
記熱電対パターンを被膜した弾力性をもつ樹脂コーティ
ング層を有していることを特徴とするサーモパイルが得
られる。
[Means for Solving the Problems] According to the present invention, an insulating substrate, a thermocouple pattern having a hot junction and a cold junction formed on the insulating substrate, and an infrared ray to heat the hot junction are provided. In the thermopile having an infrared absorbing layer, the insulating substrate has an elastic resin coating layer covering the thermocouple pattern.

[実施例] 第1図に本発明によるサーモパイルの一実施例を示す。[Example] FIG. 1 shows an embodiment of a thermopile according to the present invention.

1は絶縁性基板であり、マイカ、ポリイミド、ポリエチ
レン等を材質とする厚み25〜50μm厚のフィルムで
ある。絶縁性基板1の上には、第1の熱電材料2aと第
2の熱電材料2bとの組合せによる熱電対パターン2が
蒸着あるいはスパッタ等により形成されている。
Reference numeral 1 denotes an insulating substrate, which is a film having a thickness of 25 to 50 μm and made of mica, polyimide, polyethylene, or the like. On the insulating substrate 1, a thermocouple pattern 2 made of a combination of a first thermoelectric material 2a and a second thermoelectric material 2b is formed by vapor deposition, sputtering, or the like.

ヒートシンク5は、アルミ等の熱電導係数が大なる材料
にてリング状に作られている。ヒートシンク5の内径は
、熱電対パターン2の温接点20と冷接点21の中間に
設定されている。絶縁性基板1がヒートシンク5の上に
密着固定され、この結果、冷接点21はほぼヒートシン
ク5の温度に保持される。
The heat sink 5 is made of a material having a large thermal conductivity, such as aluminum, in a ring shape. The inner diameter of the heat sink 5 is set midway between the hot junction 20 and the cold junction 21 of the thermocouple pattern 2. The insulating substrate 1 is closely fixed on the heat sink 5, and as a result, the cold junction 21 is maintained at approximately the temperature of the heat sink 5.

絶縁性基板1の面で熱電対パターン2が形成された面に
は図に示すごとく弾力性のある樹脂コーティング層3が
形成されている。コーティング層3の厚みは、絶縁性基
板1の厚みよりは小で2通常5μm以下に設定される。
As shown in the figure, an elastic resin coating layer 3 is formed on the surface of the insulating substrate 1 on which the thermocouple pattern 2 is formed. The thickness of the coating layer 3 is smaller than the thickness of the insulating substrate 1, and is usually set to 5 μm or less.

樹脂コーティング層3の材質は通常ポリイミド樹脂が用
いられ、その熱伝導率は0.0015〜0.0020W
 / cm degであり、絶縁性基板2とほぼ同程度
のオーダーの熱伝導率を持つ。
Polyimide resin is usually used as the material for the resin coating layer 3, and its thermal conductivity is 0.0015 to 0.0020W.
/cm deg, and has a thermal conductivity of approximately the same order as that of the insulating substrate 2.

樹脂コーティング層3の形成方法として、特に。Especially as a method for forming the resin coating layer 3.

量産性がすぐれ膜厚を薄くでき、しかも均一化できるス
ピンコーティング法を用いる。
The spin coating method is used because it is easy to mass produce and allows for thinner and more uniform film thickness.

樹脂コーティング層3により熱電対パターンの表面が絶
縁処理され、それにより温接点20の配列された径寸法
よりも約クリアランスにだけ外側の領域に相当する部分
に全黒等の赤外線吸収層4を形成することが可能となる
。kの大きさは通常100〜200μ厘程度に選択され
、赤外線吸収層4の外径は約1.2〜1.5龍φに選択
される。
The surface of the thermocouple pattern is insulated by the resin coating layer 3, thereby forming an infrared absorbing layer 4 of completely black or the like in a portion corresponding to an area outside the diameter of the arranged hot junctions 20 by about a clearance. It becomes possible to do so. The size of k is usually selected to be about 100 to 200 μm, and the outer diameter of the infrared absorbing layer 4 is selected to be about 1.2 to 1.5 μm.

なお、樹脂コーティング層3の形成について。Regarding the formation of the resin coating layer 3.

熱電対パターン2の出力端子6a、6bの部分だけは、
マスキング等の手段により樹脂コーティング層が形成さ
れないような配慮がなされている。
Only the output terminals 6a and 6b of the thermocouple pattern 2 are
Consideration is taken to prevent the formation of a resin coating layer by means such as masking.

ここで本発明によるサーモパイルは従来に比べて下記の
点ですぐれている。
Here, the thermopile according to the present invention is superior to the conventional one in the following points.

■ 樹脂コーティング層3による絶縁処理を行っている
ので、全黒等の赤外線吸収層4(比抵抗は金属と同レベ
ルである)をその外周部分をほぼ熱電対パターン2の温
接点20部分まで拡大することが可能となっている。赤
外線吸収層4の周辺部から直接樹脂コーティング層3を
介して熱が温接点20に加わり、しかも樹脂コーティン
グ層3の厚みは、5μ■以下に薄くしているので、従来
の第2図、第3図のサーモパイルよりも赤外線入射パワ
ーに対する熱電対パターン゛20の温度上昇の効率が著
しく改善される。
■ Since insulation treatment is performed using the resin coating layer 3, the outer periphery of the infrared absorbing layer 4 (specific resistance is on the same level as metal), which is completely black, is expanded to approximately the hot junction 20 of the thermocouple pattern 2. It is now possible to do so. Heat is applied directly to the hot junction 20 from the periphery of the infrared absorbing layer 4 through the resin coating layer 3, and the thickness of the resin coating layer 3 is made thinner than 5 μm, which is different from the conventional method shown in FIGS. The efficiency of temperature rise of the thermocouple pattern 20 with respect to infrared incident power is significantly improved compared to the thermopile of FIG. 3.

■ 従来の第3図に比べて熱電対パターン2の面を上側
とすることが出来る。従って、ヒートシンク5との接合
に関して、熱電対パターン2とヒートシンク5との絶縁
処理は、絶縁性基板1にて兼用されるので従来の第3図
のような新たな絶縁処理材7は必要がなく2組立てが容
易となる。
(2) Compared to the conventional structure shown in FIG. 3, the surface of the thermocouple pattern 2 can be placed on the upper side. Therefore, regarding the bonding with the heat sink 5, the insulation treatment between the thermocouple pattern 2 and the heat sink 5 is shared by the insulating substrate 1, so there is no need for a new insulation treatment material 7 like the conventional one shown in FIG. 2. Easy to assemble.

なお1本発明では樹脂コーティング層3としては弾力性
を持った材質を選択している。従って。
Note that in the present invention, a material with elasticity is selected for the resin coating layer 3. Therefore.

絶縁性基板1が製造組立時にまげ応力等を受けてまげら
れたとしても、十分そのまげに対して樹脂コーティング
層3は形状的に対応でき、クラック。
Even if the insulating substrate 1 is bent due to bending stress during manufacturing and assembly, the resin coating layer 3 can sufficiently cope with the bending in terms of shape, and no cracks will occur.

欠は等は全く発生しない。No defects occur at all.

[発明の効果] 本発明によれば、従来よりも赤外線入射パワーに対する
熱電対パターン温接点部の温度上昇の効率を向上させ1
組立て易く量産に適したサーモパイルを提供できる。
[Effects of the Invention] According to the present invention, the efficiency of temperature rise of the thermocouple pattern hot junction with respect to infrared incident power is improved compared to the conventional method.
We can provide thermopiles that are easy to assemble and suitable for mass production.

外線吸収層、5,5・・・ヒートシンク、6a、6b。External radiation absorption layer, 5, 5... Heat sink, 6a, 6b.

6a、6b・・・出力端子、7・・・絶縁処理材。6a, 6b...output terminal, 7...insulation treatment material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明による一実施例のサーモパイルの
平面図、第1図(b)のB−Bに沿って切断したサーモ
パイルの断面図、第2図(a)は従来のサーモパイルの
平面図、第2図(b)は第2図(a)のB−Bに沿って
切断したサーモパイルの断面図、第3図は従来の他のサ
ーモパイルの断面図である。 1.1・・・絶縁性基板、2.2・・・熱電対パターン
。 2a、2a・・・第1の熱電材料、2b、2b・・・第
2の熱電材料、20.20・・・温接点、21.21・
・・冷接点、3・・・樹脂コーティング、4,4.4・
・・赤第1図 第2図 第3図
FIG. 1(a) is a plan view of a thermopile according to an embodiment of the present invention, a sectional view of the thermopile taken along line B-B in FIG. 1(b), and FIG. 2(a) is a diagram of a conventional thermopile. The plan view, FIG. 2(b) is a sectional view of the thermopile taken along line BB in FIG. 2(a), and FIG. 3 is a sectional view of another conventional thermopile. 1.1... Insulating substrate, 2.2... Thermocouple pattern. 2a, 2a... first thermoelectric material, 2b, 2b... second thermoelectric material, 20.20... hot junction, 21.21.
...Cold junction, 3...Resin coating, 4,4.4.
...Red Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1)絶縁性基板と、該絶縁性基板に形成された温接点及
び冷接点を有する熱電対パターンと、前記温接点を加熱
するために赤外線を吸収する赤外線吸収層とを有するサ
ーモパイルにおいて、前記絶縁性基板は前記熱電対パタ
ーンを被膜した弾力性をもつ樹脂コーティング層を有し
ていることを特徴とするサーモパイル。 2)請求項1記載のサーモパイルにおいて、前記絶縁性
基板が、マイカ、ポリイミド、ポリエチレン等により形
成されたことを特徴とするサーモパイル。 3)請求項1記載のサーモパイルにおいて、前記樹脂コ
ーティング層が、スピンコーティング法によって形成さ
れたことを特徴とするサーモパイル。 4)請求項1記載のサーモパイルにおいて、前記樹脂コ
ーティング層の厚みが、前記絶縁性基板の厚み以下であ
ることを特徴とするサーモパイル。
[Claims] 1) An insulating substrate, a thermocouple pattern having a hot junction and a cold junction formed on the insulating substrate, and an infrared absorption layer that absorbs infrared rays to heat the hot junction. 1. A thermopile comprising: the insulating substrate having an elastic resin coating layer covering the thermocouple pattern. 2) The thermopile according to claim 1, wherein the insulating substrate is made of mica, polyimide, polyethylene, or the like. 3) The thermopile according to claim 1, wherein the resin coating layer is formed by a spin coating method. 4) The thermopile according to claim 1, wherein the thickness of the resin coating layer is equal to or less than the thickness of the insulating substrate.
JP1263839A 1989-10-12 1989-10-12 Thermopile Expired - Fee Related JP2929204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1263839A JP2929204B2 (en) 1989-10-12 1989-10-12 Thermopile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1263839A JP2929204B2 (en) 1989-10-12 1989-10-12 Thermopile

Publications (2)

Publication Number Publication Date
JPH03125935A true JPH03125935A (en) 1991-05-29
JP2929204B2 JP2929204B2 (en) 1999-08-03

Family

ID=17394943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1263839A Expired - Fee Related JP2929204B2 (en) 1989-10-12 1989-10-12 Thermopile

Country Status (1)

Country Link
JP (1) JP2929204B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449910A (en) * 1993-11-17 1995-09-12 Honeywell Inc. Infrared radiation imaging array with compound sensors forming each pixel
EP0995978A2 (en) * 1998-10-22 2000-04-26 BARTEC Componenten und Systeme GmbH Radiation detector
EP1039280A2 (en) * 1999-03-24 2000-09-27 Ishizuka Electronics Corp. Thermopile-type infrared sensor and process for producing the same
KR100359836B1 (en) * 2000-02-21 2002-11-07 엘지전자 주식회사 thermopile sensor
DE10320357A1 (en) * 2003-05-07 2004-12-02 Perkinelmer Optoelectronics Gmbh & Co.Kg Radiation sensor, wafer, sensor module and method for producing a radiation sensor
EP1780522A1 (en) * 2005-10-31 2007-05-02 Delphi Technologies, Inc. Infrared detecting device with a circular membrane
JP2010002284A (en) * 2008-06-20 2010-01-07 Sumitomo Electric Ind Ltd Infrared detection type gas sensor and exhaust gas purifying device using it
US8215831B2 (en) * 2004-06-09 2012-07-10 Excelitas Technologies Gmbh & Co. Kg Sensor element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449910A (en) * 1993-11-17 1995-09-12 Honeywell Inc. Infrared radiation imaging array with compound sensors forming each pixel
EP0995978A2 (en) * 1998-10-22 2000-04-26 BARTEC Componenten und Systeme GmbH Radiation detector
EP0995978A3 (en) * 1998-10-22 2000-11-29 BARTEC Componenten und Systeme GmbH Radiation detector
EP1039280A2 (en) * 1999-03-24 2000-09-27 Ishizuka Electronics Corp. Thermopile-type infrared sensor and process for producing the same
EP1039280A3 (en) * 1999-03-24 2002-09-25 Ishizuka Electronics Corp. Thermopile-type infrared sensor and process for producing the same
KR100359836B1 (en) * 2000-02-21 2002-11-07 엘지전자 주식회사 thermopile sensor
DE10320357A1 (en) * 2003-05-07 2004-12-02 Perkinelmer Optoelectronics Gmbh & Co.Kg Radiation sensor, wafer, sensor module and method for producing a radiation sensor
DE10320357B4 (en) * 2003-05-07 2010-05-12 Perkinelmer Optoelectronics Gmbh & Co.Kg Radiation sensor, wafer, sensor array and sensor module
US8215831B2 (en) * 2004-06-09 2012-07-10 Excelitas Technologies Gmbh & Co. Kg Sensor element
EP1780522A1 (en) * 2005-10-31 2007-05-02 Delphi Technologies, Inc. Infrared detecting device with a circular membrane
JP2010002284A (en) * 2008-06-20 2010-01-07 Sumitomo Electric Ind Ltd Infrared detection type gas sensor and exhaust gas purifying device using it

Also Published As

Publication number Publication date
JP2929204B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JPS6140154B2 (en)
JPH03125935A (en) Thermopile
JPH03196583A (en) Vertical type silicon thermopile and manufacture thereof
US6344632B1 (en) Round heating plate used in a heating chamber for semiconductor device manufacturing
JPS63318175A (en) Thermopile
JPH03273689A (en) Highly sensitive thermopile
JPS5836820B2 (en) Manufacturing method of far-infrared radiating element
JPH02165025A (en) Thermopile
JPH02205730A (en) Infrared-ray sensor
CN211578790U (en) Thermopile chip
JPH0750679Y2 (en) Thermopile type infrared sensor
JPS59163526A (en) Thermopile
JP2564939Y2 (en) Thermopile infrared detector
JPS5831414Y2 (en) Tape stretching device
JPH03117739U (en)
JPS5839039Y2 (en) Planar far infrared heater
JP2517199Y2 (en) Thermopile
JPS6010134A (en) Radiation heat flux sensor
JPH046424A (en) Infrared sensor
JPH0590647A (en) Infrared detector
JPH03289184A (en) Infrared ray sensor
JPS6298610A (en) Substrate heating mechanism for crystal growth
JP2561671Y2 (en) Thermopile for infrared detection
JPH01199481A (en) Thermopile
JPS6153530A (en) Thermocouple type infrared detection element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees