JPS5836820B2 - Manufacturing method of far-infrared radiating element - Google Patents

Manufacturing method of far-infrared radiating element

Info

Publication number
JPS5836820B2
JPS5836820B2 JP8992077A JP8992077A JPS5836820B2 JP S5836820 B2 JPS5836820 B2 JP S5836820B2 JP 8992077 A JP8992077 A JP 8992077A JP 8992077 A JP8992077 A JP 8992077A JP S5836820 B2 JPS5836820 B2 JP S5836820B2
Authority
JP
Japan
Prior art keywords
far
layer
radiating element
radiation
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8992077A
Other languages
Japanese (ja)
Other versions
JPS5424330A (en
Inventor
明夫 三友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Netsu Kigu KK
Original Assignee
Hitachi Netsu Kigu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Netsu Kigu KK filed Critical Hitachi Netsu Kigu KK
Priority to JP8992077A priority Critical patent/JPS5836820B2/en
Publication of JPS5424330A publication Critical patent/JPS5424330A/en
Publication of JPS5836820B2 publication Critical patent/JPS5836820B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Description

【発明の詳細な説明】 本発明は遠赤外線放射エネルギーの放射率が犬きく耐久
性の優れた遠赤外線放射素子の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a far-infrared radiating element that has excellent emissivity for far-infrared radiant energy and excellent durability.

一般に優れた遠赤外線放射素子の具備すべき条件として
は、 1)放射層が基体と強力に密着していること2)放射層
の放射率が1に近いこと 3)放射層の表面が荒れていて表面積が大きいこと などが要求される。
In general, the conditions that an excellent far-infrared radiating element should meet are: 1) The radiation layer must be in strong contact with the substrate, 2) The emissivity of the radiation layer must be close to 1, and 3) The surface of the radiation layer must be rough. It is required to have a large surface area.

放射層が基体と強力に密着していれば発熱体から発生し
た熱が放射層に効率よく伝導され、放射エネルギー量が
多くなる。
If the radiation layer is in strong contact with the base, the heat generated from the heating element will be efficiently conducted to the radiation layer, increasing the amount of radiant energy.

またヒータが冷熱サイクル状態で使用されても放射層の
剥離やクラツク等の発生がなく耐久性の優れた遠赤外線
放射素子となる。
Moreover, even when the heater is used in a cold/hot cycle state, the radiation layer does not peel off or crack, resulting in a far-infrared radiation element with excellent durability.

放射層の放射率が1に近ければ対流による熱の損失が少
なくなり、効率の良い遠赤外線放射素子となる。
If the emissivity of the emissive layer is close to 1, heat loss due to convection will be reduced, resulting in an efficient far-infrared radiating element.

遠赤外線は放射層表面から放射されることから表面積が
大きければそれだけ放射エネルギーは多くなる。
Far infrared rays are emitted from the surface of the emissive layer, so the larger the surface area, the more radiant energy.

従来、遠赤外線放射素子の製造法としては、1)金属酸
化物、炭化物、窒化物などの放射物質を基体表面へ溶射
し放射層を形成する方法。
Conventionally, methods for manufacturing far-infrared radiation elements include: 1) a method of thermally spraying a radiation material such as a metal oxide, carbide, or nitride onto the surface of a substrate to form a radiation layer;

2)金属酸化物、炭化物、窒化物などの放射物質を含ん
だ耐熱塗料をスプレーやハケ塗りにより基体表面に塗布
し放射層を形成する方法 3)アルミニウム基体をアルマイト処理によりA I
2 0 3の放射層を10〜40μ形成する方法などが
ある。
2) A method in which a heat-resistant paint containing a radioactive material such as a metal oxide, carbide, or nitride is applied to the surface of the substrate by spraying or brushing to form a radiation layer. 3) Alumite treatment is performed on the aluminum substrate to form an A I
There is a method of forming a 203 radiation layer of 10 to 40 μm.

溶射法により放射層を形或する場合、放射層の表面積は
大きくできるが基体と放射物質との密着性を向上させる
ために基体表面をスチールグリッドやガラスビーズによ
りブラスト処理を施すか、自溶性金属、例えばN i
−C r , N i −A I ,Moなどの金属を
前もって溶射するポンドコートと称する処理あるいはブ
ラスト処理とボンドコート処理を行う必要があり、製造
工程上複雑となり生産性の悪い欠点があった。
When forming a radiation layer by thermal spraying, the surface area of the radiation layer can be increased, but in order to improve the adhesion between the substrate and the radiation material, the surface of the substrate must be blasted with steel grids or glass beads, or self-fusing metal , for example N i
It is necessary to carry out a process called a pound coat, in which metals such as -Cr, Ni-AI, Mo, etc. are thermally sprayed in advance, or a blast process and a bond coat process, which complicates the manufacturing process and has the drawback of poor productivity.

耐熱塗料を塗布してなる放射層は塗料バインダーの耐熱
性を考慮するとせいぜい500℃以下でしか使えず、放
射層表面温度を600〜700℃にして強力な放射エネ
ルギーを出す用途には使えないことおよび放射層表面を
荒らして表面積を大きくできない欠点があった。
Considering the heat resistance of the paint binder, the radiant layer coated with heat-resistant paint can only be used at temperatures below 500°C, and cannot be used in applications where the radiant layer surface temperature is 600 to 700°C and generates strong radiant energy. Another drawback was that the surface area of the emissive layer could not be increased by roughening it.

アルミニウム基体表面をアルマイト処理した放射層の場
合も耐熱的に400℃以下でないと使用できないため高
温用の遠赤外線放射素子としては使えない他に放射層表
面を荒らして表面積を大きくできない欠点があった。
Even in the case of an alumite-treated emissive layer on the surface of an aluminum substrate, it cannot be used unless it is heat resistant to 400°C or lower, so it cannot be used as a far-infrared emitting element for high temperatures, and it also has the disadvantage that the surface of the emissive layer cannot be roughened to increase the surface area. .

本発明は前述のような点を考慮してなされたもので、鋼
の発熱体基体表面にアルミニウムまたはアルミニウム合
金例えばAI−Si系を溶射法によりライニングせしめ
た後高温で加熱し、次いで溶射表面をアルマイト処理し
て放射層を形成することにより、■放射率を向上せしめ
、■基体と放射層の密着性を良好にせしめ、■放射表面
積の大きい遠赤外線放射素子を得ることが可能になる。
The present invention has been made in consideration of the above points, and involves lining the surface of a steel heating element base with aluminum or an aluminum alloy, such as an AI-Si system, by thermal spraying, heating it at a high temperature, and then coating the thermally sprayed surface. By forming the emissive layer through alumite treatment, it is possible to (1) improve the emissivity, (2) improve the adhesion between the substrate and the emissive layer, and (2) obtain a far-infrared radiating element with a large radiation surface area.

以下、本発明の実施例につき図面とともに説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は鋼の発熱体基体1の表面上にアルミニウムまた
はアルミニウム合金2を溶射法により50〜200μの
厚さにライニングせしめ、次いでアルミニウムまたはア
ルミニウム合金2の表面を硫酸または有機酸などにより
10〜30μのアルマイト層3を施したものである。
In Figure 1, aluminum or aluminum alloy 2 is lined with a thickness of 50 to 200 μm on the surface of a steel heating element base 1 by thermal spraying, and then the surface of aluminum or aluminum alloy 2 is coated with sulfuric acid or organic acid for 10 to 200 μm. A 30μ thick alumite layer 3 is applied.

こSで溶射ライニングしたアルミニウムまたはアルミニ
ウム合金2と発熱体基体1の密着性が良好になる理由は
次の現象による。
The reason why the adhesion between the thermal spray-lined aluminum or aluminum alloy 2 and the heating element base 1 is improved by this S is the following phenomenon.

鋼の上にアルミニウムを溶射した後、加熱すると、鋼と
アルミニウムの接合部分で相互拡散を生じ、こ\に鉄ア
ルミの合金層4が形成される。
When aluminum is thermally sprayed onto steel and then heated, mutual diffusion occurs at the joint between the steel and aluminum, and an iron-aluminum alloy layer 4 is formed there.

加熱は大気雰囲気中で約800°01〜2時間保つと合
金層4は50〜80μに達する。
The alloy layer 4 reaches a thickness of 50 to 80 microns when heating is maintained at about 800 DEG for 1 to 2 hours in the air.

従って外部加熱あるいは発熱体の自己加熱により加熱す
れば、溶射ライニング層のアルミニウムは発熱体と強力
な結合を生じ剥離や脱落等の心配がなく、熱伝導も良好
になる。
Therefore, if heated by external heating or self-heating of the heating element, the aluminum of the sprayed lining layer will form a strong bond with the heating element, and there will be no fear of peeling or falling off, and the heat conduction will be good.

加熱はアルマイト層を破壊させないためにもアルマイト
処理前に行うことが好ましい。
It is preferable to perform heating before the alumite treatment in order not to destroy the alumite layer.

溶射ライニング層2に使えるアルミ合金はアルマイト処
理され易く、かつ放射率が0.88〜0.94になるA
I−Si系が適している。
The aluminum alloy that can be used for the thermal spray lining layer 2 is easily alumite-treated and has an emissivity of 0.88 to 0.94 A.
I-Si type is suitable.

アルマイト処理は一般に広く利用されている硫酸または
黒色化できる有機酸で行えば良く、アルマイト層の厚み
は10〜30μが性能および経済性の点から好ましい。
The alumite treatment may be carried out using generally widely used sulfuric acid or an organic acid capable of blackening, and the thickness of the alumite layer is preferably 10 to 30 μm from the viewpoint of performance and economy.

以上のように本発明は溶射法によりアルミニウム金属あ
るいはその合金を鋼の発熱体表面上にライニングせしめ
、そのライニング層を800℃程度の高温で1〜2時間
加熱した後、ライニング層をアルマイト処理することに
より、発熱体基体との密着性が良好で放射率が0.88
〜0.94と大きくかつ放射層表面が荒れていることに
より強力な遠赤外線放射素子を提供することができる。
As described above, the present invention involves lining the surface of a steel heating element with aluminum metal or its alloy by thermal spraying, heating the lining layer at a high temperature of about 800°C for 1 to 2 hours, and then anodizing the lining layer. As a result, the adhesion with the heating element base is good and the emissivity is 0.88.
A strong far-infrared radiation element can be provided by having a large particle diameter of ~0.94 and having a rough surface of the radiation layer.

本発明の方法で得た放射素子と従来例として塗料塗布方
式について第1表に示す試験を行ない、次に2.5〜5
0μの波長領域について赤外分光々度計により放射エネ
ルギーを測定し、その結果から、その時の放射率を計算
し、図で表わすと第2図のようになる。
The tests shown in Table 1 were conducted on the radiating element obtained by the method of the present invention and the paint application method as a conventional example.
The radiant energy in the 0μ wavelength region is measured using an infrared spectrophotometer, and the emissivity at that time is calculated from the results, and the result is shown in FIG. 2.

第2図からもわかるように、冷熱サイクルを繰返すと従
来例は剥離により放射率が初期より著しく低下するが、
本発明例は長時間使用しても初期特性を保持する。
As can be seen from Figure 2, when the cooling and heating cycles are repeated, the emissivity of the conventional example decreases significantly from the initial level due to peeling.
The examples of the present invention retain their initial characteristics even after long-term use.

このことから耐久性の点でも優れた遠赤外線放射素子と
いえる。
For this reason, it can be said that it is a far-infrared radiating element with excellent durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の遠赤外線放射素子の断面図、第2図は
本発明と従来例の放射率特性図である。 1・・・・・・発熱体基体、2・・・・・・アルミニウ
ムまたはその合金、3・・・・・・アルマイト層。
FIG. 1 is a sectional view of a far-infrared radiation element of the present invention, and FIG. 2 is an emissivity characteristic diagram of the present invention and a conventional example. 1... Heating element base, 2... Aluminum or its alloy, 3... Alumite layer.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼の発熱体基体表面に溶射法により、アルミニウム
金属あるいはその合金をライニングせしめた後高温に加
熱処理し、次いで溶射表面にアルマイト処理を施したこ
とを特徴とする遠赤外線放射素子の製造法。
1. A method for manufacturing a far-infrared radiating element, characterized in that the surface of a steel heating element base is lined with aluminum metal or its alloy by a thermal spraying method, then heated to a high temperature, and then the thermally sprayed surface is subjected to an alumite treatment.
JP8992077A 1977-07-26 1977-07-26 Manufacturing method of far-infrared radiating element Expired JPS5836820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8992077A JPS5836820B2 (en) 1977-07-26 1977-07-26 Manufacturing method of far-infrared radiating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8992077A JPS5836820B2 (en) 1977-07-26 1977-07-26 Manufacturing method of far-infrared radiating element

Publications (2)

Publication Number Publication Date
JPS5424330A JPS5424330A (en) 1979-02-23
JPS5836820B2 true JPS5836820B2 (en) 1983-08-11

Family

ID=13984129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8992077A Expired JPS5836820B2 (en) 1977-07-26 1977-07-26 Manufacturing method of far-infrared radiating element

Country Status (1)

Country Link
JP (1) JPS5836820B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840415A (en) * 1981-09-01 1983-03-09 Matsushita Electric Ind Co Ltd Burner
JPS5862437A (en) * 1981-10-09 1983-04-13 Matsushita Electric Ind Co Ltd Infrared-ray radiant composite body
JPS59163808U (en) * 1983-04-19 1984-11-02 株式会社コロナ Flame tube of combustion device
JPS6077910U (en) * 1983-11-02 1985-05-31 トヨクニ株式会社 heating equipment
JPS60207817A (en) * 1984-03-30 1985-10-19 Matsushita Electric Ind Co Ltd Liquid fuel burner
JP5835241B2 (en) * 2013-01-29 2015-12-24 トヨタ自動車株式会社 Thermal radiation member and method of manufacturing thermal radiation member
WO2020203761A1 (en) * 2019-03-29 2020-10-08 キヤノン株式会社 Light-absorbing/heat-insulating film, light-absorbing/heat-insulating member, article, and manufacturing methods therefor

Also Published As

Publication number Publication date
JPS5424330A (en) 1979-02-23

Similar Documents

Publication Publication Date Title
US2939807A (en) Method of making a heating panel
CA1224838A (en) Incandescent tungsten-halogen gas-filled infrared lamps
JPS5836820B2 (en) Manufacturing method of far-infrared radiating element
JPH05196507A (en) Optical fiber temperature sensor
AU2017364934B2 (en) A cavity having an enamel coating, a cooking appliance comprising such a cavity and a method for manufacturing such a cavity
JPH01201457A (en) Method for providing thermal black surface to metal constitutional member
JPH03125935A (en) Thermopile
JPS5856236B2 (en) Manufacturing method of far-infrared radiating element
JPS5836821B2 (en) far infrared radiation device
JP2712478B2 (en) Far infrared heater and method of manufacturing the same
GB2111861A (en) Improvements in methods of coating surfaces to render them abrasion resistant
JPH0155380B2 (en)
JPH02155185A (en) Far infrared radiating member
JP2778650B2 (en) Far-infrared radiation material
JP2819646B2 (en) Far infrared halogen heater
JP2623824B2 (en) Aluminum cast heater and method of manufacturing the same
JPS59103212A (en) Method of producing insulated wire
CN102231922A (en) Far-infrared radiation heater
JPH0384392A (en) Production of far infrared ray radiator
JPS5862437A (en) Infrared-ray radiant composite body
JPS5911434Y2 (en) infrared radiant heat plate
JPS62197186A (en) Method for coating base
JPH0363192B2 (en)
JPH01144586A (en) Far infrared ray heater
JPS609867A (en) Formation of sprayed film