JPS5868869A - Nonaqueous battery - Google Patents

Nonaqueous battery

Info

Publication number
JPS5868869A
JPS5868869A JP56168453A JP16845381A JPS5868869A JP S5868869 A JPS5868869 A JP S5868869A JP 56168453 A JP56168453 A JP 56168453A JP 16845381 A JP16845381 A JP 16845381A JP S5868869 A JPS5868869 A JP S5868869A
Authority
JP
Japan
Prior art keywords
discharge
positive electrode
lithium
cupric oxide
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56168453A
Other languages
Japanese (ja)
Other versions
JPH0345862B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Toshihiko Saito
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP56168453A priority Critical patent/JPS5868869A/en
Publication of JPS5868869A publication Critical patent/JPS5868869A/en
Publication of JPH0345862B2 publication Critical patent/JPH0345862B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve a voltage drop in the initial stage of discharge after storage without decreasing flat discharge voltage (operating voltage) by mixing a metal compound which is rechargeable with lithium in a nonaqueous electrolyte positive electrode. CONSTITUTION:In a nonaqueous battery using lithium as a negative active mass and cupric oxide as a positive active mass, a metal compound, such as vanadium pentaoxide, titanium disulfide, molybdenum trioxide, which is rechargeable with lithium in a nonaqueous electrolyte is allowed to coexist in a positive electrode. Vanadium oxide or titanium sulfide is discharged preferentially to cupric dioxide in predischarge after assembling, and a discharge product indicating as LixV2O5 and LiyTiS2 respectively is formed in the positive electrode. Since these discharge products have less noble potential than that of cupric oxide, the closed circuit voltage of the battery mixed with these metal compound is lowered compared with that of the positive electrode using cupric oxide alone, and since dissolution of copper is suppressed, a voltage drop in the initial stage of discharge after storage is improved.

Description

【発明の詳細な説明】 本発明はリチウムを負極活物質とし、酸化第二銅を正極
活物質とする非水電解液電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nonaqueous electrolyte battery that uses lithium as a negative electrode active material and cupric oxide as a positive electrode active material.

( 酸化第二銅は活物質としての容量が極め、て大きい且比
較的安価で資源的1こも豊富であるので非水電解液電池
の正極材として注目されている。特に酸化第二銅−リチ
ウム系の非水電解液電池の作動電圧は約1.6v程度で
あるので、電子機器の電源に汎用されている酸化銀電池
や水銀型111!と【1−快便用しうる利点がある。
(Cupric oxide has an extremely large capacity as an active material, is relatively cheap, and is an abundant resource, so it is attracting attention as a positive electrode material for non-aqueous electrolyte batteries. In particular, cupric oxide-lithium Since the operating voltage of the nonaqueous electrolyte battery in the system is about 1.6 V, it has the advantage of being easily compatible with silver oxide batteries and mercury type 111!, which are commonly used as power sources for electronic devices.

一方、欠点としては保存後の放電初期電圧に急激な落込
み現象が認められることである。(第1図イ参照〕。
On the other hand, a drawback is that a sudden drop in the initial discharge voltage after storage is observed. (See Figure 1 A).

この原因は非水電解液中1こおけるC u o/L i
の平衡電位は2.32 Vであるが、実際1こは6.2
v程度の開路電圧を示す。そのため1こ正極(酸化第2
銅)中の銅が電位的に溶解してリチウム極表1h1に金
属銅として析出し不働態皮膜を生成することが主たる要
因と考えられる。但し、この不働態皮膜は放電に一つれ
破壊されるため、長期保存後の放電においては放電が進
めば作動電位に復帰する。
The cause of this is Cu o/L i in one column in the nonaqueous electrolyte.
The equilibrium potential of is 2.32 V, but actually one is 6.2 V.
It shows an open circuit voltage of about V. Therefore, one positive electrode (oxidized second
The main factor is considered to be that the copper in the copper (copper) is dissolved electrically and deposited as metallic copper on the lithium electrode surface 1h1 to form a passive film. However, since this passive film is destroyed by discharge, it returns to the operating potential as the discharge progresses after long-term storage.

このような保存後における放電初期電圧の落込現象を改
善するfこめに、例えば亜鉛、錫の如き酸化第二銅より
卑な電位を有する金属或いはその化合物を正極中1こ混
在させて開路電圧を低下させるという提案がある。この
方法1こよると保存後における放電初期電圧の落込現象
を抑制しつるが、放電平坦電圧(作動電圧ンが若干低下
することが解つた(第1図口参照)。
In order to improve the drop in the initial discharge voltage after storage, a metal or a compound thereof having a potential lower than cupric oxide, such as zinc or tin, is mixed in the positive electrode to increase the open circuit voltage. There are proposals to lower it. Although method 1 suppressed the drop in the initial discharge voltage after storage, it was found that the discharge flat voltage (operating voltage) decreased slightly (see Figure 1).

この理由は添加した金属化合物と、正極活物質である酸
化第二銅との間1こ局部電池が形成され、金属化合物の
金属イオンが溶解し、負極表面に析出して内部抵抗が高
められるためと考えられる。
The reason for this is that a local battery is formed between the added metal compound and cupric oxide, which is the positive electrode active material, and the metal ions in the metal compound dissolve and precipitate on the negative electrode surface, increasing the internal resistance. it is conceivable that.

本発明は上記問題点を解消すべ(tlされたものであり
、その要旨とするところは正fL!l!IC非水系電解
液中においてリチウムと充放電反応可能である金属化合
物、例えば五酸化バナジウム、二硫化チタン、三酸化モ
リブデンrlどを混在させる点1こある。
The present invention is intended to solve the above-mentioned problems, and its gist is to use a metal compound, such as vanadium pentoxide, which can undergo a charge/discharge reaction with lithium in a positive fL!l!IC non-aqueous electrolyte. There is one point in mixing titanium disulfide, molybdenum trioxide, etc.

以下本発明の実施例1こついて詳述する。Embodiment 1 of the present invention will be described in detail below.

実施例1 市販特級の酸化第二銅粉末IC五酸化バナジウム(V2
05Jを10重量%加えて混合し、この混合粉末0.2
5 gを秤量して直径10.8■の集電リング内に圧力
3トン/jの圧力で加圧成型した後、850℃で焼成し
て正極とする。
Example 1 Commercially available special grade cupric oxide powder IC vanadium pentoxide (V2
Add 10% by weight of 05J and mix to obtain 0.2% of this mixed powder.
5 g was weighed and molded under pressure at a pressure of 3 tons/j into a current collector ring with a diameter of 10.8 square meters, and then fired at 850° C. to form a positive electrode.

負極は所定厚みのリチウム圧延板を直径8.6M1こ打
抜いたものを用い、又電解液はプロピレン力に1モル濃
度の過塩酸リチウムを溶解したものを用いた。セパレー
タはポリプロピレン不4a布Qあり電池如寸法は直径1
1.5m、1φみ3,4朋で理論容置は150 mAH
であつfこ。
The negative electrode used was a lithium rolled plate with a predetermined thickness punched out with a diameter of 8.6 M1, and the electrolyte was prepared by dissolving 1 molar concentration of lithium perchlorate in propylene. The separator is polypropylene non-4a cloth Q, and the battery size is 1 in diameter.
Theoretical capacity is 150 mAH with 1.5 m and 1φ diameter 3.4 mm.
Atsufko.

そして電池組立?々、1にΩ“C5時111目’ b1
M放電を行すって完成電池IAIとした。
And battery assembly? , 1 to Ω “C5 o’clock 111th” b1
M discharge was performed to obtain a completed battery IAI.

実施例2 市販特級の酸化第二銅粉末1こ二硫化チタン(rIS2
Jを15重1%加えて混合し、この混合粉末0゜25g
を秤量しご直径1[]、8−#の1朴゛市リング内1こ
圧力6トン/ clrの圧力で加圧成型したrb、15
゜1−Cで乾燥処理して正極とする。
Example 2 Commercially available special grade cupric oxide powder 1 titanium disulfide (rIS2
Add 15% J by weight and mix, and make 0.25g of this mixed powder.
RB, 15, which was pressure molded at a pressure of 6 tons/clr in one block ring with a diameter of 1 [], 8-#.
A positive electrode is prepared by drying at 1-C.

以下実施例1と同様1こ電/11!を組立て、IKΩで
予備放電を行t1つて充放電i’ll!1B+とした。
Hereinafter, as in Example 1, 1 electric train/11! Assemble and perform preliminary discharge with IKΩ and charge/discharge i'll! It was set as 1B+.

実施例3 市販特級の三酸化モリブデン(MOOJ b Ogを、
n−ブチルリチウム15%へキサン溶液1eの溶液中1
こ徐々1こ加えてLizMoOAを調整し、口過、洗浄
、乾燥しで得たこの粉末を予じめ850℃で熱処理済み
の酸化第二銅粉末に対しr15重駄%加えて混合し、こ
の混合粉末を直径10.8Wの集電リングビ11こ圧力
6トン/ alの圧力で加圧成型した後、150℃で乾
燥処理して正極とする。
Example 3 Commercially available special grade molybdenum trioxide (MOOJ b Og)
n-butyl lithium in a solution of 15% hexane solution 1e
LizMoOA was adjusted by gradually adding 1 part of this powder, and this powder obtained by mouth filtration, washing, and drying was added to cupric oxide powder that had been heat-treated at 850°C in advance and mixed with 15% r. The mixed powder was pressure-molded using a current collector ring 11 with a diameter of 10.8 W at a pressure of 6 tons/al, and then dried at 150° C. to form a positive electrode.

以下実施例1と同様IC電池を組立で完成゛電池tcl
とする。但し本実施例では上池組立時点で三酸化モリブ
デンとリチウムとの放電生成物の形態で正極lこ混在さ
れているため予備放電を行う必要はない。
The IC battery is assembled and completed in the same manner as in Example 1.
shall be. However, in this embodiment, since the positive electrode is mixed in the form of a discharge product of molybdenum trioxide and lithium at the time of assembling the upper cell, there is no need to perform preliminary discharge.

下表は電池組立後、60°Cで1ケ月保存したのちの用
期値を示し、開路電圧が抑えられ且閉路奄圧、内部抵抗
1こ顕著tl改菩が認められる。
The table below shows the expiry value after storing the battery at 60°C for one month after assembly, and it can be seen that the open circuit voltage has been suppressed, and the closed circuit voltage and internal resistance have significantly improved by 1.

表 又、第1図は電池組立後、60℃C1ケ月保存したのち
の各種゛電池の1にΩ負荷1こおける放電特性を示し、
放電初期重圧の落込み現象の改良と共番こ作動′電圧が
低下し1jいことがわかる。
The table and Figure 1 show the discharge characteristics of various types of batteries with one Ω load placed on them after battery assembly and storage at 60°C for one month.
It can be seen that the phenomenon of drop in the initial discharge pressure is improved and the operating voltage is reduced by 1j.

尚、比較電池(イ)は亜鉛、錫の如き酸化第二銅より卑
な電位を有する金属或いはその化合物を混在した正極を
用いた電油、又比較Tli 7111!iロ1は添加剤
1(しの酸化第二銅正極を月(いた電池である。
The comparative battery (A) is an electric oil using a positive electrode containing a metal having a potential lower than cupric oxide, such as zinc or tin, or a compound thereof, and a comparative Tli 7111! Iro 1 is a battery containing a cupric oxide positive electrode with additive 1.

本発明の効果を考察する1こ、゛電池IAIt131に
おいて電池組立後の予備放電により酸化バナジウム或い
は硫化チタンが酸化第二銅より優先的に放niされ夫々
LixVzOs 、 LiyTiSz で表わされる放
電生成物が正極中に形成される。又電池(0口こおいC
は゛重油組立時点で二酸化モリブデンとリチウムの放電
生成物CあるLizMoOAが正極中に混在されている
Considering the effects of the present invention 1. In the battery IAIt131, vanadium oxide or titanium sulfide is released preferentially over cupric oxide due to preliminary discharge after battery assembly, and the discharge products represented by LixVzOs and LiyTiSz, respectively, become the positive electrode. formed inside. Also, batteries (0 burns)
At the time of assembling heavy oil, molybdenum dioxide and lithium discharge product C, LizMoOA, is mixed in the positive electrode.

そして、これらの放電生成物は酸化第二銅よりq−rl
電位を有するものであるため、酸化第二銅を単独で用い
た正極の場合に比して1M 2+1!の開路電圧を下げ
ることができ、銅の溶解が抑制されるので保存後の放電
初期゛電圧の落込み現象を改産しうるものである。
And these discharge products are qrl than cupric oxide.
Since it has a potential, it is 1M 2 + 1! compared to the case of a positive electrode using cupric oxide alone. Since the open circuit voltage of the battery can be lowered and the dissolution of copper can be suppressed, the phenomenon of drop in voltage at the initial stage of discharge after storage can be improved.

又、11:、極中に混在する削記放電生成物(LixV
2O5、Liy’l’iSz 、 LizMoOg )
  と酸化第二銅との間に局部電池が形成されて、放電
生成物からリチウムイオンが放出されるが、比較電池(
イ)Iこおける亜鉛や錫のよう1j金属イオンの場合と
は異なり負極上に析出しても不働態膜とはl工らγjい
ため作動電圧を低下させると云った不都合を生じないも
のである。
In addition, 11:, abrasion discharge products mixed in the pole (LixV
2O5, Liy'l'iSz, LizMoOg)
A local cell is formed between the and cupric oxide and lithium ions are released from the discharge products, whereas the comparative cell (
b) Unlike the case of 1j metal ions such as zinc and tin in I, even if they are deposited on the negative electrode, they do not form a passive film and do not cause the inconvenience of lowering the operating voltage. .

面、リチウムと充放電反応可能tj金属化合物の添加量
としては、長縁1こ混入すると放電電圧曲線が二段に1
jる懸念かあるため酸化第二銅活物質に対しC10〜1
5重量%程度が適切である。
As for the amount of addition of TJ metal compound capable of charge/discharge reaction with lithium, if one long edge is mixed, the discharge voltage curve will change to two stages.
C10-1 for cupric oxide active materials as there is a concern that
Approximately 5% by weight is appropriate.

以」二詳述したよう1こ、本発明はリチウムを負極活物
質とし、酸化第二銅を正極活@質とする非水電解液電池
1こ関するものであって、正極に非水電解液中1こおい
てリチウムと充放電反応可能rl金属化合物を混在せし
めること1こより、放電平坦電圧(作動電圧)を低下さ
せることISり、保存後1こおける放電初期電圧の落込
現象を改善するものでありその工業的価値は極めて大で
ある。
As described in detail below, the present invention relates to a nonaqueous electrolyte battery 1 in which lithium is used as a negative electrode active material and cupric oxide is used as a positive electrode active material. By mixing lithium and a RL metal compound capable of charge/discharge reaction in the first stage of storage, the discharge flat voltage (operating voltage) is lowered, and the phenomenon of drop in the initial discharge voltage after storage is improved. Therefore, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電池と比較電池との60”Cで1j月保
存した後の放電特性比較図である。 fAJ fBI (CI・・・本発明電池、(イl を
口1・・・比較電池。
Fig. 1 is a comparison diagram of the discharge characteristics of the battery of the present invention and the comparative battery after storage for 1 month at 60"C. battery.

Claims (1)

【特許請求の範囲】 ■ リチウムを活物質とする負極と、非水系の電解液と
、酸化第二銅を活物質とする正極とを備えるものであつ
C1前記正極に非水電解液中1こおいてリチウムと充放
電反応可能な金属化合物を、混在せしめてrlる非水電
解液電池。 ■ 前記金属化合物か酸化バナジウム、硫化チタン或い
は酸化モリブデンであることを特徴とする特許請求の範
囲第0項記載の非水電解液電池。
[Claims] ■ A negative electrode containing lithium as an active material, a non-aqueous electrolyte, and a positive electrode containing cupric oxide as an active material; A non-aqueous electrolyte battery in which lithium and a metal compound capable of charging and discharging reactions are mixed together. (2) The nonaqueous electrolyte battery according to claim 0, wherein the metal compound is vanadium oxide, titanium sulfide, or molybdenum oxide.
JP56168453A 1981-10-20 1981-10-20 Nonaqueous battery Granted JPS5868869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56168453A JPS5868869A (en) 1981-10-20 1981-10-20 Nonaqueous battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56168453A JPS5868869A (en) 1981-10-20 1981-10-20 Nonaqueous battery

Publications (2)

Publication Number Publication Date
JPS5868869A true JPS5868869A (en) 1983-04-23
JPH0345862B2 JPH0345862B2 (en) 1991-07-12

Family

ID=15868382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56168453A Granted JPS5868869A (en) 1981-10-20 1981-10-20 Nonaqueous battery

Country Status (1)

Country Link
JP (1) JPS5868869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137563A (en) * 1987-11-24 1989-05-30 Japan Storage Battery Co Ltd Manufacture of lithium secondary cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101653453B1 (en) * 2014-11-03 2016-09-09 현대모비스 주식회사 Cooling system for cooling both sides of power semiconductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512621A (en) * 1978-07-11 1980-01-29 Sanyo Electric Co Ltd Non-aqueous electrolyte cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512621A (en) * 1978-07-11 1980-01-29 Sanyo Electric Co Ltd Non-aqueous electrolyte cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137563A (en) * 1987-11-24 1989-05-30 Japan Storage Battery Co Ltd Manufacture of lithium secondary cell

Also Published As

Publication number Publication date
JPH0345862B2 (en) 1991-07-12

Similar Documents

Publication Publication Date Title
JPS61208750A (en) Lithium organic secondary battery
JPH10294104A (en) Manufacture of electrode of lithium secondary battery
JPS5868869A (en) Nonaqueous battery
JPS6259412B2 (en)
JPS58137975A (en) Nonaqueous electrolyte secondary battery
JPS6155738B2 (en)
JPH01163969A (en) Nonaqueous electrolyte battery
JPS6012665A (en) Reversible copper electrode
JPS6226763A (en) Nonaqueous electrolyte battery
JPS6215767A (en) Organic electrolyte battery
JPS62290069A (en) Organic electrolyte secondary battery
JPH03152874A (en) Nonaqueous electrolytic battery
JPS62256368A (en) Lithium-manganse dioxide secondary battery
JPS63175337A (en) Nonaqueous electrolyte battery
JPS6089067A (en) Nonaqueous electrolyte secondary battery
JPH03252052A (en) Battery
JPS6014759A (en) Nonaqueous electrolyte cell
JPH0265056A (en) Nonaqueous secondary battery
JPS59866A (en) Organic electrolyte secondary cell
JPS5987779A (en) Nonaqueous electrolyte secondary battery
JPH0461750A (en) Secondary battery with non-aqueous solvent
JPS5978452A (en) Alkaline battery
JPS63143761A (en) Nonaqueous electrolyte secondary battery
JPS6331899B2 (en)
JPS60246562A (en) Organic electrolyte cell