JPS5867958A - Intake device of engine - Google Patents

Intake device of engine

Info

Publication number
JPS5867958A
JPS5867958A JP56164131A JP16413181A JPS5867958A JP S5867958 A JPS5867958 A JP S5867958A JP 56164131 A JP56164131 A JP 56164131A JP 16413181 A JP16413181 A JP 16413181A JP S5867958 A JPS5867958 A JP S5867958A
Authority
JP
Japan
Prior art keywords
pipe
length
air
engine
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56164131A
Other languages
Japanese (ja)
Inventor
Teruo Yamauchi
山内 照夫
Takashige Ooyama
宜茂 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56164131A priority Critical patent/JPS5867958A/en
Publication of JPS5867958A publication Critical patent/JPS5867958A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0231Movable ducts, walls or the like
    • F02B27/0236Movable ducts, walls or the like with continuously variable adjustment of a length or width
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0278Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0284Rotary slide valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0294Actuators or controllers therefor; Diagnosis; Calibration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To always maintain output power of an engine to a maximum level in accordance with its operational condition, by changing length of an air introducing pipe in accordance with a revolving speed and improving intake efficiency with simple constitution. CONSTITUTION:An air introducing pipe 10 in the upstream side of a throttle valve (not shown in the drawing) is constituted in a pipe length-changeable state correspondingly inverse proportion to an engine revolving speed, in such a manner that a pipe length is decreased in a high engine speed operational range while increased in a low engine speed operational range through branch pipes 11-13. In the low speed range, air is introduced through the first branch pipe 11 of passage in the largest length to hold volumetric efficiency to a high condition. Then from under this condition, if the revolving speed is further increased, a check switch 28 is opened to actuate a damper 16 in such a manner as to switch the air introducing line to the second branch pipe 12. Accordingly, decrease of volumetric efficiency in accordance with cylinder vibration in the vicinity of a throttle valve full opening position is prevented by decrease of a length of the air introducing line, further the length is set in such a manner as to obtain maximum volumetric efficiency, and output power can be improved.

Description

【発明の詳細な説明】 本発明はエンジンの吸気装置に係り、特にエンジンの出
力同上に好嫌な吸気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake system for an engine, and more particularly to an intake system that is favorable or unfavorable to engine output.

従来のエンジン吸気系を電子燃料噴射方式のものについ
て第1図に示す。この図に示されるように、従来の吸気
装置では、エアクリーナエから空気導入管2内に空気を
導入し、絞り弁3にて空気量を制御しつつ吸気管4に導
入している。吸気管4では、燃料噴射弁5から燃料を噴
射させて混合気となし、これをエンジン6に供給させる
ものである。この場合、空気導入管2ば、主に気筒容積
に応じて充分空気を供給できる一定の大きさとされ、ま
た、エンジンルームの大きざによって檀々の形状に犬定
さ扛ている。
FIG. 1 shows a conventional engine intake system using an electronic fuel injection system. As shown in this figure, in the conventional intake system, air is introduced into an air introduction pipe 2 from an air cleaner, and is introduced into an intake pipe 4 while controlling the amount of air with a throttle valve 3. In the intake pipe 4, fuel is injected from the fuel injection valve 5 to form an air-fuel mixture, which is then supplied to the engine 6. In this case, the air introduction pipe 2 has a certain size that can supply sufficient air mainly depending on the cylinder volume, and has a certain shape depending on the size of the engine room.

ところで、エンジンの出力を向上させるためには、吸入
効率を高めることが重要である。斯かることから、通常
、第2図に示さnるように、排気弁と吸入弁とは上死点
をはさんで両刀が開かれるように設定され、吸気の流入
する勢いを利用して、残焔排気ガスを積極的に帰気させ
ている。
By the way, in order to improve the output of the engine, it is important to increase the intake efficiency. For this reason, normally, as shown in Figure 2, the exhaust valve and the intake valve are set so that their two swords are opened across the top dead center, and the force of the inflow of intake air is used to The residual flame exhaust gas is actively returned.

しかしながら、吸゛気系の絞り升3全開付近での弁上流
側の空気導入管2内の圧力は、第3図の如く、気柱振動
により変動し、圧力が負の域(斜線部)では圧力勾配が
逆転するため、エンジン側から空気が逆流して吸入効率
を低ドさせてしまう問題がめる。この現象は第2図のパ
ルプオーバラップ時に生じ易り、シたがって、負圧域の
存在により空気吸入が阻害され、出力の低下を生じてい
る。
However, the pressure in the air introduction pipe 2 on the upstream side of the valve near the fully open throttle box 3 of the intake system fluctuates due to air column vibration, as shown in Figure 3, and in the negative pressure region (shaded area). Because the pressure gradient is reversed, air flows backwards from the engine side, causing a problem that reduces suction efficiency. This phenomenon tends to occur when the pulp overlaps as shown in FIG. 2, and therefore air intake is inhibited by the presence of a negative pressure region, resulting in a decrease in output.

このようなことから、近年では、ターボチャージャの採
用により、プ虫制的に空気供給を行わせ0ようにしてい
るが、新たな装置を付加することVCなり、構造の複雑
化や重量層2Jl]などの不利益が太さい。
For this reason, in recent years, turbochargers have been adopted to systematically supply air, but adding new equipment requires VC, complicating the structure, and increasing the weight of the 2Jl ] and other disadvantages are significant.

本発明は上記従来の問題点に着目し、ターボチャージャ
の如き装置の付71111など勿要することなく、簡易
な構成により、吸入効率を向上させてエンジンの出力を
運転状況に応じて常に最大に維持することがでさるよう
に改良したエンジンの吸気装置を提供することを目的と
する。
The present invention focuses on the above-mentioned conventional problems, and uses a simple configuration to improve intake efficiency and always maintain maximum engine output according to operating conditions without the need for a device such as a turbocharger. The purpose of the present invention is to provide an improved engine intake system that allows the engine to perform the following functions.

本発明は、導入空気の気柱振動に伴う圧力変動において
、シリンダ側圧力より空気導入管側の圧力が低くなるよ
うな負圧の域をなくすことがでされば、吸入空気が最大
して体積効率が向上し、もりて出力向上につながるとい
うことに立脚したものでめるみすなわち、瓜の、戒をな
くすために、続り弁上流側の空気導入管受が影響するこ
とに鑑み、尋人管長を撞々変えて、エンジン回転数N(
r、 p、m)に対するシリンダに吸入さ扛る空気の体
積効率(%)r求めた結果(第4.A)に基づくもので
ある。この5g4図から理解できるように、空気導入管
受L= 100rraQ時はエンジン回転数が高い領域
で極大111Aを有し、順次長さL全反比例的に犬きく
すると(L=50On+m、L=800mm)、この、
ネ犬点B、Cは回転数の低い方に移行する傾向を示す。
The present invention aims at eliminating the negative pressure region where the pressure on the air introduction pipe side is lower than the pressure on the cylinder side in pressure fluctuations due to air column vibration of the introduced air. This is based on the idea that it improves efficiency, which in turn leads to an increase in output. By constantly changing the pipe length, the engine speed N (
This is based on the results of determining the volumetric efficiency (%) r of the air sucked into the cylinder with respect to r, p, m) (Section 4.A). As can be understood from this 5g4 diagram, when the air introduction pipe support L = 100rraQ, it has a maximum of 111A in the region where the engine speed is high, and if the length L is gradually increased inversely proportionally (L = 50On + m, L = 800mm) ),this,
Points B and C show a tendency to shift toward lower rotational speeds.

しだがって、空気導入管長を回転故に対し反比例的に変
更可能にすると、いずれの回転数においても常に体積効
率を匝犬値に維゛rることかできる。このことは、第5
図に空気導入管の長さL = 200 rrs、L =
 500 、runの時のエンシフ 4+ll出力を、
体積効率が常に極太となる包絡線に対応して空気導入管
受を変更させた時のエンジン軸出力と比較して示したこ
とからも理解でさる。
Therefore, if the length of the air introduction pipe can be changed in inverse proportion to the rotational speed, the volumetric efficiency can always be maintained at a constant value at any rotational speed. This is the fifth
In the figure, the length of the air introduction pipe L = 200 rrs, L =
500, Ensif 4+ll output when running,
This is understandable from the comparison shown with the engine shaft output when changing the air intake pipe holder to correspond to the envelope curve where the volumetric efficiency is always extremely thick.

このようなことから、本発明に糸るエンジンの吸気装置
は、絞り弁上流側の空気導入・a金工/ジン回転数の高
い運転領域では長さが逗くなるようにし、エンジン回転
数の低いJA転領域ですま長さが艮くなるようにして、
回転数に対し反比例的に対応させて管長を変更できるよ
うに形成したものである。斯かる構成により、シリンダ
における体積効率が濱に最大となるようにして、最大出
力を維持するようにした。
For this reason, the engine intake system according to the present invention is designed to have a length that is adequate in the operating range where air is introduced upstream of the throttle valve and where the engine speed is high, and when the engine speed is low. In the JA transfer area, make the length short,
It is designed so that the pipe length can be changed in inverse proportion to the rotational speed. With this configuration, the volumetric efficiency in the cylinder is maximized to maintain maximum output.

以下に、本発明の実施例を図面を参照して詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第6図に本発明の第1実施列に光るエンジンの吸気装置
の要部断面図を示す。この図に示されるように、当該吸
気装置はエアクリーナ171・ら叙り弁に空気を導く空
気導入管10を長さの異なる3橿の分岐管11,12.
13により構成し、空λtがいずれ刀\の分波管11〜
13を通流するように形成されている。すなわち、空気
導入管10は、絞り弁開の基端部14にて、最愛の第1
分岐管11と最短の5g3分岐肯13に分岐され、それ
ら両分肢管11,13はそれぞれエアクリーナ1に1期
口している。また、渠1分岐官11はその途中にて第2
分岐管12を分岐させ、この第2分肢管12もエアクリ
ーナlに開口するように形成されている。これら41.
第3分岐管11.13の分岐部と、第1.第2分岐管1
1.12の分岐部とには、それぞれ切替ダンパ15,1
6が設けられている。このダンパ15,16は5.第2
分肢管12 アクリーナ1からの空気を第1分岐管11のみを通して
導入し、一方のダンパ16の切替操作で第2分岐1it
12a−Aし、他方のダンパ15により第3分岐管13
を通すように、流入路の切替−をなすものである。
FIG. 6 shows a sectional view of essential parts of an engine intake system according to the first embodiment of the present invention. As shown in this figure, the air intake device includes an air intake pipe 10 that guides air to an air cleaner 171 and a valve, and three branch pipes 11, 12, and 10 of different lengths.
13, and the sky λt will eventually become the sword's branching tube 11~
13 is formed to flow therethrough. That is, the air introduction pipe 10 is connected to the first valve at the proximal end 14 when the throttle valve is open.
It is branched into a branch pipe 11 and the shortest 5g3 branch pipe 13, and both of these branch pipes 11 and 13 are each connected to the air cleaner 1 once. In addition, the culvert 1 branch officer 11 is located at the 2nd branch on the way.
The branch pipe 12 is branched, and the second branch pipe 12 is also formed to open into the air cleaner l. These 41.
The branch part of the third branch pipe 11.13, and the branch part of the first branch pipe 11.13. Second branch pipe 1
Switching dampers 15 and 1 are installed at the branch portions 1 and 12, respectively.
6 is provided. These dampers 15 and 16 are 5. Second
Branch pipe 12 Air from the Aculina 1 is introduced only through the first branch pipe 11, and by switching one damper 16, the air is introduced into the second branch 1it.
12a-A, and the third branch pipe 13 by the other damper 15.
The inflow path is switched so that the inflow passage passes through the inlet.

これら第1〜第3分岐管11〜13により形成される免
気導入路長さ、すなわち、エアクリーナ1から絞り弁に
至る長さはloz〜1m程匿に振り分けられて選択され
ている。この長さは、エンジンの排気量、パルプオーバ
ラップ量、吸気骨形状などによって左右されるが、体積
効率が各輝転域で極大となるような長さにlへ定すれば
よい。実流側では、第1分岐管11の導入路長さを80
0閣、第2.第3分分岐管2.13のそれを400g、
100mmに遠足している。そして、エンジ/の低回転
域では第1分、枝管11を、中回転域では第2分岐管1
2を、高回転域では第2分岐管12を介して空気が導入
されるようにダンパ15゜16によって切替え、全運転
域をカバーするようにしている。
The length of the air relief introduction path formed by these first to third branch pipes 11 to 13, that is, the length from the air cleaner 1 to the throttle valve, is selected in a discrete manner of 1 m to 1 m. This length depends on the engine displacement, the amount of pulp overlap, the shape of the intake bone, etc., but may be set to a length l such that the volumetric efficiency is maximized in each bright transition region. On the actual flow side, the length of the introduction path of the first branch pipe 11 is set to 80
0 Cabinet, 2nd. 400g of that of the third branch pipe 2.13,
Excursion to 100mm. Then, in the low rotation range of the engine, the first branch pipe 11 is connected, and in the middle rotation range, the second branch pipe 1 is connected.
2 is switched by dampers 15 and 16 so that air is introduced through the second branch pipe 12 in the high rotation range, thereby covering the entire operating range.

ところで、空気導入i!1mの切替えをなすためしこ谷
ダンパ15,16に1よそl’Lぞノ%ダイヤフラノ、
装置17.18が接、l洸されている。これらタ゛イヤ
ノラム装置17.18は、ダンパ15,16を作用させ
るためのロッド19,20がダイヤフラノ、21.22
に取付けられ、ダイヤフラム21゜22はスプリング2
3.24を介在させだ貝圧室25.26における作用力
によって駆動されるものである。また、これらダイヤフ
ラム装ml 7゜18には、チェックスイッチ27.2
8を介表した、妾続管29,30が負圧室、、25.2
6に連+lilさn%接続管29.30は空気導入R1
0のベンチュリ部(図示せず)に開口さぜゐ。+ijJ
記チェックスイッチ27.28ば同)求に174成さt
”s一方のチェックスイッチ27について第7図に示す
。すなイっち、チェックスイッチ27 r、f、ir父
り升が全(刑でりることを検出するもので、ケース31
内に辿路避析可能なス上ツブバルブ32を配し、直圧吸
引力によってこのパルプ32全開動作させるスプリング
33 k装置している。2箇所のチェックスイッチ27
.28では、スプリング33のばね定数が異なってお9
、エンジンの・回転域に応じた分岐連路が選択さ扛るよ
うに負圧ff:谷ダイヤフラム装置17.18に導入町
1ヒならしめている。
By the way, air introduction i! Shikotani damper 15, 16 to make 1m switching, 1 l'L zono% diamond flannel,
Devices 17 and 18 are connected and operated. These tire ram devices 17, 18 have rods 19, 20 for actuating dampers 15, 16 that are diaphragms, 21, 22
The diaphragm 21°22 is attached to the spring 2
3.24 and is driven by the acting force in the shell pressure chamber 25.26. Also, these diaphragm mounting ml 7゜18 has a check switch 27.2.
8, the connecting pipes 29 and 30 are negative pressure chambers, 25.2
6 + lil n% connecting pipe 29.30 is air introduction R1
Open in the venturi section (not shown) of 0. +ijJ
If the check switch 27.28) is set to 174
Figure 7 shows one check switch 27.It detects that the check switches 27, r, f, and ir are complete (case 31).
A suction valve 32 that can be evacuated through the passageway is disposed inside the pulp valve 32, and a spring 33k device is used to fully open the pulp 32 by direct pressure suction force. Two check switches 27
.. 28, the spring constant of the spring 33 is different and 9
Negative pressure ff: is introduced into the valley diaphragm device 17 and 18 so that a branch passage corresponding to the rotational range of the engine is selected.

このように構成された第1央弛夕1]に係るエンジンの
吸気装置では、低回転域では最も通路長をの艮い、ig
t分岐管11を介して空気が導入され、体積効率が高い
伏悪に昧待される。この状悪から1改り升を全開付近に
して回転数をM大されると、空気導入路を第2分岐管1
2に切替えるように、チェックスイッチ28が開放され
てダンパi6v作動される。したがって、絞り弁全開付
近での気柱低Aに汗なう1本積効率の低下が、空気導入
路長さの短尺比によって防止され、しかもその民さは体
積効率が最大となるべく設定さnているので、出力が同
上する。開成に、史に回転数が導入するとダンパ15が
作動して、空気導入路長さが最も履くなり、高回転時に
おける出力向トが図れるものである。
In the engine intake system according to the first central air intake system configured in this way, the passage length is the longest in the low rotation range, and the
Air is introduced through the T-branch pipe 11 and is kept in a vacuum chamber with high volumetric efficiency. Due to this bad condition, if the rotation speed is increased by M with the masu fully open, the air introduction path will be connected to the second branch pipe 1.
2, the check switch 28 is opened and the damper i6v is operated. Therefore, the drop in volumetric efficiency caused by the low A of the air column near the fully opened throttle valve is prevented by the short ratio of the air introduction path length, and the volumetric efficiency is set to maximize the volumetric efficiency. , so the output is the same as above. When the rotational speed starts to increase, the damper 15 is activated, and the length of the air introduction path becomes the shortest, thereby increasing the output direction at high rotational speeds.

このように、本実施例によれば、空気尋人管10の長さ
全回転故に応じて変化さぞ、絞り弁?開付近での本積効
率の低下分防止し、りらゆる1皇転域で常に高KJJ犀
の出力を維づ守rることかできる。
As described above, according to this embodiment, the length of the air flow pipe 10 changes depending on the total rotation of the throttle valve. It is possible to prevent the decrease in main volume efficiency near the opening, and always maintain and protect the high KJJ output in the first rotation area.

しかも、単に空気導入u10の長さを分、lIt d 
)でよって変更させるだけでよく、シかも作動源も吸人
員圧を流用するのみで足り、極めて簡便な構成で出力向
上を達成でさ、ターボチャージャの如き謀雑な装置dけ
/JOを安しない。
Moreover, simply taking the length of the air introduction u10, lIt d
), all you have to do is change it, and you just need to use the suction pressure as the operating source, so you can achieve an output increase with an extremely simple configuration, and you can safely replace complicated devices such as turbochargers. do not.

なお、前記実施ヒリにおいて、チェックスイッチ27.
28の出力端は、絞り弁開、鼓、回転、へ排気1M度、
燃睨室圧力、秋り弁下流の吸人員圧など適宜手段を取る
ことができる。更に分岐・uVこよる佼さの選ボV丁エ
ンジン条汗しこよって異なり、望ましくは実験的に確認
された最大効率となるような長さにそれぞれ選定すれば
よい。
In addition, in the above implementation, check switch 27.
The output end of 28 is the throttle valve open, drum, rotation, exhaust to 1M degree,
Appropriate measures can be taken, such as combustion chamber pressure and intake manifold pressure downstream of the fall valve. Furthermore, the length of the branching and ultraviolet rays differs depending on the length of the V-engine, and it is preferable to select a length that provides the maximum efficiency that has been experimentally confirmed.

第8図には、ダイヤフラム装置17 (18)の作動に
関し、絞り弁3の全開検出法とダイヤフラム装置17の
貞圧値25に負圧を寺びく他の変形例を示す。すなわち
、負圧導入路34は級り弁3上流のベンチュリ部35を
貢圧諒とし、チェックスイッチ27A’に介してダイヤ
フラム装置17の負圧至25に連通されている。チェッ
クスイッチ27Aはソレノイド構造とされ、プランジャ
36倉コイル37とスプリング38との構成により通路
の開閉動作を行わせるものとしている。コイル37への
バッテリ39からの通電は、アクセルペダル40による
絞り弁3の全開を検出する全開検出ロッド41がスイッ
チ42を作動さぜることによって行われる。また、前記
スイッチ42はγンドスイッチ構造とされ、導入路切替
時期となるエンジン11転数が入力されるとともに、絞
り弁全開を検出することによって開動作がなされるもの
でりる。したがって1回転数の状況によって限数りるい
ずれのチェックスイッチを作動すぺさ〃)が選択され、
選択されたスイッチによって必費な−tM切替が行われ
る。
FIG. 8 shows another modification of the operation of the diaphragm device 17 (18), in which the throttle valve 3 is fully opened and a negative pressure is applied to the positive pressure value 25 of the diaphragm device 17. That is, the negative pressure introduction path 34 uses the venturi section 35 upstream of the scale valve 3 as a pressure source, and is communicated with the negative pressure 25 of the diaphragm device 17 via the check switch 27A'. The check switch 27A has a solenoid structure, and is configured with a plunger 36, a coil 37, and a spring 38 to open and close the passage. The coil 37 is energized from the battery 39 by operating a switch 42 by a full-open detection rod 41 that detects when the throttle valve 3 is fully opened by the accelerator pedal 40 . Further, the switch 42 has a gamma-land switch structure, and is opened by inputting the engine 11 rotation speed, which is the timing for switching the introduction path, and by detecting that the throttle valve is fully open. Therefore, depending on the number of revolutions, a limited number of check switches can be activated.
The necessary -tM switching is performed by the selected switch.

このように、絞り弁全開の検出とダイヤフラノ・動作用
負圧の尋人法を確立することによって1.!4転状態に
応じて適正な分岐管長さの導入Qが選択でき、常に最高
出力を維持することができる。
In this way, by establishing a method for detecting fully open throttle valve and negative pressure for diaphragm/operation, 1. ! An appropriate branch pipe length introduction Q can be selected depending on the quadruple rotation state, and maximum output can always be maintained.

第9図には空気導入管の長さを変更するだめの第2実施
例を示す。この実施例に係る空気導入管10Aは、導入
本管43に一本のノ(イノ;ス管44を設け、上流側分
岐開口部にダンノ′:15を配置したものである。他の
構成は、fi6.8図と同1*であるので説明を省略す
る。なお、バイパス管44の管路長は、予め5g4図に
示したような実験結果に基づき、最適な長さに設定する
もので、略導入本管43の管路長の1.5〜3倍の受さ
に設定すればよい。
FIG. 9 shows a second embodiment in which the length of the air introduction pipe can be changed. The air introduction pipe 10A according to this embodiment has a main introduction pipe 43 provided with one nozzle pipe 44, and an upstream branch opening with a nozzle 15 disposed.Other configurations are as follows. , fi6.8 is the same 1* as in Figure 5, so the explanation will be omitted.The length of the bypass pipe 44 is set to the optimum length in advance based on the experimental results shown in Figure 5g4. , it is sufficient to set the receptacle to approximately 1.5 to 3 times the pipe length of the main introduction pipe 43.

この実施例では、ダンパ15を上流側分岐開口部に配設
しているので、本管43および・(イノくスt44の容
積の布目がサージ吸収の役刷をなし、絞シ弁3の上流部
圧力が負圧となる虚が低減する。
In this embodiment, since the damper 15 is disposed at the upstream branch opening, the mesh of the volume of the main pipe 43 and . The imaginary state where the partial pressure becomes negative pressure is reduced.

こiは実験により確認されている。This has been confirmed through experiments.

第10図には空気導入管の長さを変更させる第3実施例
を示す。この実施例に係る空気導入管10Bは、エアク
リーナ1に2重骨の外管45を固定的に取付けし、内管
46′ff:回転可能としている。外管45には管軸方
向に沿って上流側から第3分肢管13B%第2分敲W1
2B、第1分分肢前1Bを配して連通されている。前記
内管46は中空に形成されてエアクリーナ1からの空気
を尋人可能となっており、その管壁には谷分枝管118
〜13Bに対応する連通透孔47,48.49が円周方
向の異なる位置に形成されている。内管46はモータ5
0により回転可能とされている。
FIG. 10 shows a third embodiment in which the length of the air introduction tube is changed. In the air introduction pipe 10B according to this embodiment, a double rib outer pipe 45 is fixedly attached to the air cleaner 1, and an inner pipe 46'ff is rotatable. The outer pipe 45 has a third branch pipe 13B% and a second branch pipe W1 from the upstream side along the pipe axis direction.
2B and the first limb anterior 1B are arranged and communicated. The inner pipe 46 is formed hollow to allow air to flow from the air cleaner 1, and a valley branch pipe 118 is provided on the wall of the inner pipe 46.
Communication through holes 47, 48, and 49 corresponding to 13B are formed at different positions in the circumferential direction. The inner pipe 46 is the motor 5
0 allows rotation.

したがって、エンジン回転数に応じて内管46の回転位
置を選択ざぜる゛ととにより管路長さを変更できる。
Therefore, the length of the pipe can be changed by selectively changing the rotational position of the inner pipe 46 according to the engine speed.

この実施例ではモータ50の制御のみで簡単に空気導入
管長さを変更できる利点がある。
This embodiment has the advantage that the length of the air introduction pipe can be easily changed by controlling the motor 50 alone.

また、第11図には空気導入管を運転状況に応じてその
管長を変化させる第4実施列を示す。この実施例に係る
空気導入管10Cは、先の実施例と異なり、導入官10
C自身を伸縮させることによって長さを変更するものと
した。すなわち、空気導入管100を蛇腹構造とし、エ
アクリーナlをガイドレール51に沿って管軸方向に移
動させるよ゛うにし、これ金モー タ52によって駆動
させるものである。
Further, FIG. 11 shows a fourth implementation row in which the length of the air introduction pipe is changed depending on the operating conditions. The air introduction pipe 10C according to this embodiment differs from the previous embodiment in that the air introduction tube 10C is different from the previous embodiment.
The length was changed by expanding and contracting C itself. That is, the air introduction pipe 100 has a bellows structure, and the air cleaner 1 is moved in the axial direction of the pipe along a guide rail 51, and is driven by a metal motor 52.

斯かる実施例では、管路長を連続的に変更できるので、
あらゆる回転数において最高出力となるような連続制御
ができ、最大の体積効率を得ることかり能となる。
In such an embodiment, since the pipe length can be changed continuously,
Continuous control is possible to achieve maximum output at any rotation speed, making it possible to obtain maximum volumetric efficiency.

更に、第12図には第5実施例を示す。この実施例にお
ける空気導入管IODは、内部に輝線仕切板53を設け
、導入管10D自身を短くしだ状態で導入路長さを長く
シ、これに分肢前121)。
Further, FIG. 12 shows a fifth embodiment. The air introduction tube IOD in this embodiment is provided with a bright line partition plate 53 inside, and the length of the introduction path is increased while the introduction tube 10D itself is shortened.

13Dを設けたものである。13D is provided.

斯かる実施列では導入管10Dを短尺構造にしつつ導入
路長さを広い範囲に亘って変更できる利点がある。
Such an implementation has the advantage that the length of the introduction path can be changed over a wide range while the introduction pipe 10D has a short structure.

以上説明したように、本発明に係るエンジンの吸気装置
によれば、級り弁全開付近における体積効率の低下に伴
なう出力低下がなく、エンジンの低回転域から高回転の
全域に亘って常に吸引される空気量が最大となり、工/
ジン出力の増大が実現で1% 2000CCクラスで平
均5%の出力増大が可能となる。
As explained above, according to the engine intake system according to the present invention, there is no decrease in output due to a decrease in volumetric efficiency near the fully open position of the throttle valve, and the engine air intake system is effective over the entire engine speed range from low to high engine speeds. The amount of air sucked in is always maximized, and the
It is possible to increase the output by 1% on average in the 2000CC class by 5% on average.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のエンジンの吸気系のンステムを示す一面
図、第2図はパルプ動作図、第3図は空気導入管内圧力
変化図、第4図はエンジン回転数に対する体積効率の特
性図、第5図は空気導入管長と軸出力の関係図、第6図
は第1実施例に係る吸気装置の要部断面図、第7図はチ
ェックスイッチの断面図、第8図はダイヤフラム装置の
作動装置変形例の模式構成図、第9図は第2実施例に係
る吸気装置の要部断面図、第1O図は第3実施例の同要
部断面図、第11図は第4実施例の同要部断面図、第1
2図は第5実施例の同要部lfr面図でめる。 l・・・エアクリーナ、3・・・収り弁、10.IOA
〜10D・・・空気纒入管、11〜13・・・分岐管、
17゜18・・・ダイヤフラム装置。 米交・1竹上戎饗・I圧力支1カ 1ンシ′ン回転数N 第9図
Figure 1 is a front view showing the intake system of a conventional engine, Figure 2 is a diagram of pulp operation, Figure 3 is a diagram of pressure changes in the air introduction pipe, Figure 4 is a characteristic diagram of volumetric efficiency versus engine speed, Fig. 5 is a diagram showing the relationship between air introduction pipe length and shaft output, Fig. 6 is a sectional view of the main parts of the intake system according to the first embodiment, Fig. 7 is a sectional view of the check switch, and Fig. 8 is the operation of the diaphragm device. A schematic configuration diagram of a modified example of the device, FIG. 9 is a sectional view of the main part of the intake device according to the second embodiment, FIG. 1O is a sectional view of the same main part of the third embodiment, and FIG. Cross-sectional view of the same main part, 1st
FIG. 2 is an lfr side view of the same essential part of the fifth embodiment. l...Air cleaner, 3...Storage valve, 10. IOA
~10D...Air inlet pipe, 11-13...Branch pipe,
17°18...Diaphragm device. US exchange, 1 Takegami Ebisu, I pressure support 1 engine rotation speed N Fig. 9

Claims (1)

【特許請求の範囲】 1、エアクリーナから吸入される空気を絞り弁を弁して
エンジンに供給する吸気装置において、前記絞り弁上流
側の空気導入g部がエンジ/回転数に反比列的に対応し
てその導入−艮金変史可能に形成されてなることを特徴
とするエンジンの吸気装置。 2、前記空気導入管部は長さの異なる複数の分岐前部か
ら形成され、ダンパなどの切替手段により空気通路を切
替可能とされていることを特徴とする特許請求の範囲第
1項記載のエンジンの吸気装置。 3、前記空気導入管部は押縮自在に形成さ扛、その長さ
が変にされることを特徴とする特許請求の範囲第1項記
載のエンジンの吸気装置。
[Scope of Claims] 1. In an intake system that supplies air taken from an air cleaner to an engine through a throttle valve, an air introduction section g on the upstream side of the throttle valve corresponds inversely to the engine/rotation speed. Introduction - An intake system for an engine characterized by being formed to be able to change. 2. The air introduction pipe section is formed from a plurality of branch front sections having different lengths, and the air passage can be switched by a switching means such as a damper. Engine intake system. 3. The engine air intake device according to claim 1, wherein the air introduction pipe portion is formed to be freely compressible and its length can be changed.
JP56164131A 1981-10-16 1981-10-16 Intake device of engine Pending JPS5867958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56164131A JPS5867958A (en) 1981-10-16 1981-10-16 Intake device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56164131A JPS5867958A (en) 1981-10-16 1981-10-16 Intake device of engine

Publications (1)

Publication Number Publication Date
JPS5867958A true JPS5867958A (en) 1983-04-22

Family

ID=15787331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56164131A Pending JPS5867958A (en) 1981-10-16 1981-10-16 Intake device of engine

Country Status (1)

Country Link
JP (1) JPS5867958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023720A1 (en) * 1999-09-25 2001-04-05 Kontec Gmbh Variable intake manifold for an internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023720A1 (en) * 1999-09-25 2001-04-05 Kontec Gmbh Variable intake manifold for an internal combustion engine

Similar Documents

Publication Publication Date Title
US4619226A (en) Intake device for internal combustion engine
JPS6081459A (en) Intake-air device in internal-combustion engine
JPS6113092B2 (en)
US3906722A (en) Exhaust system for internal combustion engines
JPH0758050B2 (en) Intake control device for exhaust turbocharged engine
JP2815213B2 (en) Engine fuel control device
US4316438A (en) Internal combustion engine
JPS5867958A (en) Intake device of engine
JPS591332B2 (en) Turbine compartment for turbocharger
JPH0688514A (en) Muffler of internal combustion engine
JPH04246220A (en) Noise suppressing device
JPS60216029A (en) Suction apparatus for engine
KR100559593B1 (en) Variable intake system
JPS60224922A (en) Suction system for multicylinder engine
JP2653483B2 (en) Exhaust structure of engine with exhaust turbocharger
JP2899734B2 (en) Intake device for internal combustion engine
JP2698142B2 (en) Engine turbocharger control device
JPH01170754A (en) Muffling device for internal combustion engine
JPS5847227Y2 (en) Turbine compartment for turbocharger
JPS60138223A (en) Suction mechanism for engine
JPS60216064A (en) Intake unit for multi-cylinder engine
JPS63186915A (en) Exhaust turbine type supercharger in variable capacity type
JP2995200B2 (en) Engine air supply
JP2872786B2 (en) Engine intake system
JP3679204B2 (en) Intake control device for multi-cylinder engine